

Machine Learning: Multivariate Calculus

Hao Tang

January 28, 2026

- What is the derivative of $f(x) = x^2 + 2x + 3$?
- What is the gradient of $f(x, y, z) = x + 2y + 3z$?

- What is the derivative of $f(x) = x^2 + 2x + 3$?
- What is the gradient of $f(x, y, z) = x + 2y + 3z$?
- I assume you have taken CAP (MATH08058).
- In this session, we will study
 - why we need calculus in this course
 - what 1D derivative means
 - how to generalize 1D derivative to multiple dimensions

Maximum likelihood of i.i.d. Gaussian

- Suppose x_1, x_2, \dots, x_n are i.i.d. Gaussian samples. What is the maximum likelihood estimate of the Gaussian mean?

Maximum likelihood of i.i.d. Gaussian

- Suppose x_1, x_2, \dots, x_n are i.i.d. Gaussian samples. What is the maximum likelihood estimate of the Gaussian mean?
- The likelihood is defined as the distribution value given the data points, i.e.,

$$p(x_1, x_2, \dots, x_n) \quad (1)$$

- Due to the i.i.d. assumption,

$$p(x_1, \dots, x_n) = \prod_{i=1}^n p(x_i) = \prod_{i=1}^n \frac{1}{(2\pi)^{d/2} |\Sigma|^{1/2}} \exp\left(-\frac{1}{2}(x_i - \mu)^\top \Sigma^{-1} (x_i - \mu)\right) \quad (2)$$

- The likelihood is a function of the parameters, in this case, μ and Σ .

Maximum likelihood of i.i.d. Gaussian

- The maximum likelihood estimation of the mean is the μ that maximizes $p(x_1, \dots, x_n)$.
- In other words, let $L(\mu) = p(x_1, \dots, x_n)$, the maximum likelihood estimation of the mean can be written as

$$\operatorname{argmax}_{\mu} L(\mu). \quad (3)$$

Maximum likelihood of i.i.d. Gaussian

- The first thing to notice is that

$$\operatorname{argmax}_{\mu} L(\mu) = \operatorname{argmax}_{\mu} \log L(\mu). \quad (4)$$

- The log likelihood can be written as

$$\log p(x_1, \dots, x_n) = \log \prod_{i=1}^n p(x_i) = \sum_{i=1}^n \log p(x_i) \quad (5)$$

$$= \sum_{i=1}^n \left[-\frac{d}{2} \log 2\pi - \frac{1}{2} \log |\Sigma| - \frac{1}{2} (x_i - \mu)^\top \Sigma^{-1} (x_i - \mu) \right]. \quad (6)$$

Maximum likelihood of i.i.d. Gaussian

- We find the maximum by taking the derivative and setting it to zero.

$$\frac{\partial}{\partial \mu} \log L(\mu) = 0 \quad (7)$$

- With some calculus, we have

$$\frac{\partial}{\partial \mu} \log L(\mu) = -\Sigma^{-1} \left(\sum_{i=1}^n x_i - n\mu \right). \quad (8)$$

- We can conclude that the maximum likelihood estimate of the mean is

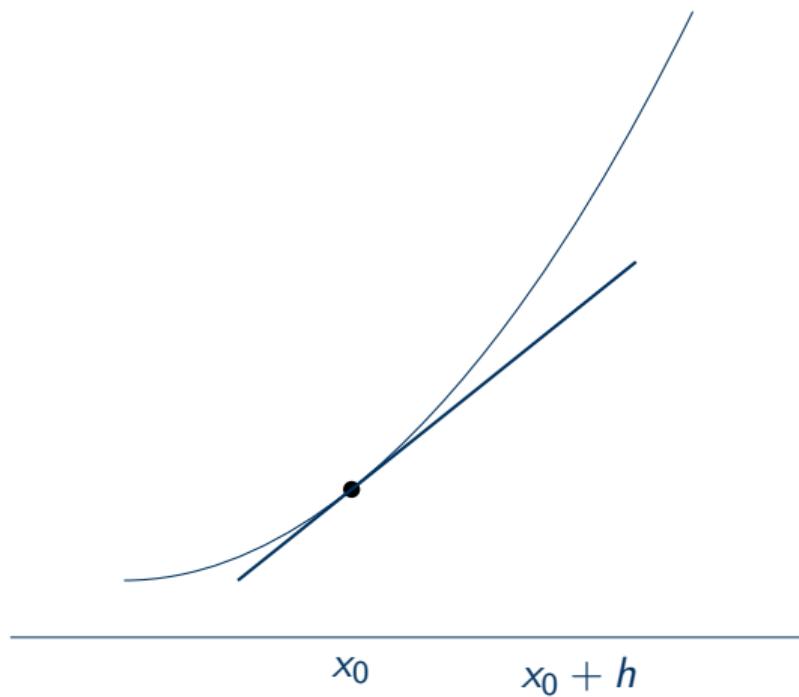
$$\mu = \frac{1}{n} \sum_{i=1}^n x_i. \quad (9)$$

Derivative in 1D

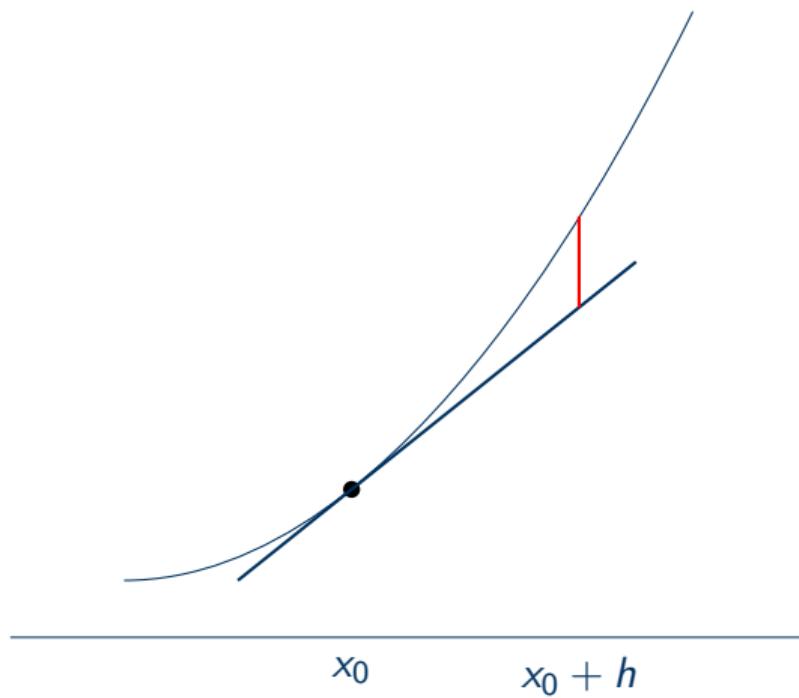
The derivative of a function $f : \mathbb{R} \rightarrow \mathbb{R}$ at x_0 is defined as

$$(D_x f)(x_0) = \left(\frac{d}{dx} f \right) (x_0) = \lim_{h \rightarrow 0} \frac{f(x_0 + h) - f(x_0)}{h}. \quad (10)$$

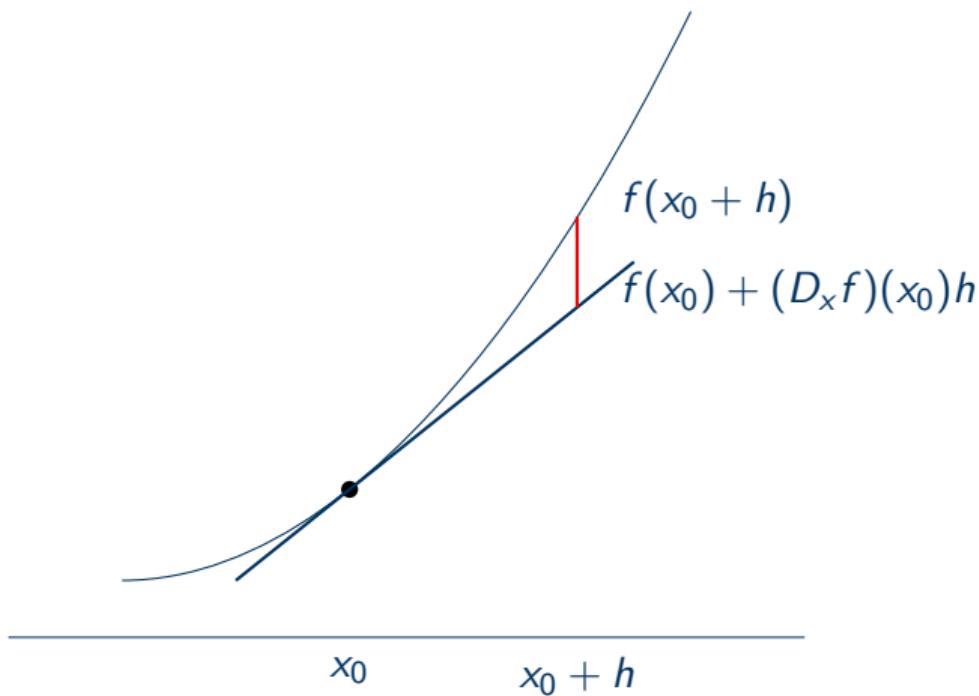
Derivative as linear approximation



Derivative as linear approximation



Derivative as linear approximation



Derivative as linear approximation

- Consider the line $g_{x_0}(x) = f(x_0) + (D_x f)(x_0)(x - x_0)$.
- The term $E(x) = |f(x) - g_{x_0}(x)|$ defines the vertical distance between the line and the function.
- Think of approximating the function with the line, and $E(x)$ tells us how bad this approximation is.
- The error has to become small as we get close to x_0 , i.e.,

$$\lim_{x \rightarrow x_0} \frac{E(x)}{x - x_0} = 0. \quad (11)$$

Alternative definition of derivative

- Suppose we have a function T that is linear. If

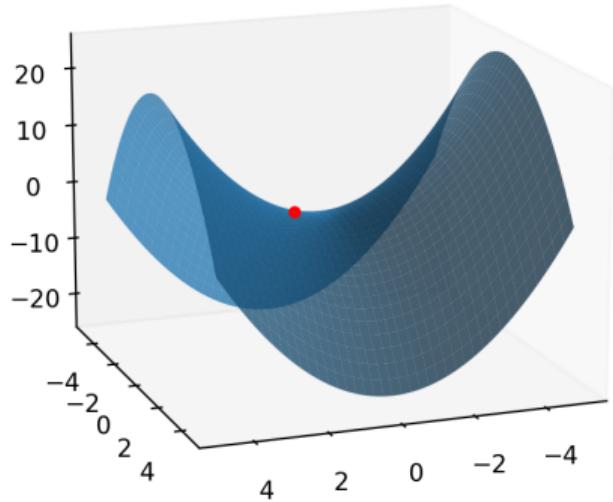
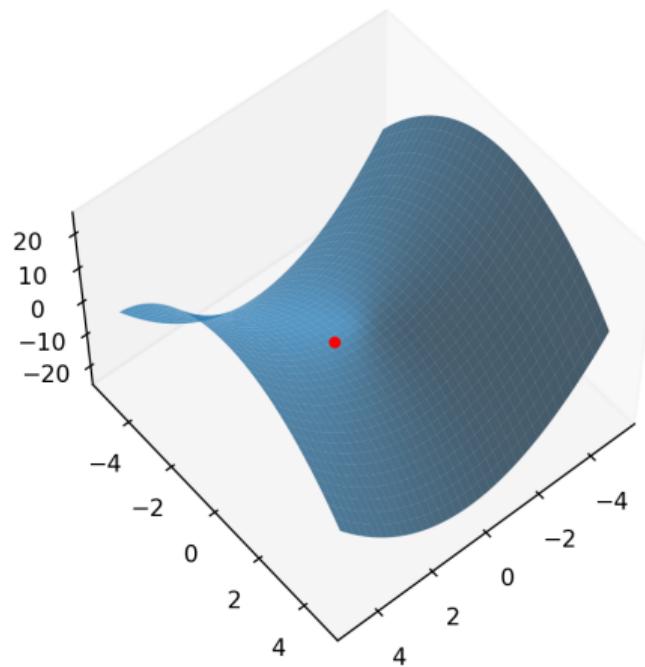
$$\lim_{h \rightarrow 0} \frac{f(x + h) - [f(x) + T(x)h]}{h} = 0 \quad (12)$$

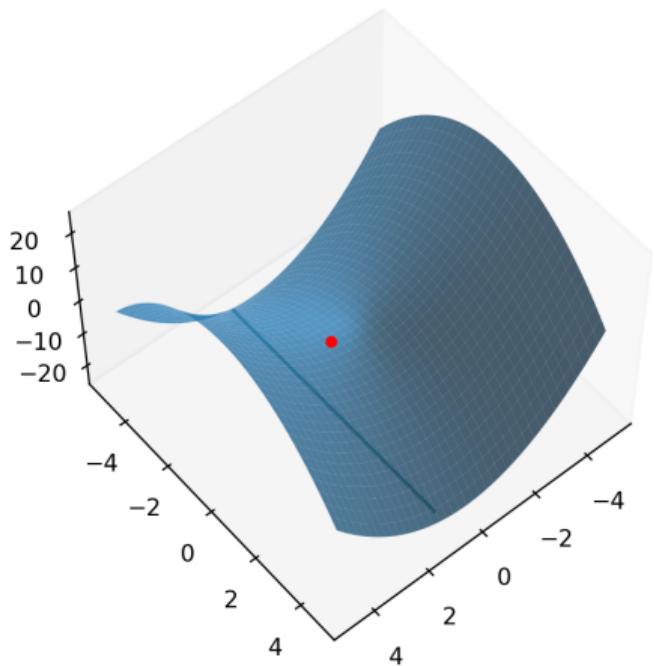
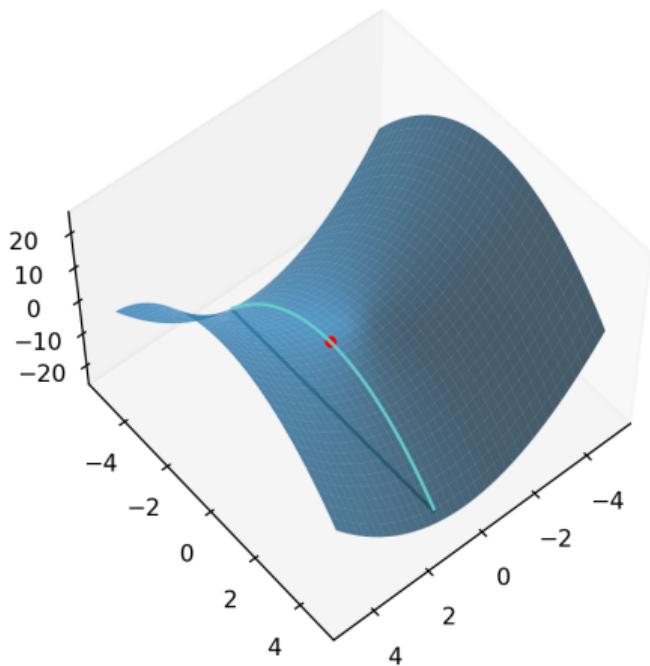
for all x , we have

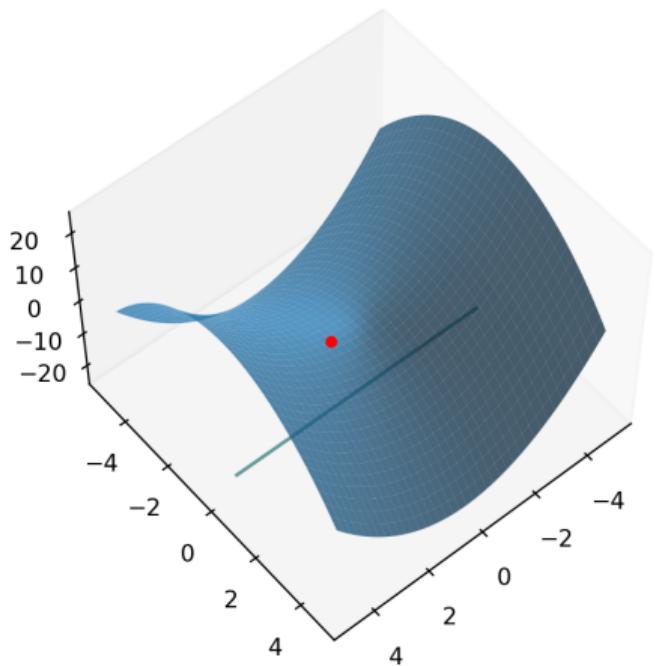
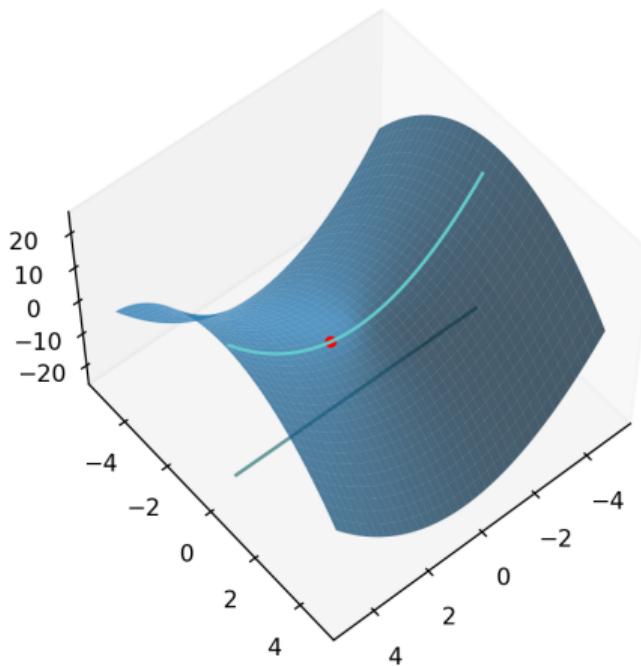
$$T(x) = (D_x f)(x) \quad (13)$$

for all x .

- In words, the derivative locally gives the best linear approximation of a function.







Directional derivative

- The directional derivative of $f : \mathbb{R}^d \rightarrow \mathbb{R}$ along the direction v at $x_0 \in \mathbb{R}^d$ is defined as

$$(D_v f)(x_0) = \lim_{t \rightarrow 0} \frac{f(x_0 + tv) - f(x_0)}{t}. \quad (14)$$

Directional derivative

- The directional derivative of $f : \mathbb{R}^d \rightarrow \mathbb{R}$ along the direction v at $x_0 \in \mathbb{R}^d$ is defined as

$$(D_v f)(x_0) = \lim_{t \rightarrow 0} \frac{f(x_0 + tv) - f(x_0)}{t}. \quad (14)$$

- If we let $g_{x_0}(t) = f(x_0 + tv)$, then

$$(D_t g)(0) = \lim_{t \rightarrow 0} \frac{g(0 + t) - g(0)}{t} = \lim_{t \rightarrow 0} \frac{f(x_0 + tv) - f(x_0)}{t} = (D_v f)(x_0) \quad (15)$$

Example

- Consider the function $f(x, y) = x^2 - y^2$.
- If we are at $(2, 0)$, the directional derivative along $(1, 0)$ is 4.

Example

- Consider the function $f(x, y) = x^2 - y^2$.
- If we are at $(2, 0)$, the directional derivative along $(1, 0)$ is 4.
- If we take a line at $\{(x, y) : (x, y) = (2, 0) + t(1, 0) = (2 + t, 0)$ for $t \in \mathbb{R}\}$, we have $g(t) = f(2 + t, 0) = (2 + t)^2$. The derivative $(D_t g)(t) = 2(2 + t)$, and $(D_t g)(0) = 2 \cdot (2 + 0) = 4$.

Partial derivatives

- A partial derivative is a directional derivative along the direction of coordinate axes.

Partial derivatives

- A partial derivative is a directional derivative along the direction of coordinate axes.
- In a three-dimensional space, the direction of the axes are

$$(1, 0, 0) \quad (0, 1, 0) \quad (0, 0, 1). \quad (16)$$

For a function $f : \mathbb{R}^3 \rightarrow \mathbb{R}$, the partial derivatives along the axes are

$$\frac{\partial}{\partial x} f \quad \frac{\partial}{\partial y} f \quad \frac{\partial}{\partial z} f. \quad (17)$$

Example

- Given a function $f(x, y) = x^2 - y^2$,

$$\left(\frac{\partial}{\partial x} f \right) (x, y) \quad \left(\frac{\partial}{\partial y} f \right) (x, y) \quad (18)$$

Example

- Given a function $f(x, y) = x^2 - y^2$,

$$\left(\frac{\partial}{\partial x} f \right) (x, y) = 2x \quad \left(\frac{\partial}{\partial y} f \right) (x, y) = -2y. \quad (18)$$

Example

- Given a function $f(x, y) = x^2 - y^2$,

$$\left(\frac{\partial}{\partial x} f \right) (x, y) = 2x \quad \left(\frac{\partial}{\partial y} f \right) (x, y) = -2y. \quad (18)$$

- The x -axis is the direction $(1, 0)$. At any point (x, y) , the line along that direction is $(x + t, y)$. The function value along that line is $g(t) = f(x + t, y) = (x + t)^2 - y^2$. We then have $(D_t g)(t) = 2(x + t)$, and

$$\left(\frac{\partial}{\partial x} f \right) (x, y) = (D_t g)(0) = 2x. \quad (19)$$

Example

- Given a function $f(x, y) = x^2 - y^2$,

$$\left(\frac{\partial}{\partial x} f \right) (x, y) = 2x \quad \left(\frac{\partial}{\partial y} f \right) (x, y) = -2y. \quad (18)$$

- The x -axis is the direction $(1, 0)$. At any point (x, y) , the line along that direction is $(x + t, y)$. The function value along that line is $g(t) = f(x + t, y) = (x + t)^2 - y^2$. We then have $(D_t g)(t) = 2(x + t)$, and

$$\left(\frac{\partial}{\partial x} f \right) (x, y) = (D_t g)(0) = 2x. \quad (19)$$

- Treat other variables as constants and take 1D derivatives.

Example

- Given a function $f(x, y, z) = (x + 2y - 3z)^2$,

$$\left(\frac{\partial}{\partial x} f \right) (x, y, z) \quad (20)$$

$$\left(\frac{\partial}{\partial y} f \right) (x, y, z) \quad (21)$$

$$\left(\frac{\partial}{\partial z} f \right) (x, y, z) \quad (22)$$

Example

- Given a function $f(x, y, z) = (x + 2y - 3z)^2$,

$$\left(\frac{\partial}{\partial x} f \right) (x, y, z) = 2(x + 2y - 3z) \quad (20)$$

$$\left(\frac{\partial}{\partial y} f \right) (x, y, z) = 2(x + 2y - 3z) \cdot 2 \quad (21)$$

$$\left(\frac{\partial}{\partial z} f \right) (x, y, z) = 2(x + 2y - 3z) \cdot (-3) \quad (22)$$

Example

- Given a function

$$f(w, b) = \frac{1}{1 + \exp(-(w^\top x + b))}, \quad (23)$$

show that

$$\left(\frac{\partial}{\partial b} f \right) (w, b) = f(w, b)(1 - f(w, b)). \quad (24)$$

Gradients

- The gradient of a function is the vector consisting of all partial derivatives.

Gradients

- The gradient of a function is the vector consisting of all partial derivatives.
- For a function $f : \mathbb{R}^3 \rightarrow \mathbb{R}$, its gradient is

$$(\nabla f)(x, y, z) = \begin{bmatrix} \left(\frac{\partial}{\partial x} f\right)(x, y, z) \\ \left(\frac{\partial}{\partial y} f\right)(x, y, z) \\ \left(\frac{\partial}{\partial z} f\right)(x, y, z) \end{bmatrix}. \quad (25)$$

Example

- Given a function $f(x, y, z) = (x + 2y - 3z)^2$, show that its gradient is

$$(\nabla f)(x, y, z) = \begin{bmatrix} 2(x + 2y - 3z) \\ 2(x + 2y - 3z) \cdot 2 \\ 2(x + 2y - 3z) \cdot (-3) \end{bmatrix}. \quad (26)$$

Example

- Given a function $f(a) = b^\top a$, show that its gradient is

$$(\nabla f)(a) = b. \quad (27)$$

Example

- Given a function $f(a) = b^\top a$, show that its gradient is

$$(\nabla f)(a) = b. \quad (27)$$

- Given a function $f(a) = b^\top Aa$, show that its gradient is

$$(\nabla f)(a) = A^\top b. \quad (28)$$

Example

- Given a function $f(a) = \|a\|_2^2$, show that its gradient is

$$(\nabla f)(a) = 2a. \quad (29)$$

Example

- Given a function $f(w) = (w^\top x + b - y)^2$, show that

$$(\nabla f)(w) = 2(w^\top x + b - y)x. \quad (30)$$

Example

- Given a function

$$f(w) = \frac{1}{1 + \exp(-(w^\top x + b))}, \quad (31)$$

show that its gradient is

$$(\nabla f)(w) = f(w)(1 - f(w))x. \quad (32)$$

Theorem

- For a function $f : \mathbb{R}^d \rightarrow \mathbb{R}$ and any direction v at any point x , show that

$$(D_v f)(x) = (\nabla f)(x)^\top v. \quad (33)$$

- Once we know the gradient, we know all directional derivatives.

Second-order derivative

For a function $f : \mathbb{R} \rightarrow \mathbb{R}$, its second-order derivative is defined and written as

$$\frac{\partial^2}{\partial x^2} f = \frac{\partial}{\partial x} \left(\frac{\partial}{\partial x} f \right). \quad (34)$$

Example

- Given a function $f(x) = x^2$, it's second-order derivative is 2.

Example

- Given a function $f(x) = x^2$, it's second-order derivative is 2.
- The second-order derivative tells us whether the function looks like a cup or an upside-down cup.

Hessian

- The Hessian of a function $f : \mathbb{R}^d \rightarrow \mathbb{R}$ is defined as

$$\begin{bmatrix} \frac{\partial^2}{\partial x_1 \partial x_1} f & \frac{\partial^2}{\partial x_1 \partial x_2} f & \cdots & \frac{\partial^2}{\partial x_1 \partial x_d} f \\ \frac{\partial^2}{\partial x_2 \partial x_1} f & \frac{\partial^2}{\partial x_2 \partial x_2} f & \cdots & \frac{\partial^2}{\partial x_2 \partial x_d} f \\ \vdots f & & & \vdots \\ \frac{\partial^2}{\partial x_d \partial x_1} f & \frac{\partial^2}{\partial x_d \partial x_2} f & \cdots & \frac{\partial^2}{\partial x_d \partial x_d} f \end{bmatrix}. \quad (35)$$

- Because

$$\frac{\partial^2}{\partial x_j \partial x_i} f = \frac{\partial^2}{\partial x_i \partial x_j} f, \quad (36)$$

the Hessian matrix is always symmetric.

Example

- Given a function $f(x, y) = x^2 - y^2$, its Hessian is

Example

- Given a function $f(x, y) = x^2 - y^2$, its Hessian is $\begin{bmatrix} 2 & 0 \\ 0 & -2 \end{bmatrix}$.

Taylor approximation

- The function

$$f(x_0) + \nabla f(x_0)^T (x - x_0) \quad (37)$$

is locally the best first-order approximation.

- The function

$$f(x_0) + \nabla f(x_0)^T (x - x_0) + \frac{1}{2} (x - x_0)^T H (x - x_0) \quad (38)$$

is locally the best linear approximation.

Further reading

- Apostol, "Calculus," Wiley, 1975
- Spivak, "Calculus on manifolds: A modern approach to classical theorems of advanced calculus," Westview Press, 1971
- Colley and Cañez, "Vector calculus," Pearson, 2023
- Marsden and Tromba, "Vector calculus," W. H. Freeman, 2011