

Exercises 1

Lecturer: Hao Tang

Exercise 1. Check that the mean of a 1D Gaussian distribution

$$p(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{1}{2\sigma^2}(x-\mu)^2\right) \quad (1)$$

is μ by showing that $\mathbb{E}[x] = \mu$.

One solution is to directly evaluate

$$\mathbb{E}[x] = \int x p(x) dx = \int x \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{1}{2\sigma^2}(x-\mu)^2\right) dx, \quad (2)$$

perhaps using integration by part. This approach works but is also quite hairy.

One observation is that we only need an additional x in front of the Gaussian density. An ingenious solution is to start with the integral of a Gaussian

$$\int \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{1}{2\sigma^2}(x-\mu)^2\right) dx = 1, \quad (3)$$

and take the derivative of μ on both sides. We end up with

$$\int \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{1}{2\sigma^2}(x-\mu)^2\right) \frac{1}{\sigma^2}(x-\mu) dx = 0. \quad (4)$$

Rearranging the terms, we have

$$\int x \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{1}{2\sigma^2}(x-\mu)^2\right) dx = \int \mu \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{1}{2\sigma^2}(x-\mu)^2\right) dx. \quad (5)$$

The left hand side becomes

$$\mathbb{E}[x] = \int x \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{1}{2\sigma^2}(x-\mu)^2\right) dx, \quad (6)$$

while the right hand side is

$$\int \mu \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{1}{2\sigma^2}(x-\mu)^2\right) dx = \mu \int \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{1}{2\sigma^2}(x-\mu)^2\right) dx = \mu. \quad (7)$$

Exercise 2. Show that the log of a multivariate Gaussian distribution

$$\frac{1}{(2\pi)^{d/2}|\Sigma|^{1/2}} \exp\left(-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^\top \Sigma^{-1}(\mathbf{x} - \boldsymbol{\mu})\right) \quad (8)$$

is given as

$$-\frac{1}{2}\mathbf{x}^\top \Sigma^{-1}\mathbf{x} + \boldsymbol{\mu}^\top \Sigma^{-1}\mathbf{x} - \frac{1}{2}\boldsymbol{\mu}^\top \Sigma^{-1}\boldsymbol{\mu} - \frac{1}{2}\log|\Sigma| - \frac{d}{2}\log 2\pi. \quad (9)$$

The key step is expanding the quadratic form

$$(\mathbf{x} - \boldsymbol{\mu})^\top \Sigma^{-1}(\mathbf{x} - \boldsymbol{\mu}) = (\mathbf{x} - \boldsymbol{\mu})^\top (\Sigma^{-1}\mathbf{x} - \Sigma^{-1}\boldsymbol{\mu}) \quad (10)$$

$$= (\mathbf{x} - \boldsymbol{\mu})^\top \Sigma^{-1}\mathbf{x} - (\mathbf{x} - \boldsymbol{\mu})^\top \Sigma^{-1}\boldsymbol{\mu} \quad (11)$$

$$= \mathbf{x}^\top \Sigma^{-1}\mathbf{x} - \boldsymbol{\mu}^\top \Sigma^{-1}\mathbf{x} - \mathbf{x}^\top \Sigma^{-1}\boldsymbol{\mu} + \boldsymbol{\mu}^\top \Sigma^{-1}\boldsymbol{\mu} \quad (12)$$

$$= \mathbf{x}^\top \Sigma^{-1}\mathbf{x} - 2\boldsymbol{\mu}^\top \Sigma^{-1}\mathbf{x} + \boldsymbol{\mu}^\top \Sigma^{-1}\boldsymbol{\mu}. \quad (13)$$

Note that these are all matrix-vector multiplication, and the transpose signs are necessary in the derivation. The rest simply follows from taking the log.

Exercise 3. Show that a covariance matrix $\Sigma = \mathbb{E}[(\mathbf{x} - \boldsymbol{\mu})(\mathbf{x} - \boldsymbol{\mu})^\top]$ is symmetric and positive semidefinite. A matrix A is positive semidefinite if $\mathbf{x}^\top A \mathbf{x} \geq 0$ for all \mathbf{x} .

To check for symmetry,

$$\Sigma^\top = \left(\mathbb{E}[(\mathbf{x} - \boldsymbol{\mu})(\mathbf{x} - \boldsymbol{\mu})^\top]\right)^\top = \mathbb{E}[((\mathbf{x} - \boldsymbol{\mu})(\mathbf{x} - \boldsymbol{\mu})^\top)^\top] = \mathbb{E}[((\mathbf{x} - \boldsymbol{\mu})^\top)^\top (\mathbf{x} - \boldsymbol{\mu})^\top] \quad (14)$$

$$= \mathbb{E}[(\mathbf{x} - \boldsymbol{\mu})(\mathbf{x} - \boldsymbol{\mu})^\top] = \Sigma. \quad (15)$$

To check for positive semidefiniteness, for any \mathbf{v} ,

$$\mathbf{v}^\top \Sigma \mathbf{v} = \mathbf{v}^\top \mathbb{E}[(\mathbf{x} - \boldsymbol{\mu})(\mathbf{x} - \boldsymbol{\mu})^\top] \mathbf{v} = \mathbb{E}[\mathbf{v}^\top (\mathbf{x} - \boldsymbol{\mu})(\mathbf{x} - \boldsymbol{\mu})^\top \mathbf{v}] = \mathbb{E}\left[(\mathbf{v}^\top (\mathbf{x} - \boldsymbol{\mu}))^2\right] \geq 0. \quad (16)$$

Exercise 4. In this question, we will look at why the contour of Gaussian distributions consists of ellipses. A general definition of an ellipse (or an ellipsoid in high dimensions) can be written as

$$\left\{ \mathbf{x} \in \mathbb{R}^d \mid (\mathbf{x} - \mathbf{v})^\top A(\mathbf{x} - \mathbf{v}) = 1 \right\}, \quad (17)$$

where \mathbf{v} is where the ellipse is centered and A is a symmetric and positive definite matrix. A matrix A is positive definite if $\mathbf{x}^\top A \mathbf{x} > 0$ for all $\mathbf{x} \neq 0$.

- An axis-aligned ellipse in 2D can be written as

$$\left\{ (x, y) \in \mathbb{R}^2 \mid \frac{(x - x_0)^2}{a^2} + \frac{(y - y_0)^2}{b^2} = 1 \right\}, \quad (18)$$

where a and b are the lengths of the two axes and (x_0, y_0) is where the ellipse is centered. Show that equation (18) can be written as equation (17).

- A contour of Gaussian distribution consists of lines where the distribution has the same value. Show that

$$\left\{ \mathbf{x} \in \mathbb{R}^d \mid \frac{1}{(2\pi)^{d/2} |\Sigma|^{1/2}} \exp\left(-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^\top \Sigma^{-1}(\mathbf{x} - \boldsymbol{\mu})\right) = c \right\} \quad (19)$$

is an ellipse for some constant $c > 0$ by rewriting it as equation (17), assuming that the covariance matrix is positive definite.

- We take $\mathbf{x} = [x \ y]^\top$, $\mathbf{v} = [x_0 \ y_0]^\top$ and $A = \begin{bmatrix} 1/a^2 & 0 \\ 0 & 1/b^2 \end{bmatrix}$. It's easy to see that A is positive definite. We can then write equation (18) in (17).
- We can take the log on both sides and get

$$(\mathbf{x} - \boldsymbol{\mu})^\top \Sigma^{-1}(\mathbf{x} - \boldsymbol{\mu}) = (-2) \left(\log c + \frac{d}{2} \log 2\pi + \frac{1}{2} \log |\Sigma| \right). \quad (20)$$

When the covariance matrix is positive definite, its inverse is also positive definite.¹ The right hand side is thus positive, and we can divide it to the left and complete our ellipsoid.

Exercise 5. In a classification setting, where $x \in \mathbb{R}^d$, $y \in \{1, \dots, K\}$, and K is the number of classes, show that

$$p(y|x) = \frac{p(x|y)p(y)}{\sum_{y'=1}^K p(x|y')p(y')}. \quad (21)$$

This is a straight application of the Bayes rule, where

$$p(y|x) = \frac{p(x|y)p(y)}{p(x)} = \frac{p(x|y)p(y)}{\sum_{y'=1}^K p(x|y')p(y')}. \quad (22)$$

Exercise 6. Consider binary classification with the linear classifier

$$y(\mathbf{x}) = \begin{cases} +1 & \text{if } \mathbf{w}^\top \mathbf{x} + b \geq 0 \\ -1 & \text{otherwise} \end{cases} \quad (23)$$

where $\mathbf{x} \in \mathbb{R}^d$, \mathbf{w} is the weight vector, and b is the bias.

- Show that the decision boundary is a straight line when $d = 2$. A line in 2D can be expressed as $y = ax + b$ for some constant $a \in \mathbb{R}$ and $b \in \mathbb{R}$.

¹When a matrix is positive definite, its eigenvalues are positive. The eigenvalues of A^{-1} are the reciprocal of the eigenvalues of A , so A^{-1} is also positive definite.

- Show that the weight vector \mathbf{w} is a normal vector of the decision boundary.

- The decision boundary can be written as

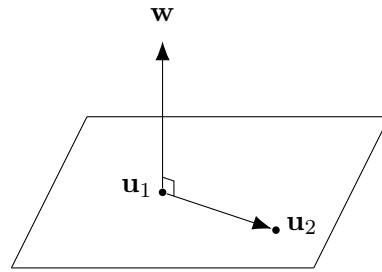
$$\begin{bmatrix} w_1 \\ w_2 \end{bmatrix}^\top \begin{bmatrix} x \\ y \end{bmatrix} + b = w_1x + w_2y + b = 0. \quad (24)$$

It is now easy to see that

$$y = -\frac{w_1}{w_2}x - \frac{b}{w_2}, \quad (25)$$

which is the line we are looking for.

- To show that \mathbf{w} is a normal vector of the decision boundary (a plane), the plan is to take any vector on the plane and show that the dot product with \mathbf{w} is 0.

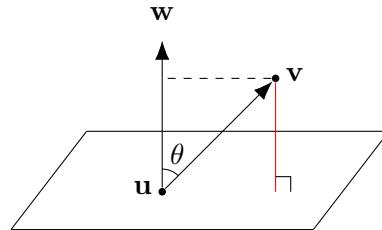


To get a vector on the plane, we subtract two points \mathbf{u}_1 and \mathbf{u}_2 on the plane. Next, we compute the dot product

$$\mathbf{w}^\top (\mathbf{u}_2 - \mathbf{u}_1) = \mathbf{w}^\top \mathbf{u}_2 - \mathbf{w}^\top \mathbf{u}_1 = \mathbf{w}^\top \mathbf{u}_2 + b - (\mathbf{w}^\top \mathbf{u}_1 + b) = 0, \quad (26)$$

where the last equality uses the fact that any point \mathbf{u} on the decision boundary satisfies $\mathbf{w}^\top \mathbf{u} + b = 0$.

Exercise 7. Derive a formula for the Euclidean distance between the origin $(0,0)$ and a line $y = ax + b$, where a and b are arbitrary constants.



Based on the figure, the length of the red line is the distance between a plane and the point \mathbf{v} , where \mathbf{u} is some other point on the plane and \mathbf{w} is the normal vector of the plane. The red line can be described as $\|\mathbf{v} - \mathbf{u}\| \cos \theta$ where θ is the angle between $\mathbf{v} - \mathbf{u}$ and \mathbf{w} . For this question, \mathbf{v} is the origin $(0, 0)$; \mathbf{u} is some point on the plane and we can simply take $(0, b)$; \mathbf{w} is the normal vector $(a, -1)$. The distance is then

$$\|\mathbf{v} - \mathbf{u}\| \cos \theta = \|\mathbf{v} - \mathbf{u}\| \left| \frac{(\mathbf{v} - \mathbf{u})^\top \mathbf{w}}{\|\mathbf{v} - \mathbf{u}\| \|\mathbf{w}\|} \right| = \frac{|(\mathbf{v} - \mathbf{u})^\top \mathbf{w}|}{\|\mathbf{w}\|} \quad (27)$$

$$= \frac{\left| \begin{bmatrix} [0 & 0] - [0 & b] \end{bmatrix}^\top [a & -1] \right|}{\sqrt{1 + a^2}} = \frac{b}{\sqrt{1 + a^2}}. \quad (28)$$

Exercise 8. Consider the 2D case for the linear classifier in equation (23). Suppose that the points $(-2, -3)$ and $(4, 1)$ are on the decision boundary and that the point $(2, -3)$ lies in the -1 class region. Find the parameters (\mathbf{w}, b) of the classifier.

From equation (24), we see that (a, b) is the normal vector if we write the line as $ax + by + c = 0$. If the line passes through $(-2, -3)$ and $(4, 1)$, then the normal vector should be perpendicular to $(4, 1) - (-2, -3) = (6, 4)$. We can simply choose $(2, -3)$ to be our normal vector, and the rest is to figure out what c is in $2x - 3y + c = 0$. The line passes through $(4, 1)$, or $2 \cdot 4 - 3 \cdot 1 + c = 0$, so c is -5 and the line is $2x - 3y - 5 = 0$. We also have the choice of writing the line as $-2x + 3y + 5 = 0$. To decide whether we want to negate the left hand side or not, we can choose the version such that $(2, -3)$ is on the negative side. Because $-2 \cdot 2 + 3 \cdot (-3) + 5 \leq 0$, we choose $-2x + 3y + 5 = 0$ as our decision boundary. In other words, $\mathbf{w} = (-2, 3)$ and $b = 5$.