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• What is the derivative of f (x) = x2 + 2x + 3?

• What is the gradient of f (x , y , z) = x + 2y + 3z?

• I assume you have taken CAP (MATH08058).

• In this session, we will study

– why we need calculus in this course
– what 1D derivative means
– how to generalize 1D derivative to multiple dimensions
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Maximum likelihood of i.i.d. Gaussian

• Suppose x1, x2, . . . , xn are i.i.d. Gaussian samples. What is the maximum
likelihood estimate of the Gaussian mean?

• The likelihood is defined as the distribution value given the data points, i.e.,

p(x1, x2, . . . , xn) (1)

• Due to the i.i.d. assumption,

p(x1, . . . , xn) =
n∏

i=1

p(xi ) =
n∏

i=1

1

(2π)d/2|Σ|1/2
exp

(
−1

2
(xi − µ)⊤Σ−1(xi − µ)

)
(2)

• The likelihood is a function of the parameters, in this case, µ and Σ.
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Maximum likelihood of i.i.d. Gaussian

• The maximum likelihood estimation of the mean is the µ that maximizes
p(x1, . . . , xn).

• In other words, let L(µ) = p(x1, . . . , xn), the maximum likelihood estimation of
the mean can be written as

argmax
µ

L(µ). (3)
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Maximum likelihood of i.i.d. Gaussian

• The first thing to notice is that

argmax
µ

L(µ) = argmax
µ

log L(µ). (4)

• The log likelihood can be written as

log p(x1, . . . , xn) = log
n∏

i=1

p(xi ) =
n∑

i=1

log p(xi ) (5)

=
n∑

i=1

[
−d

2
log 2π − 1

2
log |Σ| − 1

2
(xi − µ)⊤Σ−1(xi − µ)

]
. (6)
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Maximum likelihood of i.i.d. Gaussian

• We find the maximum by taking the derivative and setting it to zero.

∂

∂µ
log L(µ) = 0 (7)

• With some calculus, we have

∂

∂µ
log L(µ) = −Σ−1

(
n∑

i=1

xi − nµ

)
. (8)

• We can conclude that the maximum likelihood estimate of the mean is

µ =
1

n

n∑
i=1

xi . (9)
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Derivative in 1D

The derivative of a function f : R → R at x0 is defined as

(Dx f )(x0) =

(
d

dx
f

)
(x0) = lim

h→0

f (x0 + h)− f (x0)

h
. (10)
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Derivative as linear approximation

f (x0 + h)

f (x0) + (Dx f )(x0)h

x0 x0 + h
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Derivative as linear approximation

• Consider the line gx0(x) = f (x0) + (Dx f )(x0)(x − x0).

• The term E (x) = |f (x)− gx0(x)| defines the vertical distance between the line
and the function.

• Think of approximating the function with the line, and E (x) tells us how bad this
approximation is.

• The error has to become small as we get close to x0, i.e.,

lim
x→x0

E (x)

x − x0
= 0. (11)
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Alternative definition of derivative

• Suppose we have a function T that is linear. If

lim
h→0

f (x + h)− [f (x) + T (x)h]

h
= 0 (12)

for all x , we have

T (x) = (Dx f )(x) (13)

for all x .

• In words, the derivative locally gives the best linear approximation of a function.
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Directional derivative

• The directional derivative of f : Rd → R along the direction v at x0 ∈ Rd is
defined as

(Dv f )(x0) = lim
t→0

f (x0 + tv)− f (x0)

t
. (14)

• If we let gx0(t) = f (x0 + tv), then

(Dtg)(0) = lim
t→0

g(0 + t)− g(0)

t
= lim

t→0

f (x0 + tv)− f (x0)

t
= (Dv f )(x0) (15)
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Example

• Consider the function f (x , y) = x2 − y2.

• If we are at (2, 0), the directional derivative along (1, 0) is 4.

• If we take a line at {(x , y) : (x , y) = (2, 0) + t(1, 0) = (2 + t, 0) for t ∈ R}, we
have g(t) = f (2 + t, 0) = (2 + t)2. The derivative (Dtg)(t) = 2(2 + t), and
(Dtg)(0) = 2 · (2 + 0) = 4.
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Partial derivatives

• A partial derivative is a directional derivative along the direction of coordinate
axes.

• In a three-dimensional space, the direction of the axes are

(1, 0, 0) (0, 1, 0) (0, 0, 1). (16)

For a function f : R3 → R, the partial derivatives along the axes are

∂

∂x
f

∂

∂y
f

∂

∂z
f . (17)
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Example

• Given a function f (x , y) = x2 − y2,(
∂

∂x
f

)
(x , y)

= 2x

(
∂

∂y
f

)
(x , y)

= −2y .

(18)

• The x-axis is the direction (1, 0). At any point (x , y), the line along that direction
is (x + t, y). The function value along that line is
g(t) = f (x + t, y) = (x + t)2 − y2. We then have (Dtg)(t) = 2(x + t), and(

∂

∂x
f

)
(x , y) = (Dtg)(0) = 2x . (19)

• Treat other variables as constants and take 1D derivatives.
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Example

• Given a function f (x , y , z) = (x + 2y − 3z)2,(
∂

∂x
f

)
(x , y , z)

= 2(x + 2y − 3z)

(20)(
∂

∂y
f

)
(x , y , z)

= 2(x + 2y − 3z) · 2

(21)(
∂

∂z
f

)
(x , y , z)

= 2(x + 2y − 3z) · (−3)

(22)
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Example

• Given a function

f (w , b) =
1

1 + exp(−(w⊤x + b))
, (23)

show that (
∂

∂b
f

)
(w , b) = f (w , b)(1− f (w , b)). (24)
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Gradients

• The gradient of a function is the vector consisting of all partial derivatives.

• For a function f : R3 → R, its gradient is

(∇f )(x , y , z) =


(

∂
∂x f
)
(x , y , z)(

∂
∂y f
)
(x , y , z)(

∂
∂z f
)
(x , y , z)

 . (25)
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Example

• Given a function f (x , y , z) = (x + 2y − 3z)2, show that its gradient is

(∇f )(x , y , z) =

 2(x + 2y − 3z)
2(x + 2y − 3z) · 2

2(x + 2y − 3z) · (−3)

 . (26)
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Example

• Given a function f (a) = b⊤a, show that its gradient is

(∇f )(a) = b. (27)

• Given a function f (a) = b⊤Aa, show that its gradient is

(∇f )(a) = A⊤b. (28)
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Example

• Given a function f (a) = ∥a∥22, show that its gradient is

(∇f )(a) = 2a. (29)
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Example

• Given a function f (w) = (w⊤x + b − y)2, show that

(∇f )(w) = 2(w⊤x + b − y)x . (30)
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Example

• Given a function

f (w) =
1

1 + exp(−(w⊤x + b))
, (31)

show that its gradient is

(∇f )(w) = f (w)(1− f (w))x . (32)
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Theorem

• For a function f : Rd → R and any direction v at any point x , show that

(Dv f )(x) = (∇f )(x)⊤v . (33)

• Once we know the gradient, we know all directional derivatives.
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Second-order derivative

For a function f : R → R, its second-order derivative is defined and written as

∂2

∂x2
f =

∂

∂x

(
∂

∂x
f

)
. (34)
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Example

• Given a function f (x) = x2, it’s second-order derivative is 2.

• The second-order derivative tells us whether the function looks like a cup or an
upside-down cup.
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Hessian

• The Hessian of a function f : Rd → R is defined as
∂2

∂x1∂x1
f ∂2

∂x1∂x2
f . . . ∂2

∂x1∂xd
f

∂2

∂x2∂x1
f ∂2

∂x2∂x2
f . . . ∂2

∂x2∂xd
f

...f
...

∂2

∂xd∂x1
f ∂2

∂xd∂x2
f . . . ∂2

∂xd∂xd
f

 . (35)

• Because

∂2

∂xj∂xi
f =

∂2

∂xi∂xj
f , (36)

the Hessian matrix is always symmetric.
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Example

• Given a function f (x , y) = x2 − y2, its Hessian is

[
2 0
0 −2

]
.
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Taylor approximation

• The function

f (x0) +∇f (x0)
(x − x0) (37)

is locally the best first-order approximation.

• The function

f (x0) +∇f (x0)
⊤(x − x0) +

1

2
(x − x0)

⊤H(x − x0) (38)

is locally the best linear approximation.
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Further reading

• Apostol, “Calculus,” Wiley, 1975

• Spivak, “Calculus on manifolds: A modern approach to classical theorems of
advanced calculus,” Westview Press, 1971

• Colley and Cañez, “Vector calculus,” Pearsonn, 2023

• Marsden and Tromba, “Vector calculus,” W. H. Freeman, 2011
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