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Exercises 1

Lecturer: Hao Tang

Exercise 1. Check that the mean of a 1D Gaussian distribution

p(x) =
1√
2πσ2

exp

(
− 1

2σ2
(x− µ)2

)
(1)

is µ by showing that E[x] = µ.

One solution is to directly evaluate

E[x] =
∫

xp(x)dx =

∫
x

1√
2πσ2

exp

(
− 1

2σ2
(x− µ)2

)
dx, (2)

perhaps using integration by part. This approach works but is also quite hairy.
One observation is that we only need an additional x in front of the Gaussian density. An

ingenious solution is to start with the integral of a Gaussian∫
1√
2πσ2

exp

(
− 1

2σ2
(x− µ)2

)
dx = 1, (3)

and take the derivative of µ on both sides. We end up with∫
1√
2πσ2

exp

(
− 1

2σ2
(x− µ)2

)
1

σ2
(x− µ)dx = 0. (4)

Rearranging the terms, we have∫
x

1√
2πσ2

exp

(
− 1

2σ2
(x− µ)2

)
dx =

∫
µ

1√
2πσ2

exp

(
− 1

2σ2
(x− µ)2

)
dx. (5)

The left hand side becomes

E[x] =
∫

x
1√
2πσ2

exp

(
− 1

2σ2
(x− µ)2

)
dx, (6)

while the right hand side is∫
µ

1√
2πσ2

exp

(
− 1

2σ2
(x− µ)2

)
dx = µ

∫
1√
2πσ2

exp

(
− 1

2σ2
(x− µ)2

)
dx = µ. (7)

1



Exercise 2. Show that the log of a multivariate Gaussian distribution

1

(2π)d/2|Σ|1/2
exp

(
−1

2
(x− µ)⊤Σ−1(x− µ)

)
(8)

is given as

−1

2
x⊤Σ−1x+ µ⊤Σ−1x− 1

2
µ⊤Σ−1µ− 1

2
log |Σ| − d

2
log 2π. (9)

The key step is expanding the quadratic form

(x− µ)⊤Σ−1(x− µ) = (x− µ)⊤(Σ−1x− Σ−1µ) (10)

= (x− µ)⊤Σ−1x− (x− µ)⊤Σ−1µ (11)

= x⊤Σ−1x− µ⊤Σ−1x− x⊤Σ−1µ+ µ⊤Σ−1µ (12)

= x⊤Σ−1x− 2µ⊤Σ−1x+ µ⊤Σ−1µ. (13)

Note that these are all matrix-vector mulplication, and the transpose signs are necessary in the
derivation. The rest simply follows from taking the log.

Exercise 3. Show that a covariance matrix Σ = E[(x−µ)(x−µ)⊤] is symmetric and positive
semidefinite. A matrix A is positive semidefinite if x⊤Ax ≥ 0 for all x.

To check for symmetry,

Σ⊤ =
(
E[(x− µ)(x− µ)⊤]

)⊤
= E[((x− µ)(x− µ)⊤)⊤] = E[((x− µ)⊤)⊤(x− µ)⊤] (14)

= E[(x− µ)(x− µ)⊤] = Σ. (15)

To check for positive semidefiniteness, for any v,

v⊤Σv = v⊤E[(x− µ)(x− µ)⊤]v = E[v⊤(x− µ)(x− µ)⊤v] = E
[(
v⊤(x− µ)

)2] ≥ 0. (16)

Exercise 4. In this question, we will look at why the contour of Gaussian distributions
consists of ellipses. A general definition of an ellipse (or an ellipsoid in high dimensions) can
be written as {

x ∈ Rd
∣∣∣ (x− v)⊤A(x− v) = 1

}
, (17)

where v is where the ellipse is centered and A is a symmetric and positive definite matrix.
A matrix A is positive definite if x⊤Ax > 0 for all x ̸= 0.

• An axis-aligned ellipse in 2D can be written as{
(x, y) ∈ R2

∣∣∣∣ (x− x0)
2

a2
+

(y − y0)
2

b2
= 1

}
, (18)
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where a and b are the lengths of the two axes and (x0, y0) is where the ellipse is centered.
Show that equation (18) can be written as equation (17).

• A contour of Gaussian distribution consists of lines where the distribution has the same
value. Show that{

x ∈ Rd

∣∣∣∣ 1

(2π)d/2|Σ|1/2
exp

(
−1

2
(x− µ)⊤Σ−1(x− µ)

)
= c

}
(19)

is an ellipse for some constant c > 0 by rewriting it as equation (17), assuming that
the covariance matrix is positive definite.

• We take x =
[
x y

]⊤
, v =

[
x0 y0

]⊤
and A =

[
1/a2 0
0 1/b2

]
. It’s easy to see that A is

positive definite. We can then write equation (18) in (17).

• We can take the log on both sides and get

(x− µ)⊤Σ−1(x− µ) = (−2)

(
log c+

d

2
log 2π +

1

2
log |Σ|

)
. (20)

When the covariance matrix is positive definite, its inverse is also positive definite.1 The right
hand side is thus positive, and we can divide it to the left and complete our ellipsoid.

Exercise 5. In a classification setting, where x ∈ Rd, y ∈ {1, . . . ,K}, and K is the number
of classes, show that

p(y|x) = p(x|y)p(y)∑K
y′=1 p(x|y′)p(y′)

. (21)

This is a straight application of the Bayes rule, where

p(y|x) = p(x|y)p(y)
p(x)

=
p(x|y)p(y)∑K

y′=1 p(x|y′)p(y′)
. (22)

Exercise 6. Consider binary classification with the linear classifier

y(x) =

{
+1 if w⊤x+ b ≥ 0

−1 otherwise
(23)

where x ∈ Rd, w is the weight vector, and b is the bias.

• Show that the decision boundary is a straight line when d = 2. A line in 2D can be
expressed as y = ax+ b for some constant a ∈ R and b ∈ R.

1When a matrix is positive definite, its eigenvalues are positive. The eigenvalues of A−1 are the reciprocal of the
eigenvalues of A, so A−1 is also positive definite.
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• Show that the weight vector w is a normal vector of the decision boundary.

• The decision boundary can be written as[
w1

w2

]⊤ [
x
y

]
+ b = w1x+ w2y + b = 0. (24)

It is now easy to see that

y = −w1

w2
x− b

w2
, (25)

which is the line we are looking for.

• To show that w is a normal vector of the decision boundary (a plane), the plan is to take any
vector on the plane and show that the dot product with w is 0.

u1

u2

w

To get a vector on the plane, we subtract two points u1 and u2 on the plane. Next, we
compute the dot product

w⊤(u2 − u1) = w⊤u2 −w⊤u1 = w⊤u2 + b− (w⊤u1 + b) = 0, (26)

where the last equality uses the fact that any point u on the decision boundary satisfies
w⊤u+ b = 0.

Exercise 7. Derive a formula for the Euclidean distance between the origin (0, 0) and a line
y = ax+ b, where a and b are arbitrary constants.

u

v

w

θ
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Based on the figure, the length of the red line is the distance between a plane and the point v,
where u is some other point on the plane and w is the normal vector of the plane. The red line
can be described as ∥v − u∥| cos θ| where θ is the angle between v − u and w. For this question,
v is the origin (0, 0); u is some point on the plane and we can simply take (0, b); w is the normal
vector (a,−1). The distance is then

∥v − u∥| cos θ| = ∥v − u∥
∣∣∣∣ (v − u)⊤w

∥v − u∥∥w∥

∣∣∣∣ = |(v − u)⊤w|
∥w∥

(27)

=

∣∣∣[[0 0
]
−
[
0 b

]]⊤ [
a −1

]∣∣∣
√
1 + a2

=
b√

1 + a2
. (28)

Exercise 8. Consider the 2D case for the linear classifier in equation (23). Suppose that the
points (−2,−3) and (4, 1) are on the decision bounary and that the point (2,−3) lies in the
−1 class region. Find the parameters (w, b) of the classifier.

From equation (24), we see that (a, b) is the normal vector if we write the line as ax+by+c = 0.
If the line passes through (−2,−3) and (4, 1), then the normal vector should be perpendicular to
(4, 1)− (−2,−3) = (6, 4). We can simply choose (2,−3) to be our normal vector, and the rest is to
figure out what c is in 2x− 3y+ c = 0. The line passes through (4, 1), or 2 · 4− 3 · 1+ c = 0, so c is
−5 and the line is 2x− 3y− 5 = 0. We also have the choice of writing the line as −2x+3y+5 = 0.
To decide whether we want to negate the left hand side or not, we can choose the version such that
(2,−3) is on the negative side. Because −2 · 2 + 3 · (−3) + 5 ≤ 0, we choose −2x + 3y + 5 = 0 as
our decision boundary. In other words, w = (−2, 3) and b = 5.
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