Machine Learning

Lecture: Support Vector Machines

Hiroshi Shimodaira

2025

Ver. 1.0

Questions you should be able to answer after this week

- What is Support Vector Machine (SVM)?
- Training (optimisation problem) of linear SVM?
 What is maximum margin
- How to solve the optimisation problem?
- What are the support vectors?
- What is soft-margin SVM (SVM with slack variables)?
- How to make non-linear SVM?
- What is kernel and what is kernel trick?
- What are pros and cons with SVM?
- What applications are SVM successful for?

History of machine learning

18c	Naive Bayes classifier
1940s	Threshold logic - Warren McCulloch and Walter Pitts Logistic regression - Joseph Berkson
1951	k-NN - Evelyn Fix and Joseph Hodges
1957	Perceptron - Frank Rosenblatt
1959	Decision tree - William Belson (?)

History of machine learning

18c	Naive Bayes classifier
1940s	Threshold logic - Warren McCulloch and Walter Pitts Logistic regression - Joseph Berkson
1951	k-NN - Evelyn Fix and Joseph Hodges
1957	Perceptron - Frank Rosenblatt
1959	Decision tree - William Belson (?)
1986	ANN with EBP - D.Rumelhart, G.Hinton, and R.Williams

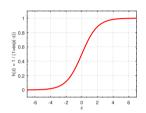
History of machine learning

18c	Naive Bayes classifier
1940s	Threshold logic - Warren McCulloch and Walter Pitts Logistic regression - Joseph Berkson
1951	k-NN - Evelyn Fix and Joseph Hodges
1957	Perceptron - Frank Rosenblatt
1959	Decision tree - William Belson (?)
1986	ANN with EBP - D.Rumelhart, G.Hinton, and R.Williams
1993-97	Support Vector Machine - Vladimir Vapnik

Recap - Logistic Regression

•
$$P(Y=1|x) = \frac{1}{1 + \exp(-(w^T x + w_0))}$$

 $x = (x_1, \dots, x_d)^T,$
 $w = (w_1, \dots, w_d)^T, Y \in \{-1, +1\}$

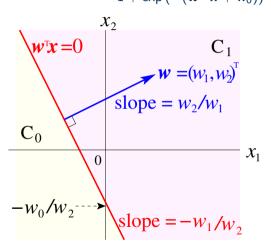


• Training on a data set $\{(x_1, y_1), \dots, (x_N, y_N)\}$ based on maximum likelihood estimation (MLE):

$$\max_{\boldsymbol{w},w_0} \prod_{i=1}^N P(Y=y_i|\boldsymbol{x}_i)$$

Decision boundary and decision regions

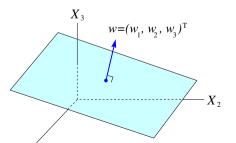
$$P(Y=1|\mathbf{x}) = \frac{1}{1 + \exp(-(\mathbf{w}^T\mathbf{x} + w_0))} \rightarrow \text{decision boundary: } \mathbf{w}^T\mathbf{x} + w_0 = 0$$



Decision boundary and decision regions (cont.)

$$P(Y=1|\mathbf{x}) = \frac{1}{1 + \exp\left(-(\mathbf{w}^T\mathbf{x} + w_0)\right)}$$

Dimension		Decision boundary
2	line	$w_1x_1 + w_2x_2 + w_0 = 0$
3	plane	$w_1x_1 + w_2x_2 + w_3x_3 + w_0 = 0$
:		
d	hyperplane	$\left(\sum_{i=1}^d w_i x_i\right) + w_0 = 0$

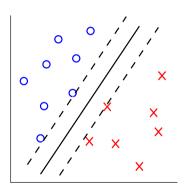


Large margin classifiers

 $\mathbf{w}^T \mathbf{x}_i + \mathbf{w}_0 = 0$

Large margin classifiers (cont.)

Proposed by several people, e.g. Vladimir Vapnik (1963, 1992)

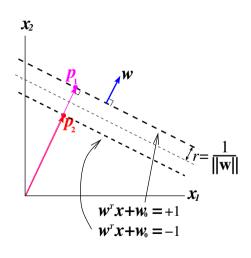


$$\mathbf{w}^T \mathbf{x}_i + w_0 \ge +1 \quad \forall i \text{ s.t. } y_i = +1$$

 $\mathbf{w}^T \mathbf{x}_i + w_0 \le -1 \quad \forall i \text{ s.t. } y_i = -1$

(c)

Margin



$$\begin{aligned} \|\mathbf{p}_{1} - \mathbf{p}_{2}\| &= \|\mathbf{p}_{1}\| - \|\mathbf{p}_{2}\| \\ &= \left| \frac{-w_{0} + 1}{\|\mathbf{w}\|} - \frac{-w_{0} - 1}{\|\mathbf{w}\|} \right| \\ &= \frac{2}{\|\mathbf{w}\|} = 2r \end{aligned}$$

where
$$\begin{split} 1 &= \mathbf{w}^T \mathbf{p}_1 + w_0 \\ &= \|\mathbf{w}\| \|\mathbf{p}_1\| \cos(\theta)|_{\theta=0} + w_0 \\ &= \|\mathbf{w}\| \|\mathbf{p}_1\| + w_0 \\ \|\mathbf{p}_1\| &= \frac{-w_0 + 1}{\|\mathbf{w}\|} \end{split}$$

Training
$$\max_{\mathbf{w}} \frac{1}{\|\mathbf{w}\|}$$

s.t. $\mathbf{w}^T \mathbf{x}_i + \mathbf{w}_0 \ge +1$ for all i with $y_i = +1$
 $\mathbf{w}^T \mathbf{x}_i + \mathbf{w}_0 \le -1$ for all i with $y_i = -1$

Training
$$\max_{\pmb{w}} \frac{1}{\|\pmb{w}\|}$$
 s.t. $\pmb{w}^T \pmb{x}_i + w_0 \geq +1$ for all i with $y_i = +1$ $\pmb{w}^T \pmb{x}_i + w_0 \leq -1$ for all i with $y_i = -1$ Equivalent to
$$\min_{\pmb{w}} \frac{1}{2} \|\pmb{w}\|^2 \qquad \qquad \text{NB: } \pmb{w}^T \pmb{w} = \|\pmb{w}\|^2$$
 s.t. $y_i \left(\pmb{w}^T \pmb{x}_i + w_0\right) \geq 1$ for all i NB: constrained, quadratic and convex optimisation problem \rightarrow no local minima!

Training
$$\max_{\pmb{w}} \frac{1}{\|\pmb{w}\|}$$
 s.t. $\pmb{w}^T \pmb{x}_i + w_0 \geq +1$ for all i with $y_i = +1$ $\pmb{w}^T \pmb{x}_i + w_0 \leq -1$ for all i with $y_i = -1$ Equivalent to $\min_{\substack{\pmb{w} \\ \pmb{w}}} \frac{1}{2} \|\pmb{w}\|^2$ NB: $\pmb{w}^T \pmb{w} = \|\pmb{w}\|^2$ s.t. $y_i \ (\pmb{w}^T \pmb{x}_i + w_0) \geq 1$ for all i NB: constrained, quadratic and convex optimisation problem \rightarrow no local mimima! Solution: $\pmb{w} = \sum_{i=1}^N \alpha_i y_i \pmb{x}_i, \quad \alpha_i \geq 0 \quad \cdots \quad \text{most of } \alpha_i \text{ are zeros normally}$ Those $\{\pmb{x}_i\}$ whose $\alpha_i > 0$ are called support vectors.

Training
$$\max_{\boldsymbol{w}} \frac{1}{\|\boldsymbol{w}\|}$$

s.t.
$$\mathbf{w}^T \mathbf{x}_i + \mathbf{w}_0 \ge +1$$
 for all i with $y_i = +1$ $\mathbf{w}^T \mathbf{x}_i + \mathbf{w}_0 \le -1$ for all i with $\mathbf{v}_i = -1$

Equivalent to

$$\min_{\mathbf{w}} \frac{1}{2} \|\mathbf{w}\|^2$$
 NB: $\mathbf{w}^T \mathbf{w} = \|\mathbf{w}\|^2$

s.t. $y_i (\mathbf{w}^T \mathbf{x}_i + w_0) \ge 1$ for all i

NB: constrained, quadratic and convex optimisation problem \rightarrow no local mimima!

Solution:
$$\mathbf{w} = \sum_{i=1}^{N} \alpha_i y_i \mathbf{x}_i$$
, $\alpha_i \geq 0$ ···· most of α_i are zeros normally

Those $\{x_i\}$ whose $\alpha_i > 0$ are called *support vectors*.

Classification

$$g(\mathbf{x}) = \operatorname{sgn}(\mathbf{w}^T \mathbf{x} + w_0) = \operatorname{sgn}\left(\sum_{i=1}^N \alpha_i y_i \mathbf{x}_i^T \mathbf{x} + w_0\right)$$

Why +1 instead of $+\varepsilon$?

Assuming $\varepsilon > 0$,

$$\min_{\boldsymbol{w},w_0} \quad \frac{1}{2} \|\boldsymbol{w}\|^2 \\ \text{s.t.} \quad y_i \left(\boldsymbol{w}^T \boldsymbol{x}_i + w_0\right) \geq \varepsilon \text{ for all } i$$

$$\Rightarrow \qquad \qquad \min_{\boldsymbol{w},w_o} \quad \frac{1}{2} \|\boldsymbol{w}\|^2 \\ \text{s.t.} \quad y_i \left(\frac{\boldsymbol{w}^T}{\varepsilon} \boldsymbol{x}_i + \frac{w_0}{\varepsilon}\right) \geq 1 \text{ for all } i$$
 Letting $\dot{\boldsymbol{w}} = \frac{\boldsymbol{w}}{\varepsilon}$ and $\dot{w}_0 = \frac{w_0}{\varepsilon}$,
$$\min_{\boldsymbol{w},w_0} \quad \frac{\varepsilon^2}{2} \|\dot{\boldsymbol{w}}\|^2 \\ \text{s.t.} \quad y_i \left(\dot{\boldsymbol{w}}^T \boldsymbol{x}_i + \dot{w}_0\right) \geq 1 \text{ for all } i$$

Optimisation problems in SVM

$$\min_{\boldsymbol{w}, w_0} \quad \frac{1}{2} \boldsymbol{w}^T \boldsymbol{w} \\
\text{s.t.} \quad y_i \left(\boldsymbol{w}^T \boldsymbol{x}_i + w_0 \right) \ge 1 \text{ for all } i$$

Using the Lagrange multipliers $\alpha_i \geq 0$, the Lagrangian is given as:

$$L(\boldsymbol{\alpha}, \dot{\mathbf{w}}) = \frac{1}{2} \mathbf{w}^T \mathbf{w} - \sum_{i=1}^{N} \alpha_i \left(y_i (\mathbf{w}^T \mathbf{x}_i + w_0) - 1 \right)$$

where $\alpha = (\alpha_1, \dots, \alpha_n)$ and $\dot{\mathbf{w}} = (\mathbf{w}, w_0)$. The dual problem is defined as

$$egin{array}{ll} egin{array}{ll} egi$$

Optimisation problems in SVM (cont.)

$$L(\boldsymbol{\alpha}, \dot{\mathbf{w}}) = \frac{1}{2} \boldsymbol{w}^T \boldsymbol{w} - \sum_{i=1}^{N} \alpha_i \left(y_i (\boldsymbol{w}^T \boldsymbol{x}_i + w_0) - 1 \right)$$
$$\frac{\partial L(\boldsymbol{\alpha}, \dot{\boldsymbol{w}})}{\partial \boldsymbol{w}} = \boldsymbol{w} - \sum_{i=1}^{N} \alpha_i y_i \, \boldsymbol{x}_i = \boldsymbol{0},$$
$$\frac{\partial L(\boldsymbol{\alpha}, \dot{\boldsymbol{w}})}{\partial w_0} = -\sum_{i=1}^{N} \alpha_i \, y_i = 0.$$
$$\boldsymbol{w} = \sum_{i=1}^{N} \alpha_i \, y_i \, \boldsymbol{x}_i$$
$$0 = \sum_{i=1}^{N} \alpha_i \, y_i$$

Optimisation problems in SVM (cont.)

Putting the results to the Lagrangian yields:

$$L(\boldsymbol{\alpha}, \dot{\mathbf{w}}) = \frac{1}{2} \mathbf{w}^T \mathbf{w} - \sum_{i=1}^{N} \alpha_i \left(y_i (\mathbf{w}^T \mathbf{x}_i + w_0) - 1 \right)$$

$$= \frac{1}{2} \sum_{i,j=1}^{N} y_i y_j \alpha_i \alpha_j \mathbf{x}_i^T \mathbf{x}_j - \sum_{i,j=1}^{N} y_i y_j \alpha_i \alpha_j \mathbf{x}_i^T \mathbf{x}_j + \sum_{i=1}^{N} \alpha_i$$

$$= -\frac{1}{2} \sum_{i,j=1}^{N} y_i y_j \alpha_i \alpha_j \mathbf{x}_i^T \mathbf{x}_j + \sum_{i=1}^{N} \alpha_i$$

The necessary and sufficient conditions for \mathbf{w}^* to be an optimum are:

$$\frac{\partial L(\boldsymbol{\alpha}^*,\dot{\mathbf{w}}^*)}{\partial \mathbf{w}} = \mathbf{0}, \quad \frac{\partial L(\boldsymbol{\alpha}^*,\dot{\mathbf{w}}^*)}{\partial w_0} = 0, \quad \alpha_i^* \geq 0, \quad y_i(\boldsymbol{w}^T\boldsymbol{x}_i + w_0) - 1 \geq 0,$$

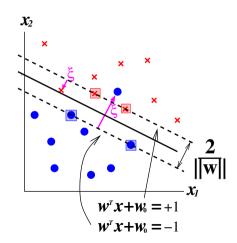
$$\alpha_i^* \left(y_i(\boldsymbol{w}^T\boldsymbol{x}_i + w_0) - 1 \right) = 0, \quad \text{for all } i \quad \cdots \quad \text{Karush-Kuhn-Tuckert (KKT) condition}$$
 which means that either $\alpha_i^* = 0$ or $y_i(\boldsymbol{w}^T\boldsymbol{x}_i + w_0) - 1 = 0.$

SVM with slack variables - soft margin SVM

Hard margin SVM

Soft margin SVM

$$\begin{aligned} & \min_{\boldsymbol{w}, w_0} \quad \boldsymbol{w}^T \boldsymbol{w} + C \left(\sum_{i=1}^N \xi_i \right), & \text{where } C > 0, \\ & \text{s.t.} \quad y_i (\boldsymbol{w}^T \boldsymbol{x}_i + w_0) \geq 1 - \xi_i & \text{for all } i, \ \xi_i \geq 0 \end{aligned}$$



Loss function in soft-margin SVM

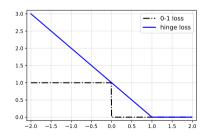
$$\begin{aligned} & \min_{\boldsymbol{w}, w_0} \quad \boldsymbol{w}^T \boldsymbol{w} + C \left(\sum_{i=1}^N \xi_i \right), & \text{where } C > 0, \\ & \text{s.t.} \quad y_i (\boldsymbol{w}^T \boldsymbol{x}_i + w_0) \geq 1 - \xi_i & \text{for all } i, \ \xi_i \geq 0 \end{aligned}$$

The hinge loss:

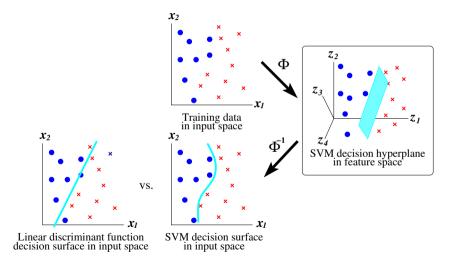
$$\ell(t) = \max(0, 1-t)$$

$$= \left\{ egin{array}{ll} 0, & ext{if } t \geq 1, \\ 1-t, & ext{otherwise,} \end{array}
ight.$$

where $t = y(\mathbf{w}^T \mathbf{x} + w_0)$.



Non-linear SVM



Non-linear SVM (cont.)

- Conceptual steps to construct a non-linear SVM
 - Step 1 Transform \mathbf{x} to $\phi(\mathbf{x})$ in a high-dimensional space (feature space)
 - Step 2 Train a SVM in the feature space
 - Step 3 Classify data in the feature space

$$f(\mathbf{x}) = \sum_{i=1}^{N} \alpha_i y_i \phi(\mathbf{x}_i)^T \phi(\mathbf{x}) + w_0$$

Non-linear SVM (cont.)

- Conceptual steps to construct a non-linear SVM
 - Step 1 Transform \mathbf{x} to $\phi(\mathbf{x})$ in a high-dimensional space (feature space)
 - Step 2 Train a SVM in the feature space
 - Step 3 Classify data in the feature space

$$f(\mathbf{x}) = \sum_{i=1}^{N} \alpha_i y_i \phi(\mathbf{x}_i)^T \phi(\mathbf{x}) + w_0$$

• Instead of applying the non-linear transformation and carrying out calculation in the feature space, use a kernel function $k(\mathbf{x}_i, \mathbf{x}_j)$ such that

$$k(\mathbf{x}_i, \mathbf{x}_j) = \phi(\mathbf{x}_i)^T \phi(\mathbf{x}_j)$$
 (cf. 'kernel trick')

Non-linear SVM (cont.)

• Conceptual steps to construct a non-linear SVM Step 1 Transform \mathbf{x} to $\phi(\mathbf{x})$ in a high-dimensional space (feature space) Step 2 Train a SVM in the feature space Step 3 Classify data in the feature space

$$f(\mathbf{x}) = \sum_{i=1}^{N} \alpha_i y_i \phi(\mathbf{x}_i)^T \phi(\mathbf{x}) + w_0$$

• Instead of applying the non-linear transformation and carrying out calculation in the feature space, use a kernel function $k(\mathbf{x}_i, \mathbf{x}_i)$ such that

$$k(\mathbf{x}_i, \mathbf{x}_i) = \phi(\mathbf{x}_i)^T \phi(\mathbf{x}_i)$$
 (cf. 'kernel trick')

$$L(\alpha, \xi) = -\frac{1}{2} \sum_{i,j=1}^{N} y_i y_j \alpha_i \alpha_j k(\mathbf{x}_i, \mathbf{x}_j) + \sum_{i=1}^{N} \alpha_i - C \sum_{i=1}^{N} \xi_i$$
$$f(\mathbf{x}) = \sum_{i=1}^{N} \alpha_i y_i k(\mathbf{x}_i, \mathbf{x}) + w_0$$

Kernel functions for SVM

An example of kernel that maps data to a feature space explicitly

$$k(\mathbf{a}, \mathbf{b}) \stackrel{\triangle}{=} (1 + \mathbf{a}^T \mathbf{b})^2 = (1 + a_1 b_1 + a_2 b_2)^2$$

$$= 1 + 2a_1 b_1 + 2a_2 b_2 + a_1^2 b_1^2 + 2a_1 b_1 a_2 b_2 + a_2^2 b_2^2$$

$$= (1, \sqrt{2}a_1, \sqrt{2}a_2, a_1^2, \sqrt{2}a_1 a_2, a_2^2)(1, \sqrt{2}b_1, \sqrt{2}b_2, b_1^2, \sqrt{2}b_1 b_2, b_2^2)^T$$

$$= \phi(\mathbf{a})^T \phi(\mathbf{b})$$

Popular kernels

Kernel	$k(\mathbf{x}_i, \mathbf{x}_j)$
Polynomial	$(1+\langle \pmb{x}_i,\pmb{x}_j angle)^d$
Radial basis function (RBF)	$e^{-\gamma \ \mathbf{x}_i - \mathbf{x}_j\ ^2}, \ \gamma > 0$
Hyperbolic tangent	$ig anh(\kappa_1\langle extbf{ extit{x}}_i, extbf{ extit{x}}_j angle + \kappa_2), \; \kappa_1 > 0, \kappa_2 < 0$

where $\langle \pmb{x}_i, \pmb{x}_j \rangle$ is an inner product (e.g. dot product) between \pmb{x}_i and \pmb{x}_j .

Making kernels

How can we ensure if a kernel works as an inner product in a feature space?

It should satisfy:

•
$$k(\mathbf{x}, \mathbf{z}) = \langle \phi(\mathbf{x}), \phi(\mathbf{z}) \rangle = \langle \phi(\mathbf{z}), \phi(\mathbf{x}) \rangle = k(\mathbf{z}, \mathbf{x})$$

- $k(\mathbf{x}, \mathbf{z})^2 \le k(\mathbf{x}, \mathbf{x}) k(\mathbf{z}, \mathbf{z})$
- $K = (k(\mathbf{x}_i, \mathbf{x}_i))$, which is a *n*-by-*n* matrix, is positive semi-definite.

Mercer's theorem:

Suppose k is a continuous symmetric non-negative definite kernel, then k can be expressed as:

$$k(\mathbf{x}, \mathbf{z}) = \sum_{i=1}^{\infty} \lambda_i \phi_i(\mathbf{x}) \phi_i(\mathbf{z})$$

where $\{\phi_i\}$ are eigen-functions, $\|\phi_i\|=1$, and $\{\lambda_i\}$ are positive eigenvalues $\lambda_i>0$.

Making kernels from kernels

Letting k_1 , k_2 , and k_3 are kernels, we can create a new kernel k.

- $k(\mathbf{x},\mathbf{z}) = k_1(\mathbf{x},\mathbf{z}) + k_2(\mathbf{x},\mathbf{z})$
- $k(x,z) = ak_1(x,z), a > 0$
- $k(\mathbf{x}, \mathbf{z}) = k_1(\mathbf{x}, \mathbf{z}) k_2(\mathbf{x}, \mathbf{z})$
- $k(\mathbf{x}, \mathbf{z}) = f(\mathbf{x})f(\mathbf{z})$
- $k(\mathbf{x}, \mathbf{z}) = k_3(\phi(\mathbf{x}), \phi(\mathbf{z}))$
- $k(\mathbf{x}, \mathbf{z}) = \mathbf{x}^T B \mathbf{z}$, where B is a n-by-n matrix

Generalisation error of SVM (NE)

Assuming the class $\mathcal F$ of real-valued functions on the ball of radius R in $\mathbb R^n$ as

$$\mathcal{F} = \{ \boldsymbol{x} \mapsto \boldsymbol{w} \cdot \boldsymbol{x} : \|\boldsymbol{w}\| \le 1, \|\boldsymbol{x}\| \le R \}.$$

If a classifier $\operatorname{sgn}(f) \in \operatorname{sgn}(\mathcal{F})$ has margin at least γ on all the training examples, with probability at least $1-\delta$ over n random examples, f has error no more than

$$L_D(f) \leq \frac{k}{N} + \sqrt{\frac{c}{N} \left(\frac{R^2}{\gamma^2} \log^2 n + \log\left(\frac{1}{\delta}\right)\right)}$$

where k is the number of labelled training examples with margin less than γ , c is a constant,

$$VC\text{-dim}(f) \leq \min(\frac{R^2}{\gamma^2}, n) + 1$$

Experiments on US Postal Service Database

C. Cortes and V. Vapnik, "Support-Vector Networks", Machine Learning 20, 273–297 (1995). https://doi.org/10.1007/BF00994018

US Postal Service Database (handwritten digits):

Training samples	7300
Test samples	2000
Image resolution	16 imes 16 pixels

Classifier	Err. [%]
Human performance	2.5
Decision tree, CART	17.0
Decision tree, V4.5	16.0
Best 2 layer NN	6.6
LeNet1 (5 layers)	5.1

d	Err. [%]	Support	Dimensionality of feature space
1	12.0	200	256
_			
2	4.7	127	~ 33000
3	4.4	148	$\sim 1 imes 10^6$
4	4.3	165	$\sim 1 imes 10^9$
5	4.3	175	$\sim 1 imes 10^{12}$
6	4.2	185	$\sim 1 imes 10^{14}$
7	4.3	190	$\sim 1 imes 10^{16}$

d: degree of polynomial kernel

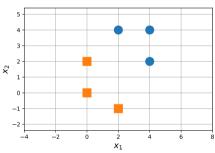
Some notes on SVMs

- How to find w_0 ? · · · use $y_i(\mathbf{w}^T \mathbf{x}_i + w_0) = 1$ for support vectors
- How to choose the regulariser C? · · · use a validation set
- How to solve the constrained quadratic optimisation problem in SVM practically? It requires a kernel matrix of *n*-by-*n*.
 - o Gradient, sub-gradient, coordinate ascent/descent
 - Sequential Minimal Optimisation (SMO) [John Platt, 1998]
 - o LIBSVM [Chih-Chung Chang and Chih-Jen Lin]: a SVM software tool with SMO
- How to apply SVMs to multi-class classification problems?
- Performance deterioration (NB: not very specific to SVMs)
 - Heavily-overlapped data sets
 - o Imbalanced data sets
 - (Too many support vectors)
 - (Large data sets)
- Output interpretability

Quizzes

Consider a SVM with a linear kernel run on the following data set.

x_1	<i>x</i> ₂	У
2.0	4.0	1
4.0	2.0	1
4.0	4.0	1
0.0	2.0	2
2.0	-1.0	2
0.0	0.0	2



- 1. Using your intuition, what weight vector do you think will result from training an SVM on this data set?
- 2. Plot the data and the decision boundary of the weight vector you have chosen.
- 3. Which are the support vectors? What is the margin of this classifier?