
Machine Learning
Linear Regression 2

Kia Nazarpour

1 / 20

Based on Hao Tang’s slides



Linear regression

• Given a dataset S, find θ = [w, b] by minimising the mean-squared error (MSE)

L =
1

N

N∑
i=1

(w>xi + b− yi)2

• Centering

ẏ =


y1 − ȳ
y2 − ȳ

...
yN − ȳ

 X =


ẋ>1
ẋ>2
...

ẋ>N


• Computing the Moore-Penrose pseudoinverse

w = (X>X)−1X>ẏ

b = ȳ −w>x̄
2 / 20



Augmenting the feature vector

f(x;w, b) = w>x + b =
[
w> b

] [x
1

]
=

[
w
b

]> [
x
1

]
= w′

>
x′ = f(x′;w′)

• The 1 can be seen as a feature independent of the input.

• Suppose we have a data point x =
[
x1 x2 x3

]>.
• The data point after appending 1 becomes x′ =

[
1 x1 x2 x3

]>

3 / 20



Feature Function

• A “linear” regression model is linear in the parameters w, not the features.

• A linear regression model can fit an arbitrary nonlinear function of the data, that is
φ(x).

• The data point after appending 1 and quadratic terms becomes

φ(x) =
[
1 x1 x2 x3 x1x2 x2x3 x1x3 x21 x22 x23

]>
• We call φ a feature function.

4 / 20



Linear Regression based on Feature Function

• Instead of f(x) = w>x + b, we now have f(x) = w>φ(x).

• To solve it, instead of X, we will build Φ =


— φ(ẋ1) —
— φ(ẋ2) —

...
— φ(ẋN ) —


• The optimal solution for linear regression will become w = (Φ>Φ)−1Φ>y.

5 / 20



Ploynomial regression

6 / 20



Ploynomial regression

7 / 20



Example

We have a dataset as below

x y

-3.0 0.0927
-2.4 -0.7417
-1.8 -0.9344
-1.2 -0.9174
-0.6 -0.4811
0.0 -0.1402
...

...

Instead of writing y = wx+ b, let’s add another dimension that is always 1 and have

y = wx+ b =

[
w
b

]> [
x
1

]
= w>x.

8 / 20



Example

We therefore have
x y

1 -3.0 0.0927
1 -2.4 -0.7417
1 -1.8 -0.9344
1 -1.2 -0.9174
1 -0.6 -0.4811
1 0.0 -0.1402
...

...
...

What happens if we add a dimension of x2? [note we replace b with w0]

y =

w2

w1

w0

> x2x
1

 = w2x
2 + w1x+ w0 = w>x

9 / 20



Data

x x2 y

1 -3.0 9.0 0.0927
1 -2.4 5.76 -0.7417
1 -1.8 3.24 -0.9344
1 -1.2 1.44 -0.9174
1 -0.6 0.36 -0.4811
1 0.0 0.0 -0.1402
...

...
...

...

• In general, we can add arbitrary high-degree terms.
• If we add degree-2 terms to

[
1 x1 x2

]
, we get

[
1 x1 x2 x21 x22 x1x2

]
.

• The combination becomes many if we have more dimensions.

10 / 20



Features

11 / 20



Digit recognition

• Consider digit recognition. How do you describe the digit two?

• A datapoint is a two if it is similar to one of the example twos.

• A feature can be how similar the sample is to one of those examplars.

• If the above examplars are x1,x2, . . . ,x10, for a new datapoint x we can construct
a feature vector as follows[

1 x>x1 x>x2 . . . x>x10

]
12 / 20



From Polynomial regression to Kernel regression

• Feature
– A feature describes something about the input.

– The feature vector of x is written as φ(x.

– We do f(x) = w>φ(x) to make a prediction.

• Kernel
– A kernel describes similarities of the input to other samples.

– The similarity of two samples x and x′ is written as k(x,x′).

– We do f(x) =
∑n

i=1 αik(x,xi) to make a prediction.

13 / 20



Kernels and features

• Imagine for some feature function φ, we can define a kernel k : Rd × Rd → R as

k(x,x′) = φ(x)>φ(x′).

• We can immediately see that k is symmetric, i.e., k(x,x′) = k(x′,x).

• Ideally, we want φ to return an infinite-dimensional vector but we want to avoid
computing φ(x)>φ(x′).

• It would be ideal if this transformation is useful!

14 / 20



Going from features to kernels

• The mean-squared error can be written as

L = ‖Φw − y‖22

where

Φ =


— φ(x1) —
— φ(x2) —

...
— φ(xn) —


• The optimal solution is w = (Φ>Φ)−1Φ>y.

15 / 20



Going from features to kernels

• To make a prediction,

f(x) = w>φ(x) =
(

(Φ>Φ)−1Φ>y
)>

φ(x)

= y>Φ(Φ>Φ)−1 φ(x)

= y>(ΦΦ>)−1Φ φ(x)

Note 1:
(
(A>A)−1A>

)>
= A(A>A)−1

Note 2: A(A>A)−1 = (AA>)−1A

16 / 20



Going from features to kernels

f(x) = y>(ΦΦ>)−1Φ φ(x)

= y>


φ(x1)

>φ(x1) φ(x1)
>φ(x2) . . . φ(x1)

>φ(xn)
φ(x2)

>φ(x1) φ(x2)
>φ(x2) . . . φ(x2)

>φ(xn)
...

...
...

φ(xn)>φ(x1) φ(xn)>φ(x2) . . . φ(xn)>φ(xn)


−1 

φ(x1)
>φ(x)

φ(x2)
>φ(x)
...

φ(xn)>φ(x)



17 / 20



Going from features to kernels

f(x) = y>(ΦΦ>)−1Φ φ(x)

= y>


k(x1,x1) k(x1,x2) . . . k(x1,xn)
k(x2,x1) k(x2,x2) . . . k(x2,xn)

...
...

...
k(xn,x1) k(xn,x2) . . . k(xn,xn)


−1 

k(x1,x)
k(x2, x)

...
k(xn,x)

 =

n∑
i=1

αik(xi,x)

• Linear kernel: k(x,x′) = x>x′

• Polynomial kernel: k(x,x′) = (r + x>x′)d

• Gaussian (RBF) kernel: k(x,x′) = exp
(
−‖x−x

′‖22
2σ2

)
18 / 20



Some implications

• We suddenly can compute infinite-dimensional features. Does that mean we don’t
need to craft features anymore?

• How do we use kernels for classification?

• Are neural networks kernels?

• The runtime of computing the closed-form solution with kernels is O(n3).

• The inference time for computing f(x) =
∑n

i=1 αik(xi, n) is O(n).

19 / 20


