INFR10086 Machine Learning (MLG) Semester 2, 2025/6

Exercises 1

Lecturer: Hao Tang

Exercise 1. Check that the mean of a 1D Gaussian distribution
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One solution is to directly evaluate
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perhaps using integration by part. This approach works but is also quite hairy.
One observation is that we only need an additional x in front of the Gaussian density. An
ingenious solution is to start with the integral of a Gaussian
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and take the derivative of p on both sides. We end up with
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Rearranging the terms, we have
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The left hand side becomes

while the right hand side is
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Exercise 2. Show that the log of a multivariate Gaussian distribution
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The key step is expanding the quadratic form
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Note that these are all matrix-vector mulplication, and the transpose signs are necessary in the
derivation. The rest simply follows from taking the log.

Exercise 3. Show that a covariance matrix ¥ = E[(x— p)(x—p) '] is symmetric and positive
semidefinite. A matrix A is positive semidefinite if x" Ax > 0 for all x.

To check for symmetry,
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To check for positive semidefiniteness, for any v,
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Exercise 4. In this question, we will look at why the contour of Gaussian distributions
consists of ellipses. A general definition of an ellipse (or an ellipsoid in high dimensions) can
be written as
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where v is where the ellipse is centered and A is a symmetric and positive definite matrix.
A matrix A is positive definite if x" Ax > 0 for all x # 0.

e An axis-aligned ellipse in 2D can be written as
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where a and b are the lengths of the two axes and (zg, y9) is where the ellipse is centered.
Show that equation (18) can be written as equation (17).

e A contour of Gaussian distribution consists of lines where the distribution has the same
value. Show that
{x € R4
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is an ellipse for some constant ¢ > 0 by rewriting it as equation (17), assuming that
the covariance matrix is positive definite.
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positive definite. We can then write equation (18) in (17).

o We take x = [:p y]T

, V= [xg yO]T and A = [ ] It’s easy to see that A is

e We can take the log on both sides and get
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When the covariance matrix is positive definite, its inverse is also positive definite.! The right
hand side is thus positive, and we can divide it to the left and complete our ellipsoid.

Exercise 5. In a classification setting, where z € R%, y € {1,..., K}, and K is the number
of classes, show that
p(zly)p(y)
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This is a straight application of the Bayes rule, where
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Exercise 6. Consider binary classification with the linear classifier

+1 ifwix+b>0
y(x) = { (23)

—1 otherwise
where x € R?, w is the weight vector, and b is the bias.

e Show that the decision boundary is a straight line when d = 2. A line in 2D can be
expressed as y = azx + b for some constant a € R and b € R.

When a matrix is positive definite, its eigenvalues are positive. The eigenvalues of A™1 are the reciprocal of the
eigenvalues of A4, so A~ is also positive definite.



e Show that the weight vector w is a normal vector of the decision boundary.

The decision boundary can be written as

-
[wl] H +b=wz+wyy +b=0. (24)
w2 )
It is now easy to see that
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which is the line we are looking for.

To show that w is a normal vector of the decision boundary (a plane), the plan is to take any
vector on the plane and show that the dot product with w is 0.
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To get a vector on the plane, we subtract two points u; and us on the plane. Next, we
compute the dot product

WT(UQ — 111) = WTIIQ — wTul = WTUQ +b— (wTul + b) =0, (26)

where the last equality uses the fact that any point u on the decision boundary satisfies
T
w u+b=0.

Exercise 7. Derive a formula for the Euclidean distance between the origin (0,0) and a line
y = ax + b, where a and b are arbitrary constants.




Based on the figure, the length of the red line is the distance between a plane and the point v,
where u is some other point on the plane and w is the normal vector of the plane. The red line
can be described as ||v — u||| cos | where 6 is the angle between v — u and w. For this question,
v is the origin (0,0); u is some point on the plane and we can simply take (0,b); w is the normal
vector (a,—1). The distance is then
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Exercise 8. Consider the 2D case for the linear classifier in equation (23). Suppose that the
points (—2, —3) and (4,1) are on the decision bounary and that the point (2, —3) lies in the
—1 class region. Find the parameters (w,b) of the classifier.

From equation (24), we see that (a,b) is the normal vector if we write the line as az+by+c = 0.
If the line passes through (—2,—3) and (4, 1), then the normal vector should be perpendicular to
(4,1) — (=2,-3) = (6,4). We can simply choose (2, —3) to be our normal vector, and the rest is to
figure out what ¢ is in 2z — 3y + ¢ = 0. The line passes through (4,1),0r 2-4—3-14+c¢= 10, so ¢ is
—5 and the line is 2z — 3y — 5 = 0. We also have the choice of writing the line as =2z + 3y +5 = 0.
To decide whether we want to negate the left hand side or not, we can choose the version such that
(2,—3) is on the negative side. Because —2-2+3-(—3) +5 < 0, we choose —2zx + 3y + 5 = 0 as
our decision boundary. In other words, w = (—2,3) and b = 5.



