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Topics - you should be able to explain

Data and data preprocessing

Features and labels

Statistical classification

Bayes decision rule for classification
Generative classifier vs discriminative classifier
Curse of dimensionality

Naive Bayes model

Multivariate Gaussian distributions

Gaussian discriminant analysis (GDA)
Covariance matrices

Decision regions and decision boundaries
Minimum error rate classification, MAP decision rule
Discriminant functions of GDA

Linear discriminant analysis (LDA)
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Topics - you should be able to explain (cont)

Linear classifiers

Hyperplanes, decision boundaries, and decision regions
Training of classifiers

Loss and cost functions

Logistic regression

Extension of binary classification to multiclass classification

Sigmoid and softmax functions
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Data in machine learning

Types of data
® Numerical (quantitative): discrete / continuous
® Categorical (qualitative): nominal / ordinal
® Sequential / non-sequential

Examples
® |mage data, video data, speech data
® Text data

4/43



Data in machine learning

Types of data
® Numerical (quantitative): discrete / continuous
® Categorical (qualitative): nominal / ordinal

® Sequential / non-sequential 25

Examples S0
® |mage data, video data, speech data <

® Text data E 15
S
©

Data need to be collected and stored in a 21071
[}
machine-readable form. ®
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Image data
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Image data
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Image data
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Pixel image to a feature vector

____>.
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http://alex.seewald.at/digits/

Pixel image to a feature vector

____>.
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Pixel image to a feature vector

%

Turn each cell (pixel) into a number
Unravel into a column vector, a feature vector
= represented digit as a point in 64D

x=(xg x2 - x64)T, x; € [0,127] or x; € [0, 1]

http://alex.seewald.at/digits/
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Image data as a point in a vector space

X3 x=[xi x2 - xga] "
/l\
LA X=(2,6,..5)"
>X,

Xy
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Feature/attribute extraction and classification

Raw data

!

\ Feature extractor ‘

1

Features (feature vectors)
i}

J
Output

8/43



Classification of oranges and lemons
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A two-dimensional space

Represent each sample as a point (w, h) in a 2D space
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credit: lain Murray
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height/cm

Classification

10

width/cm

Oranges:
Lemons:
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Statistical classification
® Classes: C ={C, G, ..., Ck} Labelss Y ={1,2,... K}
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Statistical classification

® Classes: C ={C, G, ..., Ck} Labelss Y ={1,2,... K}
® Observation (feature vector): x = [x; xo --- x4] T € R?
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Statistical classification

® Classes: C ={C, G, ..., Ck} Labelss Y ={1,2,... K}
® Observation (feature vector): x = [x; xo --- x4] T € R?
® Bayes decision rule (for classification):

P(CIX) > p(Cur|X) VK'#k  ply=k|x) > ply=K|x) VK #k

y(x) = argmax p(Cy | x) (1)
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Statistical classification
® Classes: C ={C, G, ..., Ck} Labelss Y ={1,2,... K}

® Observation (feature vector): x = [x; xo --- x4] T € R?
® Bayes decision rule (for classification):

P(CIX) > p(Cur|X) VK'#k  ply=k|x) > ply=K|x) VK #k

9(x) = argmax p(Ci | x) (1)
where ) likelihood ~ prior
T PRI PG | pl(x| G PG -
p(x) k-1 P(x | Cir) p(Cr)
ki) = Pxly=K)ply=k) _ plxly=k)ply=k)
ply=kix) p(x) Se_ip(x|y=K)ply=K)
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Statistical classification (cont)
y(x) = arg Ir(nax p(Cxk | x)
= arg max p(x | Ck) p(Ck)

gy = PXLC)P(C) _ p(x| C) P(CK)
PLaT) p(x) S p(x| C) p(Cir)
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Statistical classification (cont)
y(x) = arg Tax p(Cxk | x)
= arg max p(x | Ck) p(Ck)

p(x | Ck) p(Ck) _ p(x | Ck) p(Ck)
p(x) S w1 p(x | Cur) p(Cr)

p(Ck | x) =

® Generative classifier / approach : models each term on RHS.

p(x| Cy;0), p(Ck; 0)
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Statistical classification (cont)
y(x) = arg Tax p(Cxk | x)
= arg max p(x | Ck) p(Ck)

p(x | Ck) p(Ck) _ p(x | Ck) p(Ck)
p(x) S w1 p(x | Cur) p(Cr)

p(Ck | x) =

® Generative classifier / approach : models each term on RHS.

p(x| Cy;0), p(Ck; 0)

® Discriminative classifier / approach : models LHS directly

p(Cx | x; 6)
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Example: determining the sex of fish

Histograms of fish lengths (Ng = Ny, = 100)

Lengths of male fish

el
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Example: determining the sex of fish (cont)

0.25
P(x[Ce) 5 o,
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Example: determining the sex of fish (cont)

Likelihood P (x|C)

p(Cilx) =

Length [cm]

25

5 10 15
Length [cm]

!
20

25

p(x|Cx)p(Ck)

p(x)

p(M):p(F)=1:1
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Example: determining the sex of fish (cont)

Likelihood P (x|C)

p(Cilx) =

Length [cm]

25

5 10 15
Length [cm]

!
20

25

p(x|Cx)p(Ck)

p(x)

p(M): p(F)=1:4
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More features to improve classification accuracy!?

nc,(x1,...,Xq)
Nc

k

p(x| Cx) ~

1D histogram: nc, (x1)
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More features to improve classification accuracy!?

nc \X1,...,Xd

p(x | Cx) ~ k(,\,)
Ci _
- x
1D histogram: nc, (x1) i

c
2D histogram: n¢,(x1,x2)
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More features to improve classification accuracy!?

nc \X1,...,Xd
p(x | Ce) ~ k(N)
Ck —
. X
1D histogram: nc, (x1) <
c
2D histogram: n¢,(x1,x2)

3D cube of numbers: n¢, (xi, x2, x3)
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More features to improve classification accuracy!?

nc \X1,...,Xd
p(x | Ce) ~ k(N)
Ck —
. X
1D histogram: nc, (x1) <
c
2D histogram: n¢,(x1,x2)

3D cube of numbers: n¢, (xi, x2, x3)

100 binary variables, 2100 settings (the universe is &~ 2% picoseconds old)
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nc \X1,...,Xd
p(x | Ce) ~ k(N)
Ck —
. X
1D histogram: nc, (x1) <
c
2D histogram: n¢,(x1,x2)

3D cube of numbers: n¢, (xi, x2, x3)

100 binary variables, 2100 settings (the universe is &~ 2% picoseconds old)
In high dimensions almost all n¢, (x1,

..,X4) are zero
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More features to improve classification accuracy!?

nc \X1,...,Xd
p(x | Ce) ~ k(N)
Ck —
. X
1D histogram: nc, (x1) <
c
2D histogram: n¢,(x1,x2)

3D cube of numbers: n¢, (xi, x2, x3)

100 binary variables, 2100 settings (the universe is &~ 2% picoseconds old)
In high dimensions almost all n¢, (xi,...,xy) are zero

= Bellman’s “curse of dimensionality”
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Avoiding the Curse of Dimensionality

Apply the chain rule?
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Avoiding the Curse of Dimensionality

Apply the chain rule?
p(x| Ck)= p(x1,x2, - ... xq| Ck)
= p(x1| Ck) p(x2|x1, Ck) p(x3]x2, x1, Ck) p(Xa|x3, X2, x1, C) - - -

o p(Xd—1lXd—2, -, x1, C) p(Xd|Xdg—1; - -, x1, Ck)
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Avoiding the Curse of Dimensionality

Apply the chain rule?
p(x| Ck)= p(x1,x2, - ... xq| Ck)

= p(x1| Ck) p(x2|x1, Ci) p(x3]|x2, X1, Cic) p(xa|x3, X2, X1, Cic) - - -

o p(Xd—1lXd—2, -, x1, Ck) p(Xd|Xd—1, - - s x1, Ck)

Solution: assume structure in p(x | C)
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Avoiding the Curse of Dimensionality

Apply the chain rule?

p(x| C)= p(x1,x2,...,xq|Ck)
= p(x1| Ck) p(x2|x1, Ci) p(x3]|x2, X1, Cic) p(xa|x3, X2, X1, Cic) - - -
o p(Xd—1lXd—2, -, x1, Ck) p(Xd|Xd—1, - - s x1, Ck)

Solution: assume structure in p(x | C)

For example,

® Assume x;4+1 depends on x; only

p(x| Ci) = p(x1|Ck)p(xe|x1, Ck)p(x3|x2, Ck) - - - p(Xd|Xd—1, Ck)
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Avoiding the Curse of Dimensionality

Apply the chain rule?
p(x| Cx)= p(x1,x2, - - -, xd| Ck)
= p(x1| Ck) p(xa|x1, Ck) p(x3|x2, x1, Ck) p(xa|x3, X2, x1, Ck) - - -
o p(Xd—1|Xd—2, - -y x1, Ck) p(Xd|Xd—1, - - -, x1, Ck)
Solution: assume structure in p(x | C)

For example,
® Assume x;4+1 depends on x; only

p(x| Ci) = p(x1|Ck)p(xe|x1, Ck)p(x3|x2, Ck) - - - p(Xd|Xd—1, Ck)

e Assume x € R distributes in a low dimensional vector space
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Avoiding the Curse of Dimensionality

Apply the chain rule?
p(x| Cx)= p(x1,x2, - - -, xq| Ck)
= p(x1| Ck) p(xa|x1, Ck) p(x3|x2, x1, Ck) p(xa|x3, X2, x1, Ck) - - -
oo p(Xg—1|Xd—2, - - -y x1, Ck) P(Xd|Xd—1, - - -, X1, Ck)
Solution: assume structure in p(x | C)
For example,

® Assume x;4+1 depends on x; only

p(x| Ci) = p(x1|Ck)p(xe|x1, Ck)p(x3|x2, Ck) - - - p(Xd|Xd—1, Ck)

e Assume x € R distributes in a low dimensional vector space
e Dimensionality reduction by PCA (Principal Component Analysis) / KL-transform
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Avoiding the Curse of Dimensionality (cont)

® Apply smoothing windows (e.g., Parzen windows)
® Assume x follows a probability distribution (e.g., Normal dist.)

® Assume xi, ..., Xy are conditionally independent given class
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Avoiding the Curse of Dimensionality (cont)

® Apply smoothing windows (e.g., Parzen windows)
® Assume x follows a probability distribution (e.g., Normal dist.)
® Assume xi, ..., Xy are conditionally independent given class

= Naive Bayes rule/model/assumption or idiot Bayes rule
p(x1, %2, - - xd|Ck) = p(xa|Ci) p(x2| Ck) - - p(xa| Ck)

d
= [ pGxar[Ci)

d’'=1
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Avoiding the Curse of Dimensionality (cont)
® Apply smoothing windows (e.g., Parzen windows)
® Assume x follows a probability distribution (e.g., Normal dist.)
® Assume xi, ..., Xy are conditionally independent given class

= Naive Bayes rule/model/assumption or idiot Bayes rule
p(x1, %2, - - xd|Ck) = p(xa|Ci) p(x2| Ck) - - p(xa| Ck)

d
= ] pxar1G)
d'=1
e s it reasonable?
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Avoiding the Curse of Dimensionality (cont)

® Apply smoothing windows (e.g., Parzen windows)
® Assume x follows a probability distribution (e.g., Normal dist.)
® Assume xi, ..., Xy are conditionally independent given class

= Naive Bayes rule/model/assumption or idiot Bayes rule
p(x1, %2, - - xd|Ck) = p(xa|Ci) p(x2| Ck) - - p(xa| Ck)

d
= ] pxar1G)
d'=1
e s it reasonable?
Often not, of coursel

Although it can still be useful.
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Gaussian discriminant analysis

Consider a generative classifier where the class conditional densities are given as
multivariate Gaussians:

p(x| Gii0) = N (x| e, £4) o)
~ G (B ) @

where py is the mean vector and 3 is the covariance matrix for class Cj.
The posterior:

P(Cr | x) o< p(Cie) N(x | pere; )

This classifier is called Gaussian discriminant analysis or GDA.
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Multivariate Gaussian distribution (recap)

The d-dimensional vector x = [x; --- x4] " is multivariate Gaussian if it has a
probability density function of the following form:

PRI . 2) = 3 s 0 (—;x )T (o m) |

The pdf is parameterised by the mean vector g = [p1 - - - p1q]" and the covariance
matrix 3 = (o).
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Multivariate Gaussian distribution (recap)
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The pdf is parameterised by the mean vector g = [p1 - - - p1q]" and the covariance
matrix 3 = (o).

The 1-dimensional Gaussian is a special case of this pdf
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Multivariate Gaussian distribution (recap)

The d-dimensional vector x = [x; --- x4] " is multivariate Gaussian if it has a
probability density function of the following form:

= 1 1 Ty—1
p(x|p, %) = WGXP <—2(X —p) X(x - N)) :
The pdf is parameterised by the mean vector g = [p1 - - - p1q]" and the covariance
matrix 3 = (o).
The 1-dimensional Gaussian is a special case of this pdf

The argument to the exponential (x — p) "X 71(x — p) is referred to as a
quadratic form.
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The parameters of a Gaussian distribution (recap)

® The mean vector p is the expectation of x:

p = E[x]
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The parameters of a Gaussian distribution (recap)

® The mean vector p is the expectation of x:
p = E[x]
® The covariance matrix X is the expectation of the deviation of x from the mean:

2= E[(x - pu)(x—p)']
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The parameters of a Gaussian distribution (recap)

® The mean vector p is the expectation of x:
p = E[x]
® The covariance matrix X is the expectation of the deviation of x from the mean:
S =El(x—p)(x—p)']
® ¥ isadxdsymmetric matrix: &' =3

7= Elx = 1) = 1)) = Elg = 1) — )] = 5.
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The parameters of a Gaussian distribution (recap)

The mean vector p is the expectation of x:

p = E[x]

The covariance matrix X is the expectation of the deviation of x from the mean:

2= E[(x - pu)(x—p)']
Y is a d x d symmetric matrixx: X7 =X
i = El(x = 1) — 1)) = EI0 = 1) — )] = .

The sign of the covariance oj; helps to determine the relationship between two
components:
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The parameters of a Gaussian distribution (recap)

The mean vector p is the expectation of x:

p = E[x]

The covariance matrix X is the expectation of the deviation of x from the mean:

S =El(x—p)(x—p)']
Y is a d x d symmetric matrixx: X7 =X
75 = El(s = 1) = 1)) = ElG = ) — )] = .
The sign of the covariance oj; helps to determine the relationship between two

components:
o If x; is large when x; is large, then (x; — 11;)(x; — ;) will tend to be positive;
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The parameters of a Gaussian distribution (recap)

The mean vector p is the expectation of x:

p = E[x]

The covariance matrix X is the expectation of the deviation of x from the mean:

S =El(x—p)(x—p)']
Y is a d x d symmetric matrixx: X7 =X
ojj = E[(xi — pi)(x — )] = El(x; — 1j)(xi — i)l = 0 -
The sign of the covariance oj; helps to determine the relationship between two
components:

o If x; is large when x; is large, then (x; — 11;)(x; — ;) will tend to be positive;
o If x;j is small when x; is large, then (x; — 1;)(x; — pi) will tend to be negative.
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Covariance matrix (recap)

0'11 0'12 .. e .. o .. O'ld
0'21 0‘22 . e e . e O'2d
> =
Oij
O-CI]. O'd2 e e e O'dd
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Covariance matrix (recap)

0'11 0'12 DR e e O'ld
0'21 0'22 e ... e O‘2d
> =
Oij
O'dl O'd2 ... e e O'dd
[ ] 0—.220',-;
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Covariance matrix (recap)

0'11 0'12 DR e e O'ld
0'21 0'22 e ... e O‘2d
> =
Oij
O'dl O'd2 ... e e O'dd
[ ] 0—’.220',-;

® |X| = det(X) : determinant
e.g., ford =2,

a b
|| = c d’_axd—bxc
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Spherical Gaussian

Surface plot of p(x,, X,)

Contour plot of p(x,, ,)

0 10 _

NB: Correlation coefficient p;; = /. (-1< pij < 1)

O’..O’.. 7
Vi 23/43



plX, ;)

2-D Gaussian with a diagonal covariance matrix

Surface plot of p(x,, X,)

Contour plot of p(x,, ,)

0 10
(3) (1) e
NB: Correlation coefficient p;; = 75 (-1 <p; <1)

Vii0jj
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P(x;x,)

2-D Gaussian with a full covariance

Surface plot of p(x,, X,)

matrix

Contour plot of p(x,, X,)

0 1 -1
-(3) =(1) e

. - o
NB: Correlation coefficient p; = )

(=1 < pjj

<1)
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Training in GDA

e Training data set {(Xn,yn)}N

n=1
® Parameter estimation of each Gaussian distribution N'(x | pek, 3¢ for
k=1,...,K based on the maximum likelihood estimation (MLE)
e Mean vector
1 i
”k:Wk Z Xn where Ny = |{y|y=k}|
{yn | yn=k}
o Covariance matrix:
1
A D (= ) — )T
{yn | yn=k}
1
(2k); = i D o — ki) O — )
{¥n | yn=k}

e Estimation of the class prior probability p(Cy) based on the data or
knowledge /assumption
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Example of training data

4 o Class1
x  Class 2
+ Class 3
2 ) X
ol °
o N
-2 S
E a
° o
° a
N
—4
—6 AA
-8 -6 -4 -2 0 2 4 6
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Gaussians estimated from the data

o

X

a

Class 1
Class 2
Class 3
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Decision boundaries and regions with the GDA

o Class 1
«  Class 2
+ Class 3
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Decision regions

® Recall Bayes' Rule:
_ p(x]G)p(C)

)
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Decision regions

® Recall Bayes' Rule:
p(x|Ci)p(Ck)
p(x)
® Given an unseen point x, we assign to the class for which p(Cg|x) is largest.
(k* = arg maxy p(Ck|x))

p(Ck|x) =
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Decision regions

® Recall Bayes' Rule:
p(x|Ci)p(Ck)
p(x)
® Given an unseen point x, we assign to the class for which p(Cg|x) is largest.
(k* = arg maxy p(Ck|x))

p(Ck|x) =

® Thus x-space (the input space) may be regarded as being divided into decision
regions Ry such that a point falling in Ry is assigned to class Cy.
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Decision regions

Recall Bayes' Rule:
p(x|Ci)p(Ck)
p(x)
Given an unseen point x, we assign to the class for which p(Cy|x) is largest.
(k* = arg maxy p(Cx|x))

p(Ck|x) =

Thus x-space (the input space) may be regarded as being divided into decision
regions Ry such that a point falling in Ry is assigned to class Cy.

Decision region Ry needs not be contiguous, but may consist of several disjoint
regions each associated with class Cy.
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Decision regions

Recall Bayes' Rule:
p(x|Ci)p(Ck)
p(x)
Given an unseen point x, we assign to the class for which p(Cy|x) is largest.
(k* = arg maxy p(Cx|x))

p(Ck|x) =

Thus x-space (the input space) may be regarded as being divided into decision
regions Ry such that a point falling in Ry is assigned to class Cy.

Decision region Ry needs not be contiguous, but may consist of several disjoint
regions each associated with class Cy.

The boundaries between these regions are called decision boundaries.
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Placement of decision boundaries

e Consider a 1-dimensional feature space (x) and two classes C; and G,.
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Placement of decision boundaries
e Consider a 1-dimensional feature space (x) and two classes C; and G,.

® How to place the decision boundary to minimise the probability of
misclassification (based on p(x, Cx))?
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Placement of decision boundaries

Consider a 1-dimensional feature space (x) and two classes C; and G,.

How to place the decision boundary to minimise the probability of

misclassification (based on p(x, Cx))?

— Ri — | +— Ro —

+— R — | +— R —
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Decision regions and misclassification

Confusion matrix Normalised confusion matrix
In\Out G G In\Out G G
G | Niu Nio N G| Pu Po P+ P =1
G | Mot Nop G | Py Py P+ Py =1
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Confusion matrix

Decision regions and misclassification

Normalised confusion matrix

In\Out G G In\Out G G
G | Niu Nio N G| Pu Po P+ P =1
G | Mot Nop G | Py Py P+ Py =1

Pl]_:p(XER]_|C1):NTT> Pl2:p(XER2|C1):NT112
Py = p(x € Ra|G) = T2

n Po=p(x€RG) = NWZ;

Ny =Ni1+Nio, No=Nz1+ N2z, p(Ci1)= M p(C)=

= NNy

N>

Ni+N>
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Decision regions and misclassification

Confusion matrix Normalised confusion matrix

In\Out G G In\Out G G
G | Niu Nio N G| Pu Po P+ P =1
G | Mot Nop G | Py Py P+ Py =1

P11:P(XER1|C1):NTT> Pl2:p(X€7?'2|C1):NTll2
Py = p(x € Ra|G) = T2

B, Py =p(x € Ro|G) = {2

Ny = N11+Ni2, Np= N1+ Ny, P(Q)Zﬁ; p(C)= /\/1/12/\/2
M = P11 p(C1) + P2z p(G)
Ny + N

p(correct) =
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Decision regions and misclassification

Confusion matrix Normalised confusion matrix

In\Out G G In\Out G G
G | Niu Nio N G| Pu Po P+ P =1
G | Mot Nop G | Py Py P+ Py =1

P11:P(XER1|C1):NTT> Pl2:p(X€7?'2|C1):NTll2
Py = p(x € Ra|G) = T2

n Po=p(x€RG) = NWZ;

N1 = N1+ N1z, No=Np1+ N, P(Cl):rlil,\,z; p(C)= /\/1/12/\/2
7N11+N22 = P11 p(C1) + P2z p(G)
Ni+ N>

p(correct) =

Nix+ N,
p(error) = ﬁ = P12 p(Gi) + Po1 p(G)
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Decision regions and misclassification

Confusion matrix Normalised confusion matrix

In\Out G G In\Out G G
G | Niu Nio N G| Pu Po P+ P =1
G | Mot Nop G | Py Py P+ Py =1

P11:P(XER1|C1):NTT> Pl2:p(X€7?'2|C1):NTll2
Py = p(x € Ra|G) = T2

n Po=p(x€RG) = NWZ;

Ni=N11+ N1z, Na=Np1+ N, P(Q)Zﬁ; p(C)= /\/1/12/\/2
7N11+N22 = P11 p(C1) + P2z p(G)
Ni+Ns

p(correct) =

Nix+ N,
p(error) = ﬁ = P12 p(Gi) + Po1 p(G)

- /R p(x]C) p(Cr) dx + / p(x|C2) p(Gr) dx

R1
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Decision regions and misclassification

Confusion matrix Normalised confusion matrix

In\Out G G In\Out G G
G | Niu Nio N G| Pu Po P+ P =1
G | Mot Nop G | Py Py P+ Py =1

P11:P(X€R1|C1):NTT> Pl2:p(X€7?'2|C1):NTll2
Py = p(x € Ra|G) = T2

n Po=p(x€RG) = NWZ;

Ni=N11+ N1z, Na=Np1+ N, P(Q)Zﬁ; P(Cz):/\/llizl\/2
7N11+N22 = P11 p(C1) + P2z p(G)
Ni+Ns

p(correct) =

Nix+ N,
p(error) = ﬁ = P12 p(Gi) + Po1 p(G)

- /R p(x|C1) p(Cr) dx + /R p(x|C2) p(Gr) dx
=/ P(C1|X)p(x)dx—|—/ p(Calx) p(x) dx
Ro
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Minimising probability of misclassification

p(error|R1, Ra) = /Rp(Cl\x) p(x) dx + /R p( G| x) p(x) dx (5)
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® p(error) is minimised by assigning each point to the class with the maximum
posterior probability — Bayes decision rule / MAP decision rule / minimum error
rate classification.
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Minimising probability of misclassification

p(error|R1, Ra) = /RP(C1 |x) p(x) dx + /R p( G| x) p(x) dx (5)

® |[f X = xp € Ry such that p(Cl |Xo) > p(C2 ‘Xo),
letting R5 = Ro — {xo} and R} = R1 + {xo} gives

p(error|Ry,R3) < p(error|Ri, R2)

® p(error) is minimised by assigning each point to the class with the maximum
posterior probability — Bayes decision rule / MAP decision rule / minimum error
rate classification.

® This justification for the maximum posterior probability may be extended to
d-dimensional feature vectors and K classes
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Minimising probability of misclassification (cont)

A N
Zo x

p(ZB,Cl)

p(z,Ca)

Rl R2

After Fig. 1.24, C. Bishop, Pattern Recognition and Machine Learning, Springer, 2006.
X denotes the current decision boundary, which causes error shown in red, green, and blue regions. The

error is minimised by locating the boundary at x,.
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Should we always use the Bayes decision rule?

See “Predictions and Decision Boundaries”, LWLS 3.2.
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Discriminant function of GDA

Recall GDA
P(Ck | x,0) o< p(Cie) N (x| pw, i)

where 1 1
_ _T(x — Ty =1y _
Nl 210 = gm0 (- w0 S0 m)) (@
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Discriminant function of GDA

Recall GDA
p(Cr | x,0) oc p(Cic) N (x| px, Zi)
where 1 1 -
N(x|pr, 2k) = W exp <—2(X — Hi) X (x — #k)) (6)

® The discriminant function of GDA: (taking log and ignoring constant terms yields)

4(x) = 108 p(Ci) — 5 log Skl — o (x — ) S (x — ) (1)

-+ quadratic function of x.
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Discriminant function of GDA

Recall GDA
p(Cr | x,0) oc p(Cic) N (x| px, Zi)
where 1 1 -
N(x|pr, 2k) = W exp <—2(X — Hi) X (x — Nk)) (6)

® The discriminant function of GDA: (taking log and ignoring constant terms yields)

4(x) = 108 p(Ci) — 5 log Skl — o (x — ) S (x — ) (1)

-+ quadratic function of x.
e Classification (estimating the class label):

y(x) = arg max g(x) (8)

® So, the decision boundaries are piecewise quadratic functions of x. (Check!)
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Special case of GDA — equal covariance

Assume all class covariances X share the same covariance, 3, = 3.
The discriminant function is reduced to

g(x) = log P(Ce) — 5(x — ) = x — ) ©)
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Special case of GDA — equal covariance

Assume all class covariances X share the same covariance, 3, = 3.
The discriminant function is reduced to

g(x) = log P(Ce) — 5(x — ) = x — )

I 1
= log p(Ci) + pu 7% — S B —5x B x
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Special case of GDA — equal covariance

Assume all class covariances X share the same covariance, 3, = 2.
The discriminant function is reduced to

1 _
8k(x) = log p(Ci) — 5 (x — pu) "B (x — pai) (9)
1 1
— log p(Ci) + pp 7 1x — EuIE_lpk —EXTE_lx (10)
= wy X + wyo + const (11)

where w,| = p/ 371 and wyg = —%MZE*IH;( + log p(Ck)

36/43



Special case of GDA — equal covariance

Assume all class covariances X share the same covariance, 3, = 2.
The discriminant function is reduced to

1 _
8k(x) = log p(Ci) — 5 (x — pu) "B (x — pai) (9)
1 1
— log p(Ci) + pp 7 1x — EuIE_lpk —EXTE_lx (10)
= wy X + wyo + const (11)

where w,| = p/ 371 and wyg = 7%,1;271“/( + log p(Ck)

This is called a linear discriminant function as it is a linear function of x.
The method is called Linear Discriminant Analysis (LDA).
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Special case of GDA — equal covariance (cont)

Including the constant terms to wyq, we have:
gk(x) = w,jx + Wko (12)
Since gk(x) = log p(Ck) p(x | Ck, 0),

v o)~ &)
p(Ci | x,6) SE e x) (13)

T
eWk X—+Wgo

pr— —T
S "X
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Another special case of GDA

. . 1
e Spherical Gaussians: ¥ =02l = |%|=0%¢, X71= =1
g
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Another special case of GDA

e Spherical Gaussians: £ =¢%l = [X|=0¢%¢ x7!1= %I
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g(x) =~ (x — ) TS 0x — k) — 5 In [l + 0 p(C) (15)
= o= )T (x = ) = 5 1002 1 p(C) (16)
g(x) = — 55 |x — el + I p( ) (17)

38/43



Another special case of GDA

1

e Spherical Gaussians: £ =¢%l = [X|=0¢%¢ x7!1= —1
o

® Discriminant function:

1 _ 1
gr(x) = —5(x - 1) T (= i) — 5 In[Z] +Inp(C)
1 1
= (= ) (x — i) — 5 In0* 10 p(C)

1
ge(x) = =55 lx — ml® + In p(Ci)
® |f equal prior probabilities are assumed,

g(x) = —[x —

(18)
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e Spherical Gaussians: ¥ =02l = |%|=0%¢, X71= =1

Another special case of GDA
1

g

® Discriminant function:

gk(x) =

gk(x)

1

_ 1
_E(X — ,uk)TEkl(x — pg) — > In|Xk| + Inp(Cx)

1 1
52X~ 1) T (x = ) — 5 In o9 +1Inp(Cy)

1
= —EHX — il + I p(Ck)

® |f equal prior probabilities are assumed,

The decision rule:

g(x) = —[x —

“assign a test data to the class whose mean is closest”.

(18)
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Another special case of GDA

) ) _ 1
e Spherical Gaussians: ¥ =02l = |%|=0%¢, X71= =1
o
® Discriminant function:

1 _ 1
gr(x) = —5(x - 1) T (= i) — 5 In[Z] +Inp(C)

1 1
= 53X~ 1) T (x = ) — 5 In o9 +1Inp(Cy)
1
ge(x) = =55 lx — ml® + In p(Ci)
® |f equal prior probabilities are assumed,

g(x) = —[x —

The decision rule: “assign a test data to the class whose mean is closest”.

The class means (px) may be regarded as class templates or prototypes.

(18)
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Decision boundaries of GDA

Considering a binary classification between C; and C,, the decision boundaries are
defined as:

{x e R &1(x) - ga(x)=0} (19)

o8 6/6

() (b) ()
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Which type of GDA should you use in practice?

® GDA with general covariance matrices
® GDA with an equal (or tied or shared) covariance matrix, i.e., LDA

® GDA with an spherical (or isotropic) covariance matrix

\@71@@{@

(a) (c)
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Quizzes

® Show:
p(x | Ci) p(Ci)

Sp_1p(x| Cur) p(Crr)

p(Ci | x) =

® Write Python code that generates 2D and 3D visualisations of a two-dimensional
Gaussian distribution with a specified mean vector and covariance matrix.

e Run the code using various sets of parameters.

e You will find that the code does not work with some covariance matrices. Describe
the conditions for valid covariance matrices.
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Quizzes (cont.)

® Show that the natural logarithm of a multivariate Gaussian distribution

1 1 Tea—1
N(x|pX)= —(2 EIESIRE exp (—Z(X—p,) b)) (x—u))
is given as

1 1 1 d
—ExTz—lx + X ix — E,ﬂz—lu — 5 log =] — > log2m
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Quizzes (cont.)

® Show that the decision boundary of GDA for binary classification is quadratic in x,
where x € RY.

® In GDA with an equal covariance, discuss how to estimate the shared covariance

matrix from a given training set {(x,,,yn)},l)lzl.

® When deriving the discriminant function in Gaussian discriminant analysis (GDA),
we used the natural logarithm. Discuss the validity of using the logarithm.
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