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Topics - you should be able to explain

• Data and data preprocessing
• Features and labels
• Statistical classification
• Bayes decision rule for classification
• Generative classifier vs discriminative classifier
• Curse of dimensionality
• Naive Bayes model
• Multivariate Gaussian distributions
• Gaussian discriminant analysis (GDA)
• Covariance matrices
• Decision regions and decision boundaries
• Minimum error rate classification, MAP decision rule
• Discriminant functions of GDA
• Linear discriminant analysis (LDA)
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Topics - you should be able to explain (cont.)

• Linear classifiers

• Hyperplanes, decision boundaries, and decision regions

• Training of classifiers

• Loss and cost functions

• Logistic regression

• Extension of binary classification to multiclass classification

• Sigmoid and softmax functions
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Data in machine learning

Types of data

• Numerical (quantitative): discrete / continuous

• Categorical (qualitative): nominal / ordinal

• Sequential / non-sequential

Examples

• Image data, video data, speech data

• Text data

Data need to be collected and stored in a
machine-readable form.
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Image data
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Pixel image to a feature vector

→

→ x =


x1
x2
...
x64



Turn each cell (pixel) into a number
Unravel into a column vector, a feature vector
⇒ represented digit as a point in 64D

x = (x1 x2 · · · x64)⊤, xi ∈ [0, 127] or xi ∈ [0, 1]

http://alex.seewald.at/digits/
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Image data as a point in a vector space

x = [x1 x2 · · · x64]⊤
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Feature/attribute extraction and classification

Raw data
↓

Feature extractor
↓

Features (feature vectors)

↓
Classifier

↓
Output
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Classification of oranges and lemons

9 / 43



A two-dimensional space

Represent each sample as a point (w , h) in a 2D space

credit: Iain Murray
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Classification
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Statistical classification

• Classes: C = {C1,C2, . . . ,CK} Labels: Y = {1, 2, . . . ,K}

• Observation (feature vector): x = [x1 x2 · · · xd ]⊤ ∈ Rd

• Bayes decision rule (for classification):

p(Ck | x) > p(Ck ′ | x) ∀k ′ ̸=k p(y=k | x) > p(y=k ′ | x) ∀k ′ ̸=k

ŷ(x) = argmax
k

p(Ck | x) (1)

where

p(Ck | x) =
p(x |Ck) p(Ck)

p(x)
=

p(x |Ck) p(Ck)∑K
k ′=1 p(x |Ck ′) p(Ck ′)

(2)

p(y=k | x) = p(x | y=k) p(y=k)

p(x)
=

p(x | y=k) p(y=k)∑K
k ′=1 p(x | y=k ′) p(y=k ′)
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Statistical classification (cont.)

ŷ(x) = argmax
k

p(Ck | x)

= argmax
k

p(x |Ck) p(Ck)

p(Ck | x) =
p(x |Ck) p(Ck)

p(x)
=

p(x |Ck) p(Ck)∑K
k ′=1 p(x |Ck ′) p(Ck ′)

• Generative classifier / approach : models each term on RHS.

p(x |Ck ;θ), p(Ck ;θ)

• Discriminative classifier / approach : models LHS directly

p(Ck | x ;θ)
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Example: determining the sex of fish

Histograms of fish lengths (NF = NM = 100)
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Example: determining the sex of fish (cont.)

p(x |Ck)
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More features to improve classification accuracy!?

p(x |Ck) ≈
nCk

(x1, . . . , xd)

NCk

1D histogram: nCk
(x1)

2D histogram: nCk
(x1, x2) 0

5
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x
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x
2

n
C

( 
x
 )

3D cube of numbers: nCk
(x1, x2, x3)

...

100 binary variables, 2100 settings (the universe is ≈ 298 picoseconds old)

In high dimensions almost all nCk
(x1, . . . , xd) are zero

⇒ Bellman’s “curse of dimensionality”
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Avoiding the Curse of Dimensionality

Apply the chain rule?

p(x |Ck)= p(x1, x2, . . . , xd |Ck)

= p(x1|Ck) p(x2|x1,Ck) p(x3|x2, x1,Ck) p(x4|x3, x2, x1,Ck) · · ·
· · · p(xd−1|xd−2, . . . , x1,Ck) p(xd |xd−1, . . . , x1,Ck)

Solution: assume structure in p(x |Ck)

For example,

• Assume xi+1 depends on xi only

p(x |Ck) ≈ p(x1|Ck)p(x2|x1,Ck)p(x3|x2,Ck) · · · p(xd |xd−1,Ck)

• Assume x ∈ Rd distributes in a low dimensional vector space

Dimensionality reduction by PCA (Principal Component Analysis) / KL-transform
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Avoiding the Curse of Dimensionality (cont.)

• Apply smoothing windows (e.g., Parzen windows)

• Assume x follows a probability distribution (e.g., Normal dist.)

• Assume x1, . . . , xd are conditionally independent given class

⇒ Naive Bayes rule/model/assumption or idiot Bayes rule

p(x1, x2, . . . , xd |Ck) = p(x1|Ck) p(x2|Ck) · · · p(xd |Ck)

=
d∏

d ′=1

p(xd ′ |Ck)

Is it reasonable?
Often not, of course!
Although it can still be useful.
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Gaussian discriminant analysis

Consider a generative classifier where the class conditional densities are given as
multivariate Gaussians:

p(x |Ck ;θ) = N (x |µk ,Σk) (3)

=
1

(2π)d/2|Σk |1/2
exp

(
−1

2
(x − µk)

⊤Σ−1
k (x − µk)

)
(4)

where µk is the mean vector and Σk is the covariance matrix for class Ck .
The posterior:

p(Ck | x) ∝ p(Ck)N (x |µk ,Σk)

This classifier is called Gaussian discriminant analysis or GDA.
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Multivariate Gaussian distribution (recap)

• The d-dimensional vector x = [x1 · · · xd ]⊤ is multivariate Gaussian if it has a
probability density function of the following form:

p(x |µ,Σ) =
1

(2π)d/2|Σ|1/2
exp

(
−1

2
(x− µ)⊤Σ−1(x− µ)

)
.

The pdf is parameterised by the mean vector µ = [µ1 · · · µd ]
⊤ and the covariance

matrix Σ = (σij).

• The 1-dimensional Gaussian is a special case of this pdf

• The argument to the exponential 1
2(x − µ)⊤Σ−1(x − µ) is referred to as a

quadratic form.
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Multivariate Gaussian distribution (recap)
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The parameters of a Gaussian distribution (recap)

• The mean vector µ is the expectation of x :

µ = E [x]

• The covariance matrix Σ is the expectation of the deviation of x from the mean:

Σ = E [(x− µ)(x− µ)⊤]

• Σ is a d × d symmetric matrix: Σ⊤ = Σ

σij = E [(xi − µi )(xj − µj)] = E [(xj − µj)(xi − µi )] = σji .

• The sign of the covariance σij helps to determine the relationship between two
components:

If xj is large when xi is large, then (xj − µj)(xi − µi ) will tend to be positive;
If xj is small when xi is large, then (xj − µj)(xi − µi ) will tend to be negative.
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Covariance matrix (recap)

Σ =



σ11 σ12 · · · · · · · · · σ1d
σ21 σ22 · · · · · · · · · σ2d
...

...
. . .

...
...

... σii
...

...
...

. . .
...

σd1 σd2 · · · · · · · · · σdd



• σ2
i = σii

• |Σ| = det(Σ) : determinant

e.g., for d = 2,

|Σ| =
∣∣∣∣ a b
c d

∣∣∣∣ = a× d − b × c
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Spherical Gaussian
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2-D Gaussian with a diagonal covariance matrix
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2-D Gaussian with a full covariance matrix
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Training in GDA

• Training data set {(xn, yn)}Nn=1
• Parameter estimation of each Gaussian distribution N (x |µk ,Σk) for

k = 1, . . . ,K based on the maximum likelihood estimation (MLE)
Mean vector:

µk =
1

Nk

∑
{yn | yn=k}

xn where Nk = |{y | y=k}|

Covariance matrix:

Σk =
1

Nk

∑
{yn | yn=k}

(xn − µk)(xn − µk)⊤

(Σk)ij =
1

Nk

∑
{yn | yn=k}

(xni − µki )(xnj − µkj)

• Estimation of the class prior probability p(Ck) based on the data or
knowledge/assumption
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Example of training data
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Gaussians estimated from the data
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Decision boundaries and regions with the GDA
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Decision regions

• Recall Bayes’ Rule:

p(Ck |x) =
p(x |Ck)p(Ck)

p(x)

• Given an unseen point x , we assign to the class for which p(Ck |x) is largest.
(k∗ = argmaxk p(Ck |x))

• Thus x-space (the input space) may be regarded as being divided into decision
regions Rk such that a point falling in Rk is assigned to class Ck .

• Decision region Rk needs not be contiguous, but may consist of several disjoint
regions each associated with class Ck .

• The boundaries between these regions are called decision boundaries.
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Placement of decision boundaries

• Consider a 1-dimensional feature space (x) and two classes C1 and C2.

• How to place the decision boundary to minimise the probability of
misclassification (based on p(x ,Ck))?
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Decision regions and misclassification

Confusion matrix

In\Out C1 C2

C1 N11 N12

C2 N21 N22
⇒

Normalised confusion matrix

In\Out C1 C2

C1 P11 P12 P11 + P12 = 1

C2 P21 P22 P21 + P22 = 1

P11 = p(x ∈ R1|C1) =
N11

N1
, P12 = p(x ∈ R2|C1) =

N12

N1

P21 = p(x ∈ R1|C2) =
N21

N2
, P22 = p(x ∈ R2|C2) =

N22

N2

N1=N11+N12, N2=N21+N22, p(C1)=
N1

N1+N2
, p(C2)=

N2

N1+N2
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Minimising probability of misclassification

p(error|R1,R2) =

∫
R2

p(C1 |x) p(x) dx +

∫
R1

p(C2 |x) p(x) dx (5)

• If x̂ = x0 ∈ R2 such that p(C1 |x0) > p(C2 |x0),

letting R∗
2 = R2 − {x0} and R∗

1 = R1 + {x0} gives

p(error|R∗
1 ,R∗

2) < p(error|R1,R2)

• p(error) is minimised by assigning each point to the class with the maximum
posterior probability – Bayes decision rule / MAP decision rule / minimum error
rate classification.

• This justification for the maximum posterior probability may be extended to
d-dimensional feature vectors and K classes
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letting R∗
2 = R2 − {x0} and R∗

1 = R1 + {x0} gives

p(error|R∗
1 ,R∗

2) < p(error|R1,R2)

• p(error) is minimised by assigning each point to the class with the maximum
posterior probability – Bayes decision rule / MAP decision rule / minimum error
rate classification.

• This justification for the maximum posterior probability may be extended to
d-dimensional feature vectors and K classes
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Minimising probability of misclassification (cont.)

R1 R2

x0 x̂

p(x, C1)

p(x, C2)

x

After Fig. 1.24, C. Bishop, Pattern Recognition and Machine Learning, Springer, 2006.

x̂ denotes the current decision boundary, which causes error shown in red, green, and blue regions. The

error is minimised by locating the boundary at xo .
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Should we always use the Bayes decision rule?

See “Predictions and Decision Boundaries”, LWLS 3.2.

34 / 43



Discriminant function of GDA

Recall GDA
p(Ck | x ,θ) ∝ p(Ck) N (x |µk ,Σk)

where
N (x |µk ,Σk) =

1

(2π)d/2|Σk |1/2
exp

(
−1

2
(x − µk)

⊤Σ−1
k (x − µk)

)
(6)

• The discriminant function of GDA: (taking log and ignoring constant terms yields)

gk(x) = log p(Ck)−
1

2
log |Σk | −

1

2
(x − µk)

⊤Σ−1
k (x − µk) (7)

· · · quadratic function of x .
• Classification (estimating the class label):

ŷ(x) = argmax
k

gk(x) (8)

• So, the decision boundaries are piecewise quadratic functions of x . (Check!)
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Special case of GDA – equal covariance

Assume all class covariances Σk share the same covariance, Σk = Σ.
The discriminant function is reduced to

gk(x) = log p(Ck)−
1

2
(x − µk)

⊤Σ−1(x − µk) (9)

= log p(Ck) + µ⊤
k Σ

−1x − 1

2
µ⊤
k Σ

−1µk −1

2
x⊤Σ−1x (10)

where w⊤
k = µ⊤

k Σ
−1 and wk0 = −1

2µ
⊤
k Σ

−1µk + log p(Ck)

This is called a linear discriminant function as it is a linear function of x .
The method is called Linear Discriminant Analysis (LDA).
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Special case of GDA – equal covariance (cont.)

Including the constant terms to wk0, we have:

gk(x) = w⊤
k x + wk0 (12)

Since gk(x) = log p(Ck) p(x |Ck ,θ),

p(Ck | x ,θ) =
gk(x)∑K

k ′=1 gk ′(x)
(13)

=
ew⊤

k x+wk0∑K
k′=1e

w⊤
k′ x+wk′0

(14)
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Another special case of GDA

• Spherical Gaussians: Σ = σ2I ⇒ |Σ| = σ2d , Σ−1 =
1

σ2
I

• Discriminant function:

gk(x) = −1

2
(x − µk)

⊤Σ−1
k (x − µk)−

1

2
ln |Σk |+ ln p(Ck) (15)

= − 1

2σ2
(x − µk)

⊤(x − µk)−
1

2
lnσ2d + ln p(Ck) (16)

• If equal prior probabilities are assumed,

gk(x) = −∥x− µk∥2 (17)

The decision rule: “assign a test data to the class whose mean is closest”.

The class means (µk) may be regarded as class templates or prototypes.
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Decision boundaries of GDA

Considering a binary classification between C1 and C2, the decision boundaries are
defined as: {

x ∈ Rd | g1(x)−g2(x)=0
}

(19)

(a) (c)(b)
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Which type of GDA should you use in practice?

• GDA with general covariance matrices

• GDA with an equal (or tied or shared) covariance matrix, i.e., LDA

• GDA with an spherical (or isotropic) covariance matrix

(a) (c)(b)
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Quizzes

• Show:

p(Ck | x) =
p(x |Ck) p(Ck)∑K

k ′=1 p(x |Ck ′) p(Ck ′)

• Write Python code that generates 2D and 3D visualisations of a two-dimensional
Gaussian distribution with a specified mean vector and covariance matrix.

Run the code using various sets of parameters.

You will find that the code does not work with some covariance matrices. Describe
the conditions for valid covariance matrices.

41 / 43



Quizzes (cont.)

• Show that the natural logarithm of a multivariate Gaussian distribution

N (x |µ,Σ) =
1

(2π)d/2|Σ|1/2
exp

(
−1

2
(x − µ)⊤Σ−1(x − µ)

)
is given as

−1

2
x⊤Σ−1x + µΣ−1x − 1

2
µ⊤Σ−1µ− 1

2
log |Σ| − d

2
log 2π
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Quizzes (cont.)

• Show that the decision boundary of GDA for binary classification is quadratic in x ,
where x ∈ Rd .

• In GDA with an equal covariance, discuss how to estimate the shared covariance
matrix from a given training set {(xn, yn)}Nn=1.

• When deriving the discriminant function in Gaussian discriminant analysis (GDA),
we used the natural logarithm. Discuss the validity of using the logarithm.
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