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Classification with a linear classifier

• S = {(x1, y1), . . . , (xN , yN)}: data set

xi =
[
xi1 · · · xid

]⊤
, i = 1, . . . ,N: input, feature vector, features

yi : label, ground truth, gold reference, for xi .

• f (x) = w⊤x + b: linear separator, linear predictor

w =
[
w1 · · · wd

]⊤
: weights, weight vector

b ∈ R: bias

{w , b}: parameters · · · (θ = [b w⊤]⊤)

• h(x) = sgn(f (x)), where sgn(z) =

{
−1 if z < 0

+1 if z ≥ 0

NB: This is a non-standard definition of a sign function

2 / 43



Geometry of linear classification

w⊤x+ b < 0

w⊤x + b ≥ 0

x1

x2
w

w1x1 + w2x2 + b = 0

w⊤x+b = 0 where x =

[
x1
x2

]
, w =

[
w1

w2

]

· · · hyperplane, decision boundary,
splitting the space into decision regions

NB: w is a normal vector of the hyper-
plane. b is not the x2 intercept.
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Geometry of linear classification (cont.)

f (x) = w1x1 + w2x2 + b
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Geometry of linear classification (cont.)

f (x) = w1x1 + w2x2 + b
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Linearly separable vs linearly non-separable

(a-1) (a-2)
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Binary classification with discriminative classifier

h(x) =

{
−1 if w⊤x + b < 0

+1 if w⊤x + b ≥ 0
(1)

• The hyperplane w⊤x + b = 0 separates the two classes.

• The function h labels one class as −1 and the other class as +1.

• The task is called binary classification, because there are two classes.

• Why not finding the model parameters {w , b} directly based on a
misclassification loss?

min
w ,b

N∑
i=1

ℓ(ŷi , yi ), where ŷi = h(xi )
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Zero-one loss

ℓ01(ŷ , y) =

{
1 if ŷ ̸= y

0 otherwise
= 1ŷ ̸=y (2)

• Think ŷ as the prediction and y as the label.

• We suffer a loss of 1 if we predict the label wrong.

• In the binary case, ℓ01(ŷ , y) = 1ŷy<0.
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Discriminative training of a classifier

• Given S = {(x1, y1), . . . , (xN , yN)}, find θ such that the zero-one loss

L =
1

N

N∑
i=1

ℓ01(h(xi ), yi ) (3)

is minimised. NB: L is called a cost function.

• The act of finding the model parameter θ is called training.
(We also say “fit the model on the training data” to mean the training)

• In the binary case,

L =
1

N

N∑
i=1

ℓ01(sgn(w⊤xi+b), yi ) =
1

N

N∑
i=1

1yi (sgn(w⊤xi+b))<0 (4)
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Training based on the zero-one loss

• Slightly changing w and b does not change the loss.

• The loss value only changes when the hyperplane flips the sign of a data point,
and it either increases by 1 or none at all.

• The loss function (with respect to w and b) is like step functions, flat everywhere
with discontinuity when the value changes.

• Finding the optimal w and b is inherently combinatorial and hard.
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What about minimising the squared error?

min
w ,b

N∑
i=1

(
(w⊤xi + b)− yi

)2
, yi ∈ {−1,+1}

• We will discuss this in the lecture on linear regression.

• We know we can find a solution in closed form.

• Training samples far from the decision boundary influence the solution than those
near it.
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Types of linear classifiers

• Linear Discriminant Analysis (LDA)

• Template-based matching with Euclidean distance

• Fisher’s linear discriminant

• Logistic regression

• Support Vector Machine (linear version)

• Perceptron (original version)

• Single-layer neural networks with no hidden nodes

...

Q: Which of the above are from a generative approach?
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A probabilistic approach

• The range of f (x) = w⊤x + b : (−∞,+∞)

• We want to squeeze the range into [0, 1] with a function g(s) so that it can be
treated as a probability.

g(f (x)) = g(w⊤x+b) → p(y=+1 | x)

• A candidate for g(s) is the logistic (sigmoid) function:

g(s) =
es

1 + es
=

1

1 + e−s
(5)

• Logistic regression model:

p(y=+1 | x ,θ) = 1

1 + exp(−(w⊤x + b))
(6)

p(y=−1 | x ,θ) = 1− p(y=+1 | x) (7)
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Sigmoid function

σ(s) =
1

1 + exp(−s)

• When s → ∞, σ(s) → 1.

• When s → −∞, σ(s) → 0.
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Sigmoid function vs step function

Step function: u(s) =

{
0 if s < 0

1 if s ≥ 0
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Interpretation of the logistic regression model

Data distributions p(x | y)
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Classification with the logistic regression model

For a test input x ,
1. calculate the posterior probability with the model.

p(y=1 | x ,θ) = 1

1 + exp(−(w⊤x + b))

2. make a prediction:

ŷ =

{
+1 p(y=+1 | x ,θ) > threshold,

−1 p(y=+1 | x ,θ) ≤ threshold
(9)

NB: threshold = 0.5 normally – it gives a minimum misclassification rate.
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Decision surface - step function version

u(w⊤x + b)
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Decision surface - sigmoid function version

σ(w⊤x + b)
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A logistic regression model

p(y=+1 | x ,θ) = 1

1 + exp(−(w⊤x + b))
(10)

p(y=−1 | x ,θ) = 1− 1

1 + exp(−(w⊤x + b))
=

exp(−(w⊤x + b))

1 + exp(−(w⊤x + b))
(11)

=
1

exp(w⊤x + b) + 1
(12)

Thus,

p(y | x ,θ) = 1

1 + exp(−y(w⊤x + b))
(13)
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How to train the logistic regression model?

• Apply the maximum likelihood estimation (MLE):

Given a data set {(x1, y1), . . . , (xN , yN)},
maximise the likelihood L of w and b.

max
w ,b

L (14)

L = log
N∏
i=1

p(yi | xi ,θ) =
N∑
i=1

log
1

1 + exp(−yi (w⊤xi + b))
(15)

=
N∑
i=1

− log

(
1 + exp(−yi (w⊤xi + b))

)
(16)

20 / 43



How to find the optimal solutions w and b?

• The zero-one loss
∑N

i=1 1yi (w⊤xi+b)<0 is flat, and is hard to optimise.

• The log likelihood of the logistic regression model

L =
N∑
i=1

− log(1 + exp(−yi (w⊤xi + b)) is differentiable.

• However,

∂L

∂wi
= 0, i = 1, . . . , d and

∂L

∂b
= 0 (17)

do not have closed-form solutions.
→ employ gradient ascent.

• We will come back to this in a lecture on optimisation.
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What if we use 0/1 labels instead of -1/+1?

• y ∈ {0, 1} instead of {−1,+1}

p(y=1 | x) = 1

1 + exp(−(w⊤x + b))
(18)

p(y=0 | x) = 1− 1

1 + exp(−(w⊤x + b))
(19)

p(y | x) =
(

1

1 + exp(−(w⊤x + b))

)y (
1− 1

1 + exp(−(w⊤x + b))

)1−y

(20)

= sy (1− s)1−y (21)

where s =
1

1 + exp(−(w⊤x + b))
.
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What if we use 0/1 labels instead of -1/+1? (cont.)

Training with MLE,

L = log
N∏
i=1

p(yi | xi ,θ) (22)

= log
N∏
i=1

syii (1− si )
1−yi (23)

=
N∑
i=1

yi log si + (1− yi ) log(1− si ) (24)

= −
N∑
i=1

H(yi , si ) (25)

where H(p, q) = −
∑

x p(x) log q(x) is a cross entropy between the two probability
distributions p and q. For a binary case, H(p, q) = −(p log q + (1− p) log(1− q)).
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Classification losses

Suppose we have a labelled data point (x , y).

• Zero-one loss

1y(w⊤x+b)<0 (26)

• Log loss (logistic loss)

− log p(y | x) = log(1 + exp(−y(w⊤x + b)) (27)

NB: this is the negative log likelihood
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Notation caveat

• The log loss notation − log p(y | x) can be misleading.

• Is y the ground truth or is it a free variable?

• What it really means is − log p(y=y∗ | x) given a pair (x , y∗).

• Or − log p(y=yi | xi ) given a pair (xi , yi ) in a data set.
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Multiclass classification with logistic regression

Replace the sigmoid g(z) with the softmax function g(a) = [g1(a) · · · gK (a)]⊤

g(a) =
exp(a)

1 + exp(a)
−→

g1(a) =
exp(a1)∑K

k′=1 exp(a
′
k )

g2(a) =
exp(a2)∑K

k′=1 exp(a
′
k )

...

gK (a) =
exp(aK )∑K

k′=1 exp(ak′ )
a = [a1 a2 . . . aK ]

⊤

Redefining x = [1 x1 x2 · · · xd ]⊤ and w = [w0 w1 · · · wd ]
⊤, logistic regression is given as:

p(y=k | x ,θ) =
exp(w⊤

k x)∑K
k ′=1 exp(w

⊤
k ′x)

(28)

ŷ = argmax
k

exp(w⊤
k x)∑K

k ′=1 exp(w
⊤
k ′x)

= argmax
k

exp(w⊤
k x)
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Softmax for binary classification

p(y=+1 | x ,θ) =
exp(w⊤

+1x)
exp(w⊤

+1x) + exp(w⊤
−1x)

(29)

=
1

1 + exp(−(w+1 − w+1)⊤x)
=

1

1 + exp(−w⊤x)
(30)

p(y=−1 | x ,θ) =
exp(w⊤

−1x)
exp(w⊤

+1x) + exp(w⊤
−1x)

(31)

=
exp(−(w+1 − w−1)

⊤x)
1 + exp(−(w+1 − w−1)⊤x)

=
exp(−w⊤x)

1 + exp(−w)⊤x)
(32)

where w = w+1 − w−1.
→ the same as the sigmoid.
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Training of the multiclass logistic regression model

The log likelihood for a training set {(xi , yi )}Ni=1 :

L =
N∑
i=1

log gyi (xi ;θ) (33)

=
N∑
i=1

(
w⊤

yi
xi − log

(
K∑

k=1

exp(w⊤
k xi )

))
(34)

We can apply the maximum likelihood estimation (MLE).
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Decision regions with a multiclass logistic regression model
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Adapting a binary classifier to multiclass classification

• one-versus-rest (one-against-all)

• one-versus-one

•
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One-versus-rest

ŷ(x) = argmax
k

gk(x)

Discriminant function +1 class -1 class
g1(x) C1 C2, . . . ,CK

g2(x) C2 C1,C3, . . . ,CK

...
...

...
gK−1(x) CK−1 C1, . . . ,CK−2,CK

gK (x) CK C1, . . . ,CK−1
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One-versus-rest

ŷ(x) = argmax
k

gk(x)

Discriminant function +1 class -1 class
g1(x) C1 C2, . . . ,CK

g2(x) C2 C1,C3, . . . ,CK

...
...

...
gK−1(x) CK−1 C1, . . . ,CK−2,CK

gK (x) CK C1, . . . ,CK−1

R1

R2

R3

?

C1

not C1

C2

not C2

Issues:

• Ambiguous decision regions

• Separate training of each gk(x) from the others - no global training

• Imbalance training data set - negative classes are much larger than positive ones

31 / 43



One-versus-one

{gkk ′(x)} k ′ > k, k, k ′ = 1, . . . ,K · · · K (K − 1)/2 discriminants

Discriminant function +1 class -1 class
g12(x) C1 C2

...
...

...
g23(x) C2 C3

...
...

...
gK−1,K (x) CK−1 CK

→ Classification by voting: the class that wins the most is chosen
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One-versus-one

{gkk ′(x)} k ′ > k, k, k ′ = 1, . . . ,K · · · K (K − 1)/2 discriminants

Discriminant function +1 class -1 class
g12(x) C1 C2

...
...

...
g23(x) C2 C3

...
...

...
gK−1,K (x) CK−1 CK

→ Classification by voting: the class that wins the most is chosen

R1

R2

R3

?C1

C2

C1

C3

C2

C3

Issues:

• Ambiguous decision regions

• Not scalable in K
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Practical issues with logistic regression

• Linear classifier – what if the data set is not linearly separable?

→ We will discuss this at the lecture on ’features and kernels’

• Overfitting - the model overfits on to the training set and does not generalise

→ Employ ’regularisation’ (or a penalty) in the cost function – this will be
discussed in ’optimisation’.

L =
N∑
i=1

− log

(
1 + exp(−yi (w⊤xi + b))

)
− regulariser (35)

A regulariser = λ∥θ∥22
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Overfitting
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Overfitting
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Summary

• Log loss in the binary case

N∑
i=1

log
(
1 + exp(−yiw⊤xi )

)
(36)

• Log loss in the multiclass case

N∑
i=1

−w⊤
yi

xi + log

∑
y ′∈Y

exp(w⊤
y ′xi )

 (37)
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Logistic regression vs LDA

• Logistic regression:

p(y=k | x ,θ) =
exp(w⊤

k x)∑K
k ′=1 exp(w

⊤
k ′x)

• LDA

gk(x) = log p(y=k | x ,θ) = w⊤
k x + wk0 + const (38)

p(y=k | x ,θ) =
exp

(
w⊤

k x + wk0

)∑
k ′ exp

(
w⊤

k ′x + wk ′0

) (39)

where w⊤
k = µ⊤

k Σ
−1 wk0 = − 1

2µ
⊤
k Σ

−1µk + log p(Ck)
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Summary (cont.)

binary classification multiclass classification

h(x) =

{
−1 if w⊤x < 0

+1 if w⊤x ≥ 0
h(x) = argmax

y∈Y
w⊤

y x

p(y | x ,θ) = 1

1 + exp(−yw⊤x)
p(y | x ,θ) =

exp(w⊤
y x)∑

y ′∈Y exp(w⊤
y ′x)
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Appendix – softmax

softmax



a1
a2
...
an


 =



exp(a1)∑n
i=1 exp(ai )

exp(a2)∑n
i=1 exp(ai )

...

exp(an)∑n
i=1 exp(ai )



(40)
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Appendix – softmax (cont.)

• softmax(
[
1 2 3

]⊤
) =

[
0.09 0.24 0.67

]⊤
• softmax(

[
100 200 300

]⊤
) =

[
10−87 10−44 1.0

]⊤
• Softmax always returns a probability distribution.

• When the dynamic range of the input is large, the result of softmax becomes
“sharp.”
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Appendix – softmax (cont.)

• Claim: exp(amax/τ)∑n
i=1 exp(ai/τ)

→ 1 when τ → 0.

• That means
exp(aj/τ)∑n
i=1 exp(ai/τ)

→ 0 when τ → 0 for any aj that is not the max.

• We have

exp(am/τ)∑n
i=1 exp(ai/τ)

=
exp(am/τ)

exp(am/τ) +
∑

i ̸=m exp(ai/τ)
(41)

=
1

1 +
∑

i ̸=m exp((ai − am)/τ)
→ 1 (42)

when τ → 0 because am is the largest and ai − am < 0.
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Quizzes

1. Consider two column vectors such that a = (1, 2, 3)⊤ and b = (−3, 3,−1)⊤.

Find a+ b.

Find a− b.

Find ∥a∥, ∥b∥, and ∥a− b∥.
Find a⊤b.

Find ab⊤.

What is the geometric relationship between a and b?

2. Considering a classification problem of two classes, whose discriminant function
takes the form, y(x) = w⊤x+ w0.

Show that the decision boundary is a straight line when D = 2.

Show that the weight vector w is a normal vector to the decision boundary.

3. Derive a formula for the Euclidean distance between the origin (0, 0) and a line
y = ax + b, where a and b are arbitrary constants.
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Quizzes (cont.)

4. Considering a linear classifier of binary classification in a two-dimensional vector
space, such that the points (−2,−3) and (4, 1) are on the decision boundary, and
the point (2,−3) lies in the −1 class region.

Find the parameters (w , b) of the classifier.

Find the unit normal vector of w .

5. Consider the following logistic regression model:

p(y=+1 | x) = 1

1 + exp(−(wx + b))

Plot p(y=+1 | x) for each of the following cases, where you use a fixed plotting

range or show all the plots on a single graph for comparison, and report your
findings.

w = 1, b = 0
w = 1, b = 1
w = −1, b = 1
w = 0.5, b = 1
w = 2, b = 1 42 / 43



Quizzes (cont.)

6. Consider the logistic sigmoid function.

σ(x) =
1

1 + exp(−x)

Based on the graph of σ(x), make an educated guess about the shape of the
derivative σ′(x) without performing any calculations and illustrate it by hand.

Find the derivative of σ(x).

Plot the derivative on a graph.

43 / 43


	Discriminative training of linear classifiers

