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Linear regression

® Given a dataset S, find @ = [w, b] by minimising the mean-squared error (MSE)

N
L= ;(wai +h—y,)?
® Centering
§ = Y2—Yy X X:2
Yn — Y X%

e Computing the Moore-Penrose pseudoinverse
w = X'X)''XTy
b = j—w'x
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Augmenting the feature vector

fw,b)=w'x+b=[w' b [ﬂ = [vg] : [ﬂ =w''x = f(x’;w)

® The 1 can be seen as a feature independent of the input.
® Suppose we have a data point x = [xl T 1'3]T

® The data point after appending 1 becomes x’ = [1 T X9 Jig]T
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Feature Function

A “linear” regression model is linear in the parameters w, not the features.

A linear regression model can fit an arbitrary nonlinear function of the data, that is
P(x).
The data point after appending 1 and quadratic terms becomes

2 2]T

P(x) = [1 Ty T2 X3 T1T2 T2X3 T1T3 x% x5 T3

We call ¢ a feature function.
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Linear Regression based on Feature Function

® Instead of f(x) = w'x+b, we now have f(x) = w'¢(x).
® To solve it, instead of X, we will build ® =

— ¢(>:<N) —

® The optimal solution for linear regression will become w = (&7 ®)"1d Ty,
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Example

We have a dataset as below

T ‘ )
-3.0 | 0.0927
-2.4 | -0.7417
-1.8 | -0.9344
-1.2 1 -0.9174
-0.6 | -0.4811
0.0 | -0.1402

Instead of writing y = wx + b, let's add another dimension that is always 1 and have

T
y=wr+b= [ﬂ m =w'x.
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Example

We therefore have

T ‘ Y
1 -3.0 | 0.0927
1 -2.4]-0.7417
1 -1.8|-0.9344
1 -1.21]-09174
1 -0.6 | -0.4811
1 0.0 |-0.1402

What happens if we add a dimension of 227 [note we replace b with wy]

T
w9 .’E2

_ _ 2 I

Y= |wi T | =wr +wir+wg=w X
wo 1
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Data

x z? ‘ Y
1 -3.0 9.0 | 0.0927
1 -24 576 |-0.7417
1 -1.8 3.24 | -0.9344
1 -12 1.44|-0.9174
1 -0.6 0.36 | -0.4811
1 00 0.0 |-0.1402

® |n general, we can add arbitrary high-degree terms.

® |f we add degree-2 terms to [1 1 xg}, we get [1 1 X9 x% JJ% :clxg].

® The combination becomes many if we have more dimensions.
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Features




Digit recognition

Consider digit recognition. How do you describe the digit two?

A F222 32272

A datapoint is a two if it is similar to one of the example twos.
A feature can be how similar the sample is to one of those examplars.

If the above examplars are x1,xs, ..., X1, for a new datapoint x we can construct
a feature vector as follows

[1 x'x; x'x9 ... XTX10]
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From Polynomial regression to Kernel regression

® Feature
— A feature describes something about the input.

— The feature vector of x is written as ¢(x.
- We do f(x) = w ' $(x) to make a prediction.

® Kernel
— A kernel describes similarities of the input to other samples.

— The similarity of two samples x and x’ is written as k(x,x’).

- We do f(x)=>"", a;k(x,x;) to make a prediction.
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Kernels and features

Imagine for some feature function ¢, we can define a kernel k& : R x R* — R as
k(x,x') = ¢(x) T p(x').
We can immediately see that k is symmetric, i.e., k(x,x") = k(x/,x).

Ideally, we want ¢ to return an infinite-dimensional vector but we want to avoid
computing ¢(x) " o(x').

It would be ideal if this transformation is usefull
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Going from features to kernels

® The mean-squared error can be written as
L=|ow —yl3
2

where

® The optimal solution is w = (®7®)~'dTy.
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Going from features to kernels

® To make a prediction,
) =wlot) = (@T2)"aTy) o)
= vy o@'0)" ¢(x)
= y (20)7'® ¢(x)

Note 1: ((ATA)"1AT)" = A(AT A)~
Note 2: A(ATA)"1=(AAT)"1A
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Going from features to kernels
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Going from features to kernels

fx) = y'(@2") '@ 4(x)

k(x1,x1) k(x1,x2) ... k(x1,%x,) k(x1,x)
k(x9,x k(x9,x v k(xo,xy, k(xo,x n
A e L I T
: : : : i=1
k(xn,x1) k(xp,x%x2) ... k(Xn,Xg,) k(xp, x)

® Linear kernel: k(x,x') = x'x’

® Polynomial kernel: k(x,x’) = (r +x'x')?

® Gaussian (RBF) kernel: k(x,x’) = exp <_w>
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Some implications

We suddenly can compute infinite-dimensional features. Does that mean we don't
need to craft features anymore?

How do we use kernels for classification?
Are neural networks kernels?
The runtime of computing the closed-form solution with kernels is O(n?).

The inference time for computing f(x) = > 1 | a;k(x;,n) is O(n).
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