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Questions you should be able to answer after this week

What is Support Vector Machine (SVM)?

Training (optimisation problem) of linear SVM?
What is maximum margin

How to solve the optimisation problem?

What are the support vectors?

What is soft-margin SVM (SVM with slack variables)?
How to make non-linear SVM?

What is kernel and what is kernel trick?

What are pros and cons with SVM?

What applications are SVM successful for?
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18c
1940s
1951

1957
1959

History of machine learning

Naive Bayes classifier

Threshold logic - Warren McCulloch and Walter Pitts
Logistic regression - Joseph Berkson

k-NN - Evelyn Fix and Joseph Hodges

Perceptron - Frank Rosenblatt

Decision tree - William Belson (?)
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http://lecun.org/gallery/libpro/20011121-allyourbayes//

18c
1940s
1951
1957
1959

1986

History of machine learning

Naive Bayes classifier

Threshold logic - Warren McCulloch and Walter Pitts
Logistic regression - Joseph Berkson

k-NN - Evelyn Fix and Joseph Hodges

Perceptron - Frank Rosenblatt

Decision tree - William Belson (?)

ANN with EBP - D.Rumelhart, G.Hinton, and R.Williams

Y = . |
e
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1940s
1951
1957
1959

1986

1993-97

History of machine learning

Naive Bayes classifier

Threshold logic - Warren McCulloch and Walter Pitts
Logistic regression - Joseph Berkson

k-NN - Evelyn Fix and Joseph Hodges

Perceptron - Frank Rosenblatt

Decision tree - William Belson (?)

ANN with EBP - D.Rumelhart, G. H|nton and R.Williams

S H

Support Vector Machine - Vladimir Vapmk ~ '-

after Yann Lu Cun's photo galleries
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Recap — Logistic Regression

1
o P(Y=1|x)= '

( x) 1+exp(—(w'x+ wp)) Sos
XI(Xl,,...,Xd)T, %:j
w=(w,...,wg),Y e{-1,+1}

® Training on a data set {(x1,y1),...,(xn,yn)} based on maximum likelihood

estimation (MLE):
N
max [[ P(Y =yi|x;)

w,wo i1
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Decision boundary and decision regions
1
P(Y=1|x) = —  decision boundary: w'x + wy = 0
( x) 1+exp(—(wx+ wp)) Y 0
X2

wix =0 C1

slope = w,/w,

Xy
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Decision boundary and decision regions (cont.)
1

P(Y=1|x) =
( x) 1+exp(—(w'x+ wp))
Dimension Decision boundary
2 line wixi + woxo + wp =0
3 plane wix1 + Woxo + waxz + wg =0
d hyperplane (27:1 W,'X,') +wy =0
X

w=(w, wy, w,)"
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Large margin classifiers

(o]
O
o O
o X
O
(@) X X
X
(e} X X
X

M/7-)(;<+- wp =20
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Large margin classifiers (cont)

Proposed by several people, e.g. Vladimir Vapnik (1963, 1992)

w'x; + wo > +1 Vist yj=+1
wa,- +wy < -1 Vist yj=-1
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X2
\\R ZW
Do T
\\‘\ \/}}":L
vl
f X
wXxX+w, =+1
wx+w, =-1

Margin

[P1 — p2fl = [lIP1]| — [|p2]l|
| —wo + 1 —wy— 1
[[wl [[wl
2
= —— =2r
[|wll
where

1= pr1 + Wy
= [wll[|p1/[ cos(8)l6—0 + wo
= [wlll|lp1l| + wo

—wy +1

Ipall =
[[w]
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Support Vector Machine (SVM)

1

Training max ——
wo[jw]]

st. w!xj+wy > +1 forall i with y;=+1
w'xi+wy < —1 forall i with y;=—1
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Support Vector Machine (SVM)

Training max i
wo [lwl]
w'x; +wy > +1 forall i with yj=+1

s.t.
w'xi+wy < —1 forall i with y;=—1

Equivalent to
NB: w’w = ||w]|?

. 1

min = |w|

w 2

sty (wa,- + Wo) >1 forall i

NB: constrained, quadratic and convex optimisation problem — no local mimima!
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Support Vector Machine (SVM)

1
Training max ——
wo[jw]]

w'x; +wy > +1 forall i with yj=+1

s.t.
w'xi+wy < —1 forall i with y;=—1
Equivalent to
. 1
min *”WHZ NB: w'w = [|wl
w 2

sty (wa,- + Wo) >1 forall i
NB: constrained, quadratic and convex optimisation problem — no local mimima!

- most of a; are zeros normally

N
Solution: w = > "a,y;x;, «;>0
i=1
Those {x;} whose aj > 0 are called support vectors.
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Support Vector Machine (SVM)

. . 1
Training max -
wo [lwl]
st. w!xj+wy > +1 forall i with y;=+1
w'x; +wy < —1 for all i with y;=—1
Equivalent to
NB: ww = [lwl?

min = [lwl?
w 2

sty (wa,- + Wo) >1 forall i
NB: constrained, quadratic and convex optimisation problem — no local mimima!

N
Solution: w = Za;y,-x,-, «; > 0 --- most of a; are zeros normally
i1
Those {x;} whose aj > 0 are called support vectors.

Classification
N
g(x) =sgn(w’x + wy) = sgn <Z oy X x + W0>
10/25
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Assuming € > 0,

Letting w = g and Wy =

Why +1 instead of +¢ ?

min
w,wo

s.t.

min
w, W,

s.t.

min
w,wo

s.t.

w2

yi (wTxi+wp) >¢ foralli
1

 Jw?

i (WTTx,- + %) >1 forall j
2

€ .

=]

yi (wTx; + ) >1 forall i
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Optimisation problems in SVM

) 1
min 7WTW
w,wp

s.t. (wa,- + Wo) >1 forall i

Using the Lagrange multipliers a; > 0, the Lagrangian is given as:

1 N
L(Oé,W) = §WTW — ;04; (y;(WTX,' + Wo) — ].)
where a = (a1, ..., @) and w = (w, wp). The dual problem is defined as

max L(c, w)

st. a>0
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Optimisation problems in SVM (cont)

1 N
L{a,w) = EWTW > (}/i(WTXi + wo) — 1)
i=1

OL(a,w N
(8w) :W_;aiyixi =0,
OL(a, w) N
T\ v = 0.
wo ;O‘l}//
N
w:Za,-y,-x,-
i=1
N
0=> aiy
i=1

13/25



Optimisation problems in SVM (cont)

Putting the results to the Lagrangian yields:

1 N
L{a,w) = 5wTw — Zai ()/i(WTXi + wo) — 1)

- Zy,yja,ajx, Xj — Zy,yja aj X; xj+Zoz,

'J 1 ij=1 i=1
Zy,yja a;j X; xJ—i—Za,
Ij 1 i=1
The necessary and sufficient conditions for w* to be an optimum are:
oL(a*,w*) 0 OL(a*, w*)
ow 7 8W0
o (y,-(wa,- + wp) — 1) =0, forall i --- Karush-Kuhn-Tuckert (KKT) condition

=0, Oé}k >0, y;(WTX,'—|—W0)—1 >0,

which means that either af =0 or y;(w'x; + wp) — 1 =0.
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SVM with slack variables —

Hard margin SVM

min w’'w

w

st yi(w'x; +w)>1 forall i

Soft margin SVM

min
w,wp

s.t.

N
w'w+ C (Zf,) ,  where C >0,
i=1
yi(wTxi + wo) > 1—¢& foralli, & >0

soft margin SVM
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Loss function in soft-margin SVM

w,wo

N
min w'w+C (Z{;) ,  where C >0,
i=1

st yi(wixi+wp)>1—¢ foralli, & >0

The hinge loss: 50

—+= 0-1loss
—— hinge loss

£(t) = max(0,1—t)

[, ift>1,
| 1—t, otherwise,

where t = y(w’ x + wyp).
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Non-linear SVM

X2
X
[ ] x
o O
. X
e x ¢ x
x X
[ ] N x N X
x x
° X1 «
Training data X 21
in input space x =
X2 X2 (b_l 24
X, X
° x ° x SVM decision hyperplane
o O/ o O in feature space
Py X X
o o o o
x VS. x
X x
[ ] x [ ] x
x x x x
X X
U X1 ® X1
Linear discriminant function SVM decision surface
decision surface in input space in input space
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Non-linear SVM (cont)

® Conceptual steps to construct a non-linear SVM
Step 1 Transform x to ¢(x) in a high-dimensional space (feature space)
Step 2 Train a SVM in the feature space
Step 3 Classify data in the feature space

Za/)// X, T¢( )+WO
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Non-linear SVM (cont)

® Conceptual steps to construct a non-linear SVM
Step 1 Transform x to ¢(x) in a high-dimensional space (feature space)
Step 2 Train a SVM in the feature space
Step 3 Classify data in the feature space

Za/)// X, T¢( )+WO

® |nstead of applying the non-linear transformation and carrying out calculation in
the feature space, use a kernel function k(x;, x;) such that

k(xi, x;) = o(x;) T b(x)) (cf. "kernel trick’)
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Non-linear SVM (cont)

® Conceptual steps to construct a non-linear SVM
Step 1 Transform x to ¢(x) in a high-dimensional space (feature space)
Step 2 Train a SVM in the feature space
Step 3 Classify data in the feature space

Za/)// X, T¢( )+WO

® |nstead of applying the non-linear transformation and carrying out calculation in
the feature space, use a kernel function k(x;, x;) such that

k(xi, x;) = o(x;) T b(x)) (cf. "kernel trick’)

L(a,ﬁ) = _*Zy,ijé,OéJ k(X;,Xj)—l—Za;— ngl

ij=1 i=1

Zal.yl Xj, X +W0
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Kernel functions for SVM

An example of kernel that maps data to a feature space explicitly

k(a,b) é (1 + aTb)2 = (1 + aib; + 32b2)2
=1+ 2ayby + 2axby + a3b? + 2a1byashy + a3b3

= (17 \ﬁala \6327 a%v \631327 a%)(]'v \/ibla ﬁb% b%v \ﬁblb% bg)T

= ¢(a)"é(b)
Popular kernels
Kernel k(xi, x;)
Polynomial (1 + (x;, x;))¢

Radial basis function (RBF)
Hyperbolic tangent

e_'YHXi_XJ'”27 ¥ > O
tanh(k1(x;, xj) + K2), K1 > 0,k <0

where (x;, x;) is an inner product (e.g. dot product) between x; and Xx;.
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Making kernels

How can we ensure if a kernel works as an inner product in a feature space?

It should satisfy:
* k(x,2) = (¢(x), 8(2)) = (#(2), ¢(x)) = k(z,%)
® k(x,2)? < k(x,x) k(z,z)
® K = (k(xj,x;)), which is a n-by-n matrix, is positive semi-definite.

Mercer’s theorem:
Suppose k is a continuous symmetric non-negative definite kernel, then k can be
expressed as:

k(x,z) = iAiﬁbi(x)ﬁbi(z)

where {¢;} are eigen-functions, ||¢;|| = 1, and {\;} are positive eigenvalues \; > 0.

20/25



Making kernels from kernels

Letting ki, ko, and ks are kernels, we can create a new kernel k.

® k(x,z) = ki(x,2z) + ka(x, 2)

® k(x,z) = aki(x,z), a>0

® k(x,z) = ki(x,z) ko(x, 2)

® k(x,z) =f(x)f(z)

* k(x,2) = k3(8(x), ¢(2))

® k(x,z) =x" Bz, where B is a n-by-n matrix
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Generalisation error of SVM (g

Assuming the class F of real-valued functions on the ball of radius R in R" as
F={x—w-x:[w|]| <1 |x|| <R}.

If a classifier sgn(f) € sgn(F) has margin at least  on all the training examples, with
probability at least 1 — § over n random examples, f has error no more than

k c [ R2 5 1
D < — — | — —
Lo(f) N \/N (72 log™n + log <5>>

where k is the number of labelled training examples with margin less than ~y, c is a
constant,

R?
VC-dim(f) < min(—,n)+1
v
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Experiments on US Postal Service Database

C. Cortes and V. Vapnik, “Support-Vector Networks", Machine Learning 20, 273-297
(1995). https://doi.org/10.1007/BF00994018
US Postal Service Database (handwritten digits):

Training samples 7300
Test samples 2000
Image resolution 16 x 16 pixels

Err. Support Dimensionality of

d [%] vectors feature space
Classifier EN.[?H 1 12.0 200 256
Human performance 2.5 2 47 127 ~ 33000
Decision tree, CART 17.0 3 4.4 148 ~ 1 x 10°
Decision tree, V4.5 16.0 4 43 165 ~1x10°
Best 2 layer NN 6.6 5 43 175  ~1x10™2
LeNetl (5 layers) 5.1 6 4.2 185  ~1x 101

7

4.3 190 ~1x 106

d: degree of polynomial kernel
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https://doi.org/10.1007/BF00994018

Some notes on SVMs

How to find wp? --- use yj(w x; + wg) = 1 for support vectors

How to choose the regulariser C? --- use a validation set
How to solve the constrained quadratic optimisation problem in SVM practically?
It requires a kernel matrix of n-by-n.

o Gradient, sub-gradient, coordinate ascent/descent
o Sequential Minimal Optimisation (SMO) [John Platt, 1998]
o LIBSVM [Chih-Chung Chang and Chih-Jen Lin]: a SVM software tool with SMO

How to apply SVMs to multi-class classification problems?

Performance deterioration (NB: not very specific to SVMs)

o Heavily-overlapped data sets
o Imbalanced data sets

o (Too many support vectors)
o (Large data sets)

Output interpretability
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https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/tr-98-14.pdf
https://www.csie.ntu.edu.tw/~cjlin/libsvm/

Quizzes

Consider a SVM with a linear kernel run on the following data set.

X1 Xxp Y ]

20 40 1 4 LA 4
40 20 1 >

40 40 1 ¢ ] i ¢
00 20 2

20 -10 2 il
00 00 2

—4 -2 0 2 4 6 8
X1

1. Using your intuition, what weight vector do you think will result from training an
SVM on this data set?

2. Plot the data and the decision boundary of the weight vector you have chosen.
3. Which are the support vectors? What is the margin of this classifier?
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