

Machine Learning

Classification 3 and 4

Hiroshi Shimodaira and Hao Tang

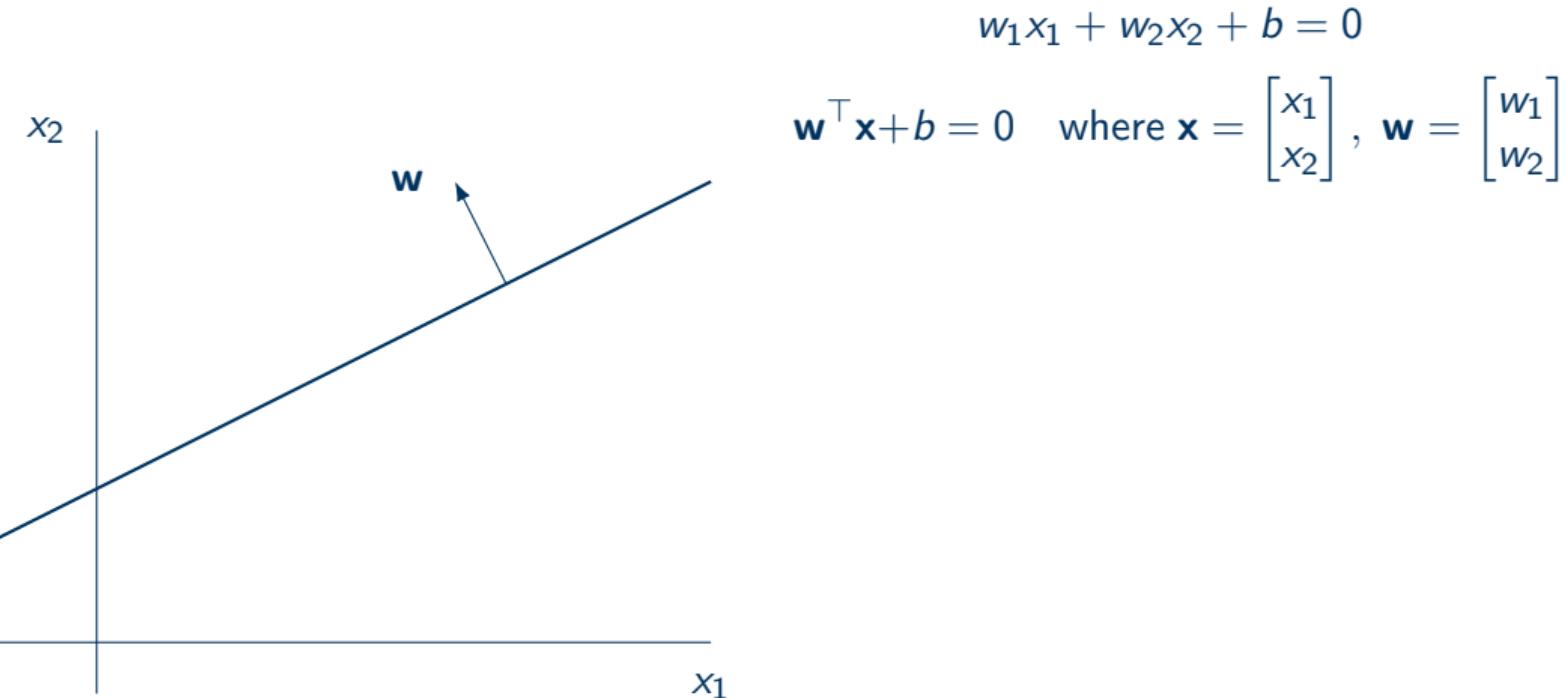
2026 Ver. 1.0

Classification with a linear classifier

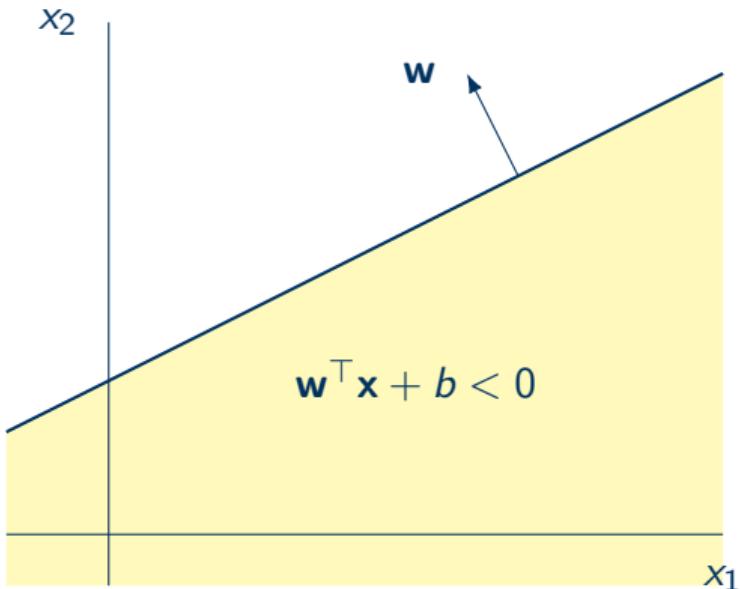
- $S = \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_N, y_N)\}$: data set
 - $\mathbf{x}_i = [x_{i1} \ \dots \ x_{id}]^\top$, $i = 1, \dots, N$: input, feature vector, *features*
 - y_i : *label*, ground truth, gold reference, for \mathbf{x}_i .
- $f(\mathbf{x}) = \mathbf{w}^\top \mathbf{x} + b$: *linear separator*, *linear predictor*
 - $\mathbf{w} = [w_1 \ \dots \ w_d]^\top$: weights, weight vector
 - $b \in \mathbb{R}$: bias
 - $\{\mathbf{w}, b\}$: parameters \dots ($\theta = [b \ \mathbf{w}^\top]^\top$)
- $h(\mathbf{x}) = \text{sgn}(f(\mathbf{x}))$, where $\text{sgn}(z) = \begin{cases} -1 & \text{if } z < 0 \\ +1 & \text{if } z \geq 0 \end{cases}$

NB: This is a non-standard definition of a sign function

Geometry of linear classification



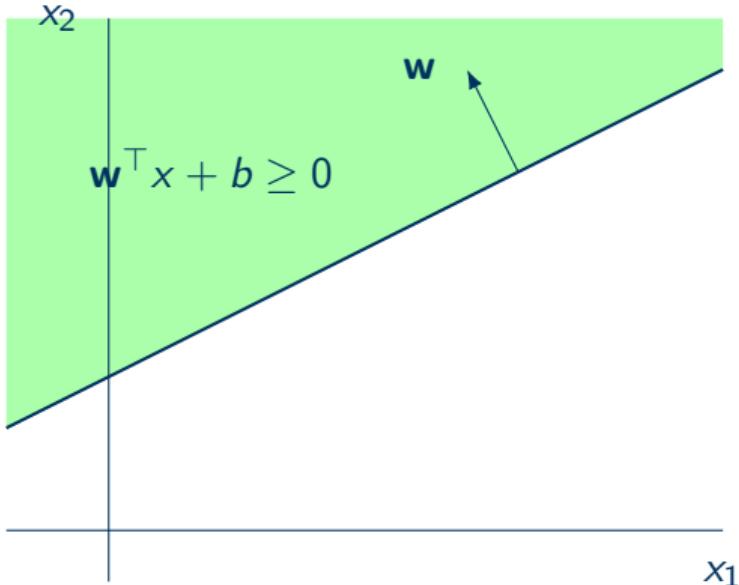
Geometry of linear classification



$$w_1x_1 + w_2x_2 + b = 0$$

$$w^\top x + b = 0 \quad \text{where } \mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}, \mathbf{w} = \begin{bmatrix} w_1 \\ w_2 \end{bmatrix}$$

Geometry of linear classification



$$w_1 x_1 + w_2 x_2 + b = 0$$

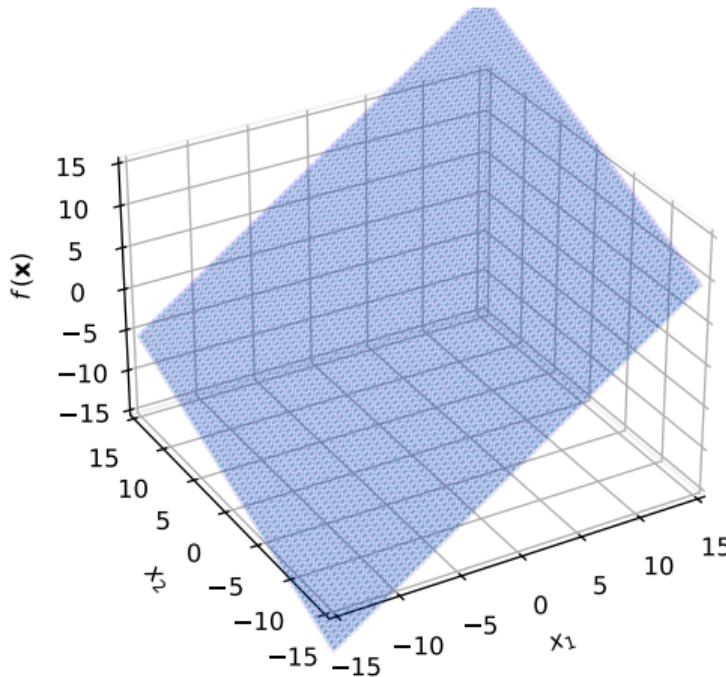
$$\mathbf{w}^\top \mathbf{x} + b = 0 \quad \text{where } \mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}, \quad \mathbf{w} = \begin{bmatrix} w_1 \\ w_2 \end{bmatrix}$$

... **hyperplane, decision boundary**,
splitting the space into **decision regions**

NB: \mathbf{w} is a normal vector of the hyperplane. b is not the x_2 intercept.

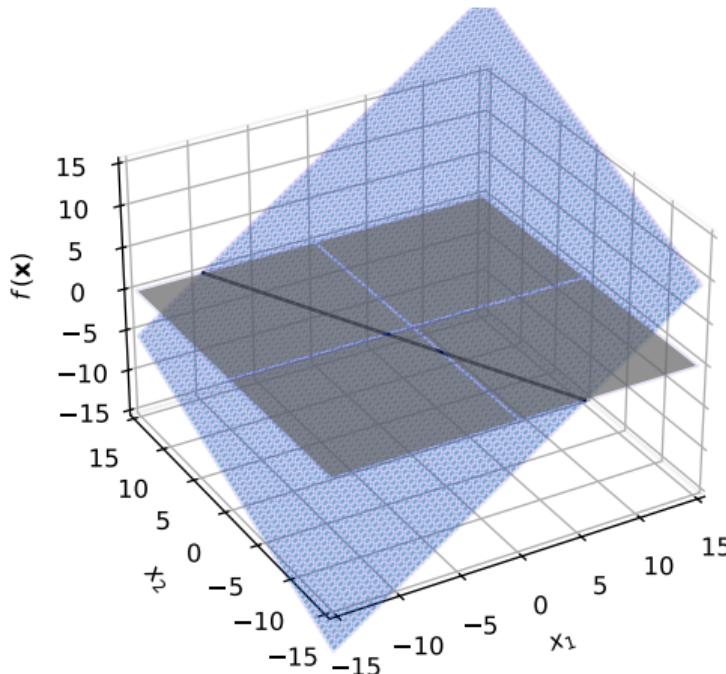
Geometry of linear classification (cont.)

$$f(\mathbf{x}) = w_1x_1 + w_2x_2 + b$$

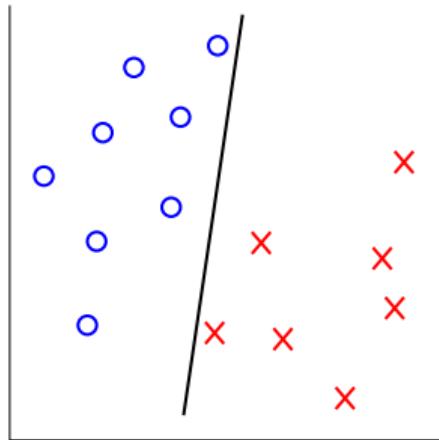


Geometry of linear classification (cont.)

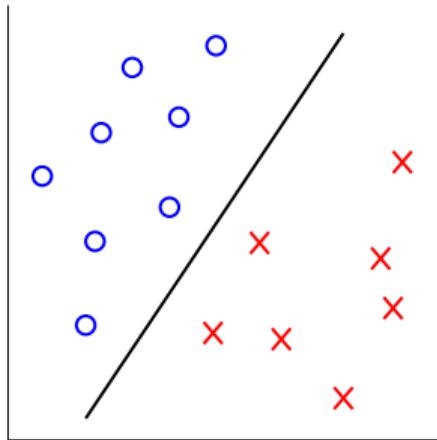
$$f(\mathbf{x}) = w_1x_1 + w_2x_2 + b$$



Linearly separable vs linearly non-separable

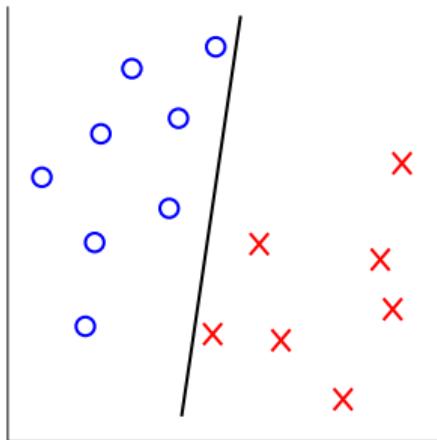


(a-1)

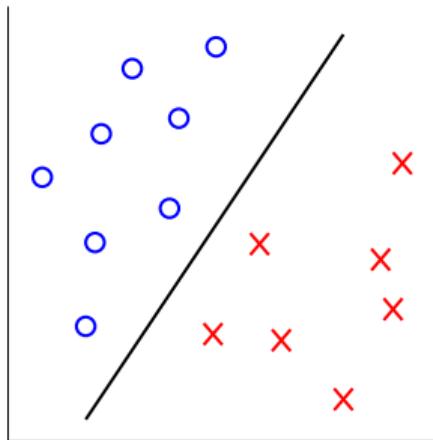


(a-2)

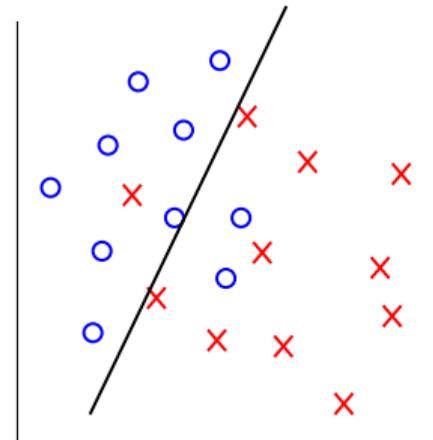
Linearly separable vs linearly non-separable



(a-1)

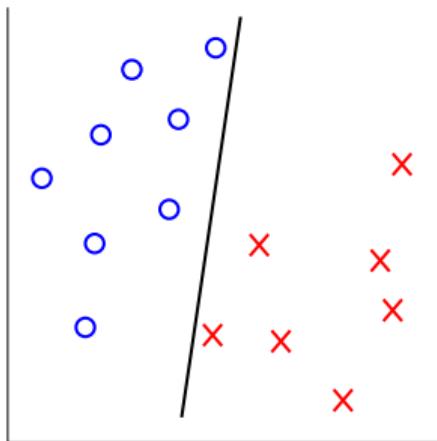


(a-2)

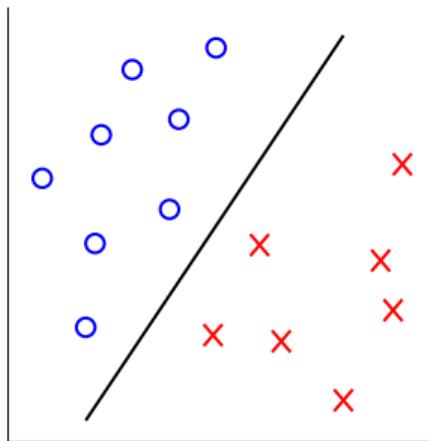


(b)

Linearly separable vs linearly non-separable

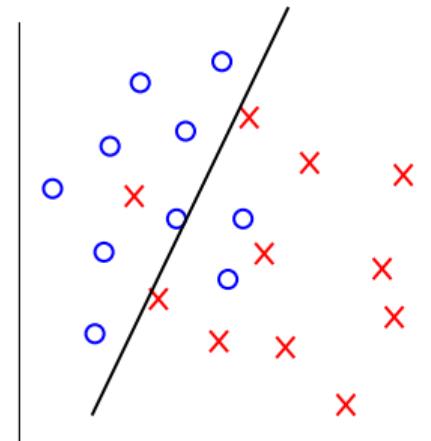


(a-1)



(a-2)

Linearly separable



(b)

Linearly non-separable

Binary classification with discriminative classifier

$$h(\mathbf{x}) = \begin{cases} -1 & \text{if } \mathbf{w}^\top \mathbf{x} + b < 0 \\ +1 & \text{if } \mathbf{w}^\top \mathbf{x} + b \geq 0 \end{cases} \quad (1)$$

- The hyperplane $\mathbf{w}^\top \mathbf{x} + b = 0$ separates the two classes.

Binary classification with discriminative classifier

$$h(\mathbf{x}) = \begin{cases} -1 & \text{if } \mathbf{w}^\top \mathbf{x} + b < 0 \\ +1 & \text{if } \mathbf{w}^\top \mathbf{x} + b \geq 0 \end{cases} \quad (1)$$

- The hyperplane $\mathbf{w}^\top \mathbf{x} + b = 0$ separates the two classes.
- The function h labels one class as -1 and the other class as $+1$.

Binary classification with discriminative classifier

$$h(\mathbf{x}) = \begin{cases} -1 & \text{if } \mathbf{w}^\top \mathbf{x} + b < 0 \\ +1 & \text{if } \mathbf{w}^\top \mathbf{x} + b \geq 0 \end{cases} \quad (1)$$

- The hyperplane $\mathbf{w}^\top \mathbf{x} + b = 0$ separates the two classes.
- The function h labels one class as -1 and the other class as $+1$.
- The task is called *binary classification*, because there are two classes.

Binary classification with discriminative classifier

$$h(\mathbf{x}) = \begin{cases} -1 & \text{if } \mathbf{w}^\top \mathbf{x} + b < 0 \\ +1 & \text{if } \mathbf{w}^\top \mathbf{x} + b \geq 0 \end{cases} \quad (1)$$

- The hyperplane $\mathbf{w}^\top \mathbf{x} + b = 0$ separates the two classes.
- The function h labels one class as -1 and the other class as $+1$.
- The task is called *binary classification*, because there are two classes.
- Why not finding the model parameters $\{\mathbf{w}, b\}$ directly based on a misclassification *loss*?

$$\min_{\mathbf{w}, b} \sum_{i=1}^N \ell(\hat{y}_i, y_i), \quad \text{where } \hat{y}_i = h(\mathbf{x}_i)$$

Zero-one loss

$$\ell_{01}(\hat{y}, y) = \begin{cases} 1 & \text{if } \hat{y} \neq y \\ 0 & \text{otherwise} \end{cases} = \mathbb{1}_{\hat{y} \neq y} \quad (2)$$

- Think \hat{y} as the prediction and y as the label.
- We suffer a loss of 1 if we predict the label wrong.
- In the binary case, $\ell_{01}(\hat{y}, y) = \mathbb{1}_{\hat{y}y < 0}$.

Discriminative training of a classifier

- Given $S = \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_N, y_N)\}$, find θ such that the **zero-one loss**

$$L = \frac{1}{N} \sum_{i=1}^N \ell_{01}(h(\mathbf{x}_i), y_i) \quad (3)$$

is minimised. NB: L is called a **cost function**.

Discriminative training of a classifier

- Given $S = \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_N, y_N)\}$, find θ such that the **zero-one loss**

$$L = \frac{1}{N} \sum_{i=1}^N \ell_{01}(h(\mathbf{x}_i), y_i) \quad (3)$$

is minimised. NB: L is called a **cost function**.

- The act of finding the model parameter θ is called *training*.
(We also say “fit the model on the training data” to mean the training)

Discriminative training of a classifier

- Given $S = \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_N, y_N)\}$, find θ such that the **zero-one loss**

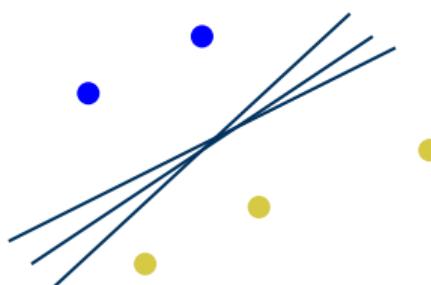
$$L = \frac{1}{N} \sum_{i=1}^N \ell_{01}(h(\mathbf{x}_i), y_i) \quad (3)$$

is minimised. NB: L is called a **cost function**.

- The act of finding the model parameter θ is called *training*.
(We also say “fit the model on the training data” to mean the training)
- In the binary case,

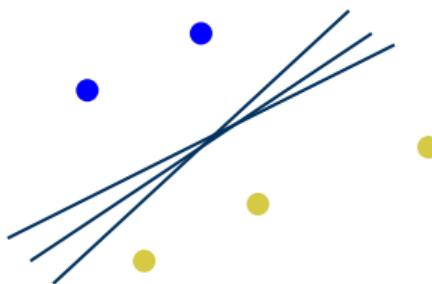
$$L = \frac{1}{N} \sum_{i=1}^N \ell_{01}(\text{sgn}(\mathbf{w}^\top \mathbf{x}_i + b), y_i) = \frac{1}{N} \sum_{i=1}^N \mathbb{1}_{y_i(\text{sgn}(\mathbf{w}^\top \mathbf{x}_i + b)) < 0} \quad (4)$$

Training based on the zero-one loss



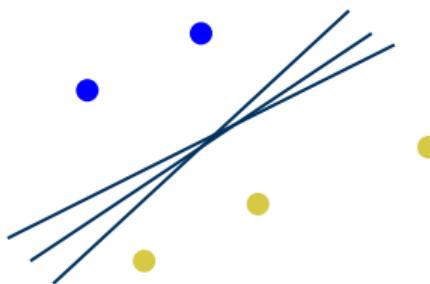
- Slightly changing w and b does not change the loss.

Training based on the zero-one loss



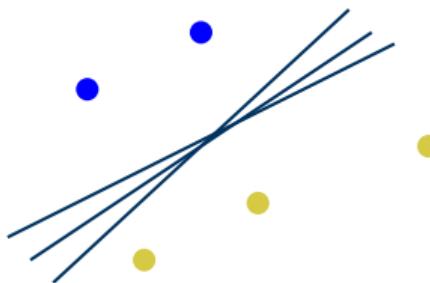
- Slightly changing w and b does not change the loss.
- The loss value only changes when the hyperplane flips the sign of a data point, and it either increases by 1 or none at all.

Training based on the zero-one loss



- Slightly changing w and b does not change the loss.
- The loss value only changes when the hyperplane flips the sign of a data point, and it either increases by 1 or none at all.
- The loss function (with respect to w and b) is like step functions, flat everywhere with discontinuity when the value changes.

Training based on the zero-one loss



- Slightly changing w and b does not change the loss.
- The loss value only changes when the hyperplane flips the sign of a data point, and it either increases by 1 or none at all.
- The loss function (with respect to w and b) is like step functions, flat everywhere with discontinuity when the value changes.
- Finding the optimal w and b is inherently combinatorial and hard.

What about minimising the squared error?

$$\min_{\mathbf{w}, b} \sum_{i=1}^N \left((\mathbf{w}^\top \mathbf{x}_i + b) - y_i \right)^2, \quad y_i \in \{-1, +1\}$$

What about minimising the squared error?

$$\min_{\mathbf{w}, b} \sum_{i=1}^N \left((\mathbf{w}^\top \mathbf{x}_i + b) - y_i \right)^2, \quad y_i \in \{-1, +1\}$$

- We will discuss this in the lecture on linear regression.

What about minimising the squared error?

$$\min_{\mathbf{w}, b} \sum_{i=1}^N \left((\mathbf{w}^\top \mathbf{x}_i + b) - y_i \right)^2, \quad y_i \in \{-1, +1\}$$

- We will discuss this in the lecture on linear regression.
- We know we can find a solution in closed form.

What about minimising the squared error?

$$\min_{\mathbf{w}, b} \sum_{i=1}^N \left((\mathbf{w}^\top \mathbf{x}_i + b) - y_i \right)^2, \quad y_i \in \{-1, +1\}$$

- We will discuss this in the lecture on linear regression.
- We know we can find a solution in closed form.
- Training samples far from the decision boundary influence the solution than those near it.

Types of linear classifiers

- Linear Discriminant Analysis (LDA)
- Template-based matching with Euclidean distance
- Fisher's linear discriminant
- Logistic regression
- Support Vector Machine (linear version)
- Perceptron (original version)
- Single-layer neural networks with no hidden nodes

⋮

Q: Which of the above are from a generative approach?

A probabilistic approach

- The range of $f(\mathbf{x}) = \mathbf{w}^\top \mathbf{x} + b : (-\infty, +\infty)$
- We want to squeeze the range into $[0, 1]$ with a function $g(s)$ so that it can be treated as a probability.

$$g(f(\mathbf{x})) = g(\mathbf{w}^\top \mathbf{x} + b) \rightarrow p(y=+1 \mid \mathbf{x})$$

A probabilistic approach

- The range of $f(\mathbf{x}) = \mathbf{w}^\top \mathbf{x} + b : (-\infty, +\infty)$
- We want to squeeze the range into $[0, 1]$ with a function $g(s)$ so that it can be treated as a probability.

$$g(f(\mathbf{x})) = g(\mathbf{w}^\top \mathbf{x} + b) \rightarrow p(y=+1 \mid \mathbf{x})$$

- A candidate for $g(s)$ is the **logistic (sigmoid) function**:

$$g(s) = \frac{e^s}{1 + e^s} = \frac{1}{1 + e^{-s}} \quad (5)$$

A probabilistic approach

- The range of $f(\mathbf{x}) = \mathbf{w}^\top \mathbf{x} + b : (-\infty, +\infty)$
- We want to squeeze the range into $[0, 1]$ with a function $g(s)$ so that it can be treated as a probability.

$$g(f(\mathbf{x})) = g(\mathbf{w}^\top \mathbf{x} + b) \rightarrow p(y=+1 \mid \mathbf{x})$$

- A candidate for $g(s)$ is the **logistic (sigmoid) function**:

$$g(s) = \frac{e^s}{1 + e^s} = \frac{1}{1 + e^{-s}} \quad (5)$$

- *Logistic regression model:*

$$p(y=+1 \mid \mathbf{x}, \boldsymbol{\theta}) = \frac{1}{1 + \exp(-(\mathbf{w}^\top \mathbf{x} + b))} \quad (6)$$

$$p(y=-1 \mid \mathbf{x}, \boldsymbol{\theta}) = 1 - p(y=+1 \mid \mathbf{x}) \quad (7)$$

A probabilistic approach

- The range of $f(\mathbf{x}) = \mathbf{w}^\top \mathbf{x} + b : (-\infty, +\infty)$
- We want to squeeze the range into $[0, 1]$ with a function $g(s)$ so that it can be treated as a probability.

$$g(f(\mathbf{x})) = g(\mathbf{w}^\top \mathbf{x} + b) \rightarrow p(y=+1 | \mathbf{x})$$

- A candidate for $g(s)$ is the **logistic (sigmoid) function**:

$$g(s) = \frac{e^s}{1 + e^s} = \frac{1}{1 + e^{-s}} \quad (5)$$

- *Logistic regression model:*

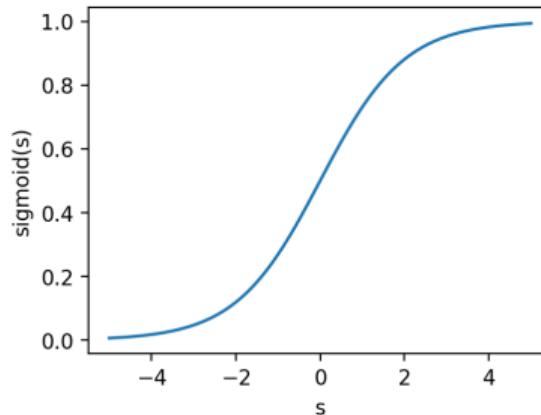
$$p(y=+1 | \mathbf{x}, \boldsymbol{\theta}) = \frac{1}{1 + \exp(-(\mathbf{w}^\top \mathbf{x} + b))} \quad (6)$$

$$p(y=-1 | \mathbf{x}, \boldsymbol{\theta}) = 1 - p(y=+1 | \mathbf{x}) \quad (7)$$

$$= \frac{\exp(-(\mathbf{w}^\top \mathbf{x} + b))}{1 + \exp(-(\mathbf{w}^\top \mathbf{x} + b))} \quad (8)$$

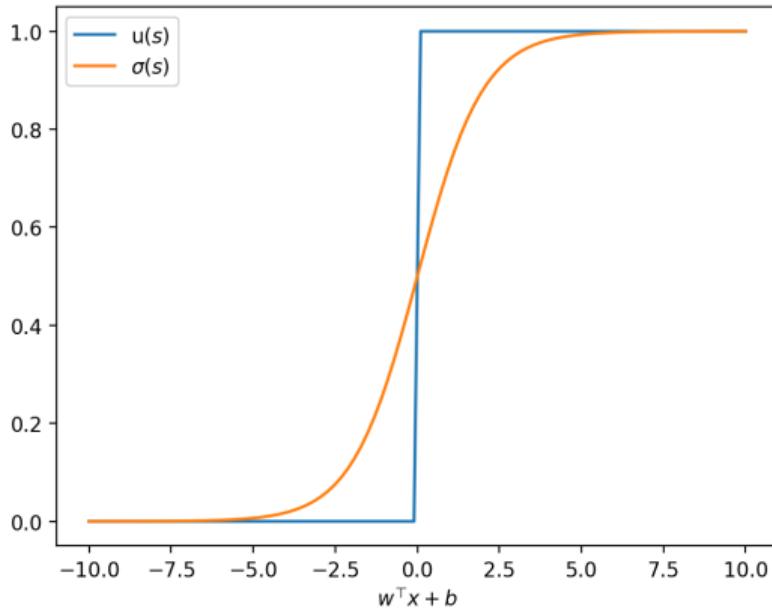
Sigmoid function

$$\sigma(s) = \frac{1}{1 + \exp(-s)}$$



- When $s \rightarrow \infty$, $\sigma(s) \rightarrow 1$.
- When $s \rightarrow -\infty$, $\sigma(s) \rightarrow 0$.

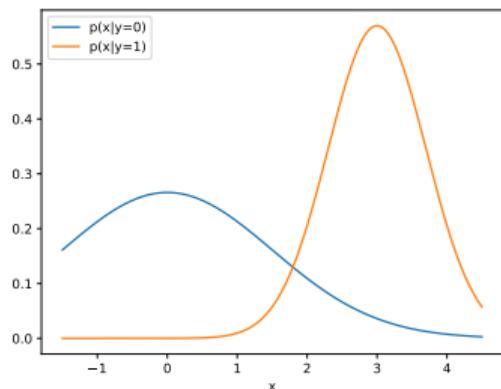
Sigmoid function vs step function



Step function: $u(s) = \begin{cases} 0 & \text{if } s < 0 \\ 1 & \text{if } s \geq 0 \end{cases}$

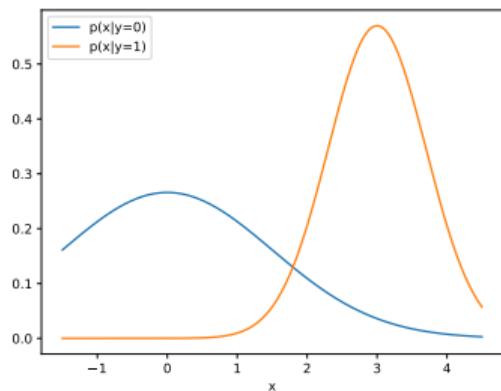
Interpretation of the logistic regression model

Data distributions $p(x | y)$

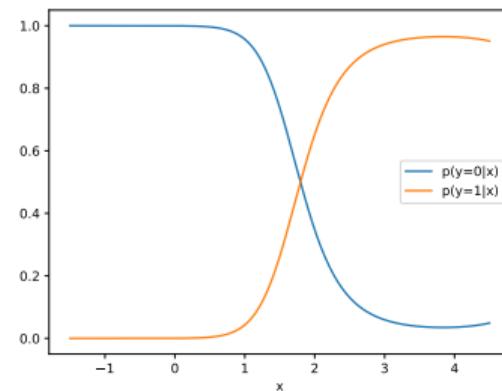


Interpretation of the logistic regression model

Data distributions $p(x | y)$

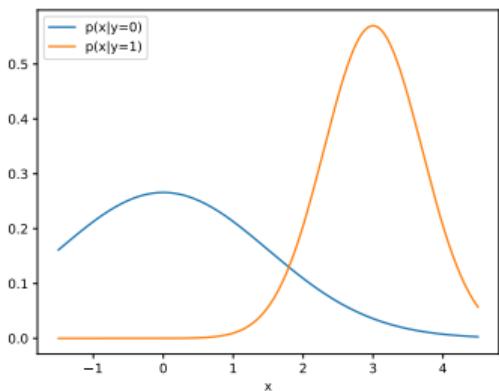


Posterior prob. $p(y | x)$

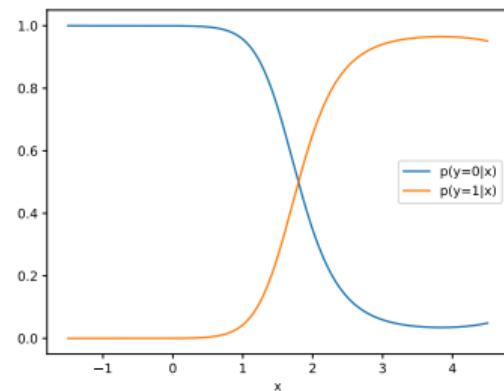


Interpretation of the logistic regression model

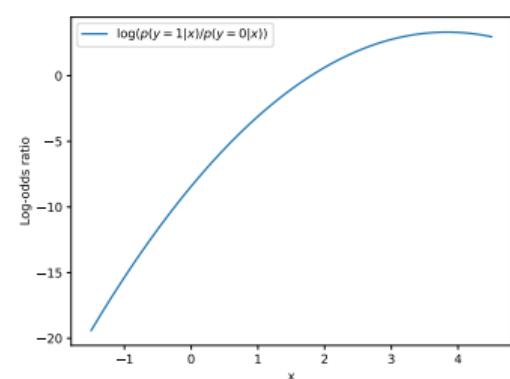
Data distributions $p(x | y)$



Posterior prob. $p(y | x)$

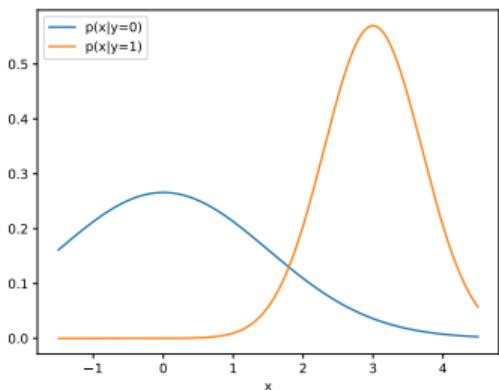


$$\log \frac{p(y=1|x)}{p(y=0|x)}$$

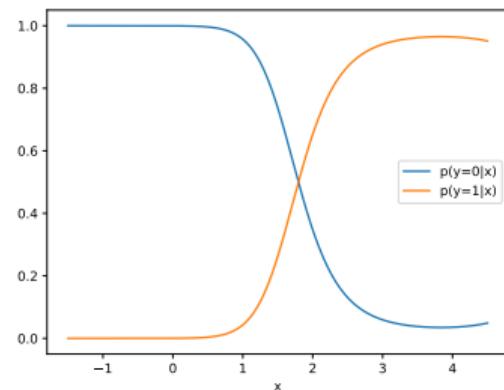


Interpretation of the logistic regression model

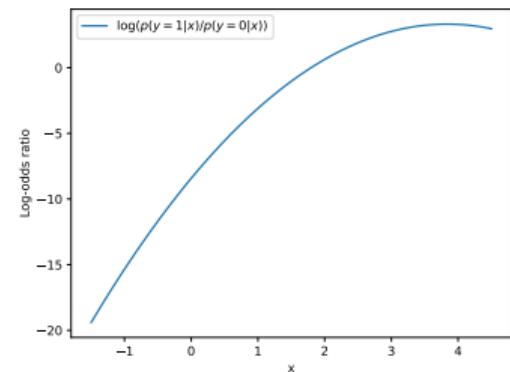
Data distributions $p(x | y)$



Posterior prob. $p(y | x)$



$$\log \frac{p(y=1 | x)}{p(y=0 | x)}$$



Model the log odds ratio with a line: $\log \frac{p(y=1 | x)}{p(y=0 | x)} = \mathbf{w}^\top \mathbf{x} + b$

Classification with the logistic regression model

For a test input x ,

1. calculate the posterior probability with the model.

$$p(y=1 | x, \theta) = \frac{1}{1 + \exp(-(\mathbf{w}^\top x + b))}$$

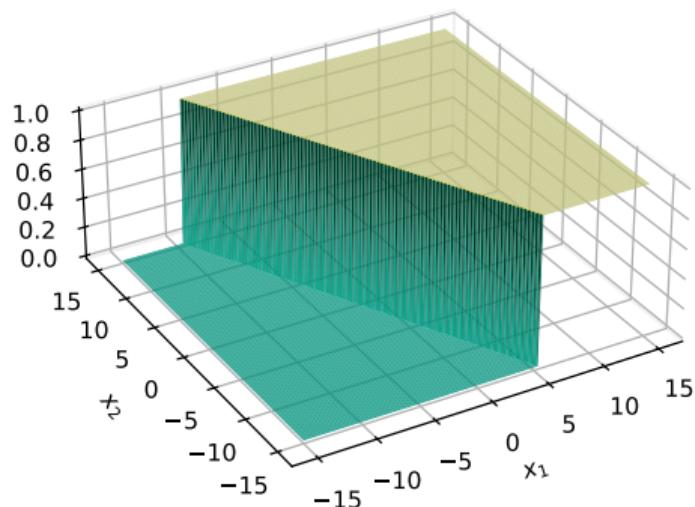
2. make a prediction:

$$\hat{y} = \begin{cases} +1 & p(y=+1 | x, \theta) > \text{threshold}, \\ -1 & p(y=+1 | x, \theta) \leq \text{threshold} \end{cases} \quad (9)$$

NB: threshold = 0.5 normally – it gives a minimum misclassification rate.

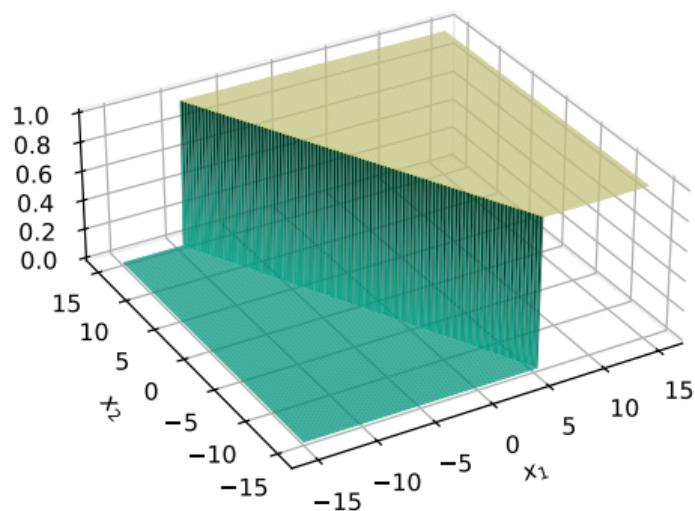
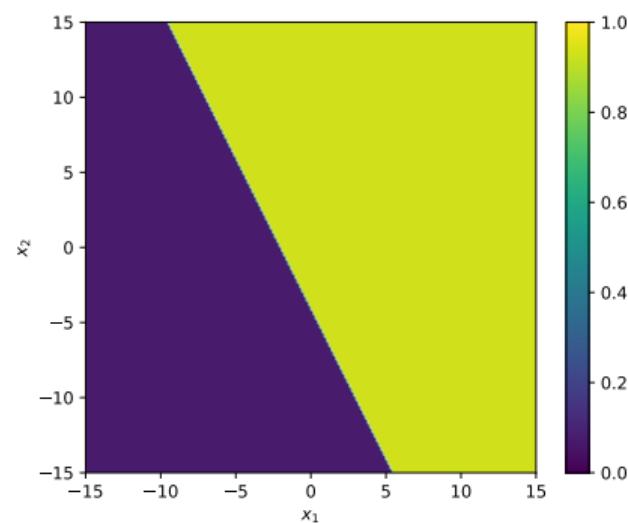
Decision surface - step function version

$$u(w^\top x + b)$$



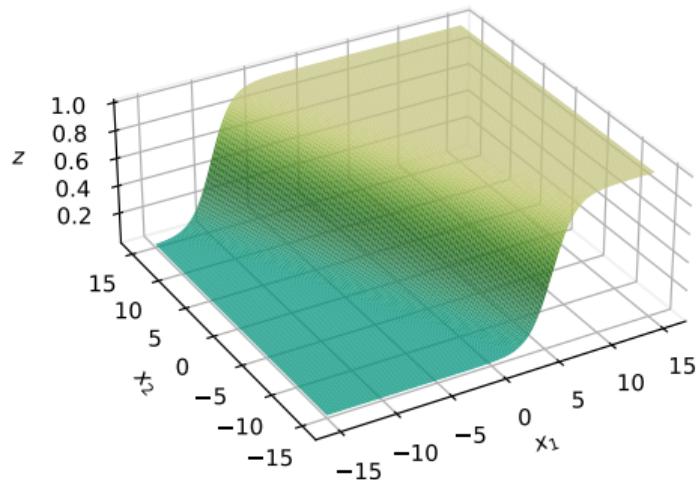
Decision surface - step function version

$$u(w^\top x + b)$$



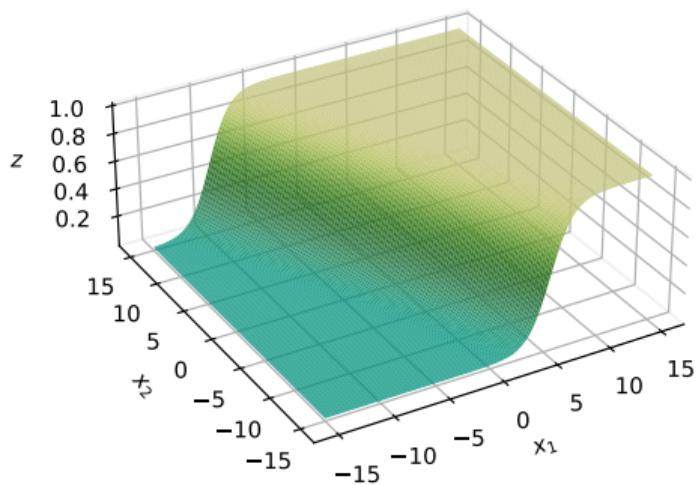
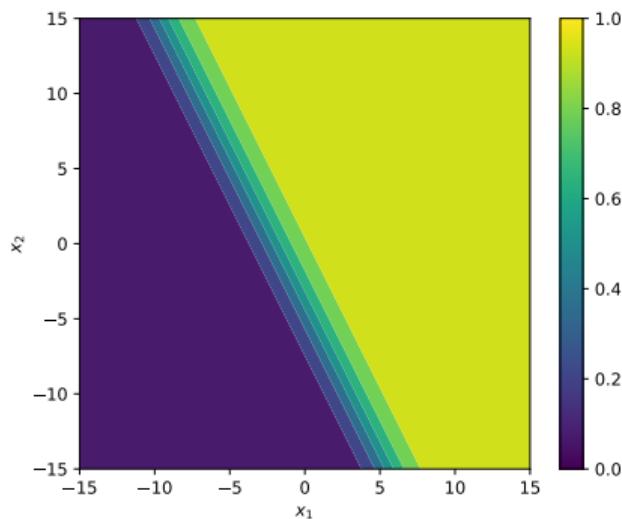
Decision surface - sigmoid function version

$$\sigma(\mathbf{w}^\top \mathbf{x} + b)$$



Decision surface - sigmoid function version

$$\sigma(\mathbf{w}^\top \mathbf{x} + b)$$



A logistic regression model

$$p(y=+1 | \mathbf{x}, \boldsymbol{\theta}) = \frac{1}{1 + \exp(-(\mathbf{w}^\top \mathbf{x} + b))} \quad (10)$$

$$p(y=-1 | \mathbf{x}, \boldsymbol{\theta}) = 1 - \frac{1}{1 + \exp(-(\mathbf{w}^\top \mathbf{x} + b))} = \frac{\exp(-(\mathbf{w}^\top \mathbf{x} + b))}{1 + \exp(-(\mathbf{w}^\top \mathbf{x} + b))} \quad (11)$$

$$= \frac{1}{\exp(\mathbf{w}^\top \mathbf{x} + b) + 1} \quad (12)$$

Thus,

$$p(y | \mathbf{x}, \boldsymbol{\theta}) = \frac{1}{1 + \exp(-\mathbf{y}(\mathbf{w}^\top \mathbf{x} + b))} \quad (13)$$

How to train the logistic regression model?

- Apply the *maximum likelihood estimation (MLE)*:

Given a data set $\{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_N, y_N)\}$,
maximise the likelihood L of \mathbf{w} and b .

$$\max_{\mathbf{w}, b} L \quad (14)$$

$$L = \log \prod_{i=1}^N p(y_i | \mathbf{x}_i, \theta) = \sum_{i=1}^N \log \frac{1}{1 + \exp(-y_i(\mathbf{w}^\top \mathbf{x}_i + b))} \quad (15)$$

$$= \sum_{i=1}^N -\log \left(1 + \exp(-y_i(\mathbf{w}^\top \mathbf{x}_i + b)) \right) \quad (16)$$

How to find the optimal solutions w and b ?

- The zero-one loss $\sum_{i=1}^N \mathbb{1}_{y_i(\mathbf{w}^\top \mathbf{x}_i + b) < 0}$ is flat, and is hard to optimise.
- The log likelihood of the logistic regression model

$$L = \sum_{i=1}^N -\log(1 + \exp(-y_i(\mathbf{w}^\top \mathbf{x}_i + b)))$$

is differentiable.

- However,

$$\frac{\partial L}{\partial w_i} = 0, \quad i = 1, \dots, d \quad \text{and} \quad \frac{\partial L}{\partial b} = 0 \quad (17)$$

do not have *closed-form* solutions.

→ employ *gradient ascent*.

- We will come back to this in a lecture on optimisation.

What if we use 0/1 labels instead of -1/+1?

- $y \in \{0, 1\}$ instead of $\{-1, +1\}$

What if we use 0/1 labels instead of -1/+1?

- $y \in \{0, 1\}$ instead of $\{-1, +1\}$

$$p(y=1 | \mathbf{x}) = \frac{1}{1 + \exp(-(\mathbf{w}^\top \mathbf{x} + b))} \quad (18)$$

$$p(y=0 | \mathbf{x}) = 1 - \frac{1}{1 + \exp(-(\mathbf{w}^\top \mathbf{x} + b))} \quad (19)$$

What if we use 0/1 labels instead of -1/+1?

- $y \in \{0, 1\}$ instead of $\{-1, +1\}$

$$p(y=1 | \mathbf{x}) = \frac{1}{1 + \exp(-(\mathbf{w}^\top \mathbf{x} + b))} \quad (18)$$

$$p(y=0 | \mathbf{x}) = 1 - \frac{1}{1 + \exp(-(\mathbf{w}^\top \mathbf{x} + b))} \quad (19)$$

$$p(y | \mathbf{x}) = \left(\frac{1}{1 + \exp(-(\mathbf{w}^\top \mathbf{x} + b))} \right)^y \left(1 - \frac{1}{1 + \exp(-(\mathbf{w}^\top \mathbf{x} + b))} \right)^{1-y} \quad (20)$$

$$= s^y (1 - s)^{1-y} \quad (21)$$

$$\text{where } s = \frac{1}{1 + \exp(-(\mathbf{w}^\top \mathbf{x} + b))}.$$

What if we use 0/1 labels instead of -1/+1? (cont.)

Training with MLE,

$$L = \log \prod_{i=1}^N p(y_i | \mathbf{x}_i, \theta) \quad (22)$$

$$= \log \prod_{i=1}^N s_i^{y_i} (1 - s_i)^{1-y_i} \quad (23)$$

$$= \sum_{i=1}^N y_i \log s_i + (1 - y_i) \log(1 - s_i) \quad (24)$$

$$= - \sum_{i=1}^N H(y_i, s_i) \quad (25)$$

where $H(p, q) = - \sum_x p(x) \log q(x)$ is a cross entropy between the two probability distributions p and q . For a binary case, $H(p, q) = -(p \log q + (1 - p) \log(1 - q))$.

Classification losses

Suppose we have a labelled data point (\mathbf{x}, y) .

- Zero-one loss

$$\mathbb{1}_{y(\mathbf{w}^\top \mathbf{x} + b) < 0} \quad (26)$$

- Log loss (logistic loss)

$$-\log p(y | \mathbf{x}) = \log(1 + \exp(-y(\mathbf{w}^\top \mathbf{x} + b))) \quad (27)$$

NB: this is the negative log likelihood

Notation caveat

- The log loss notation $-\log p(y | \mathbf{x})$ can be misleading.
- Is y the ground truth or is it a free variable?
- What it really means is $-\log p(y=y^* | \mathbf{x})$ given a pair $(\mathbf{x}, \mathbf{y}^*)$.
- Or $-\log p(y=y_i | \mathbf{x}_i)$ given a pair (\mathbf{x}_i, y_i) in a data set.

Multiclass classification with logistic regression

Replace the sigmoid $g(z)$ with the **softmax function** $g(\mathbf{a}) = [g_1(\mathbf{a}) \ \cdots \ g_K(\mathbf{a})]^\top$

$$g(\mathbf{a}) = \frac{\exp(a)}{1 + \exp(a)} \quad \longrightarrow \quad \begin{aligned} g_1(\mathbf{a}) &= \frac{\exp(a_1)}{\sum_{k'=1}^K \exp(a'_k)} \\ g_2(\mathbf{a}) &= \frac{\exp(a_2)}{\sum_{k'=1}^K \exp(a'_k)} \\ &\vdots \\ g_K(\mathbf{a}) &= \frac{\exp(a_K)}{\sum_{k'=1}^K \exp(a'_{k'})} \quad \mathbf{a} = [a_1 \ a_2 \ \dots \ a_K]^\top \end{aligned}$$

Redefining $\mathbf{x} = [1 \ x_1 \ x_2 \ \cdots \ x_d]^\top$ and $\mathbf{w} = [w_0 \ w_1 \ \cdots \ w_d]^\top$, logistic regression is given as:

$$p(y=k \mid \mathbf{x}, \boldsymbol{\theta}) = \frac{\exp(\mathbf{w}_k^\top \mathbf{x})}{\sum_{k'=1}^K \exp(\mathbf{w}_{k'}^\top \mathbf{x})} \quad (28)$$

$$\hat{y} = \arg \max_k \frac{\exp(\mathbf{w}_k^\top \mathbf{x})}{\sum_{k'=1}^K \exp(\mathbf{w}_{k'}^\top \mathbf{x})} = \arg \max_k \exp(\mathbf{w}_k^\top \mathbf{x})$$

Softmax for binary classification

$$p(y=+1 | \mathbf{x}, \theta) = \frac{\exp(\mathbf{w}_{+1}^\top \mathbf{x})}{\exp(\mathbf{w}_{+1}^\top \mathbf{x}) + \exp(\mathbf{w}_{-1}^\top \mathbf{x})} \quad (29)$$

$$= \frac{1}{1 + \exp(-(\mathbf{w}_{+1} - \mathbf{w}_{-1})^\top \mathbf{x})} = \frac{1}{1 + \exp(-\mathbf{w}^\top \mathbf{x})} \quad (30)$$

$$p(y=-1 | \mathbf{x}, \theta) = \frac{\exp(\mathbf{w}_{-1}^\top \mathbf{x})}{\exp(\mathbf{w}_{+1}^\top \mathbf{x}) + \exp(\mathbf{w}_{-1}^\top \mathbf{x})} \quad (31)$$

$$= \frac{\exp(-(\mathbf{w}_{+1} - \mathbf{w}_{-1})^\top \mathbf{x})}{1 + \exp(-(\mathbf{w}_{+1} - \mathbf{w}_{-1})^\top \mathbf{x})} = \frac{\exp(-\mathbf{w}^\top \mathbf{x})}{1 + \exp(-\mathbf{w}^\top \mathbf{x})} \quad (32)$$

where $\mathbf{w} = \mathbf{w}_{+1} - \mathbf{w}_{-1}$.

→ the same as the sigmoid.

Training of the multiclass logistic regression model

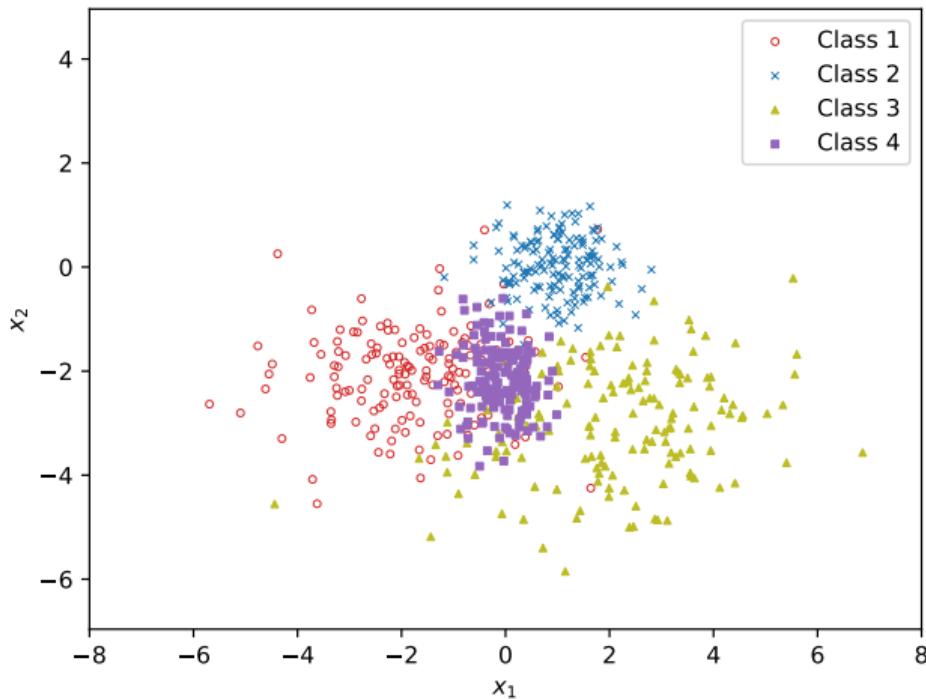
The log likelihood for a training set $\{(\mathbf{x}_i, y_i)\}_{i=1}^N$:

$$L = \sum_{i=1}^N \log g_{y_i}(\mathbf{x}_i; \boldsymbol{\theta}) \quad (33)$$

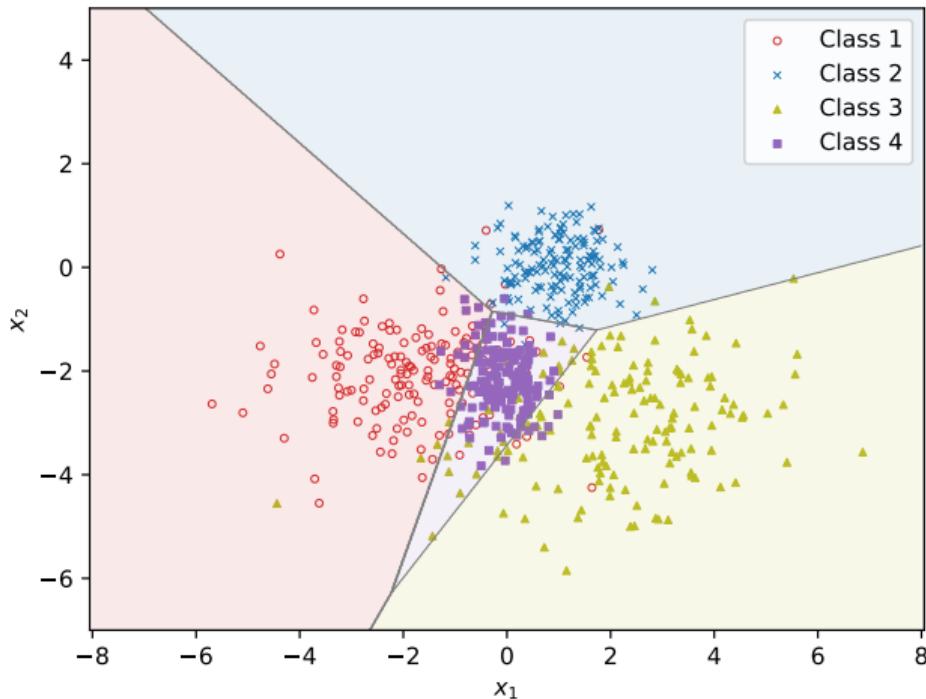
$$= \sum_{i=1}^N \left(\mathbf{w}_{y_i}^\top \mathbf{x}_i - \log \left(\sum_{k=1}^K \exp(\mathbf{w}_k^\top \mathbf{x}_i) \right) \right) \quad (34)$$

We can apply the maximum likelihood estimation (MLE).

Decision regions with a multiclass logistic regression model



Decision regions with a multiclass logistic regression model



Adapting a binary classifier to multiclass classification

- one-versus-rest (one-against-all)
- one-versus-one
-

One-versus-rest

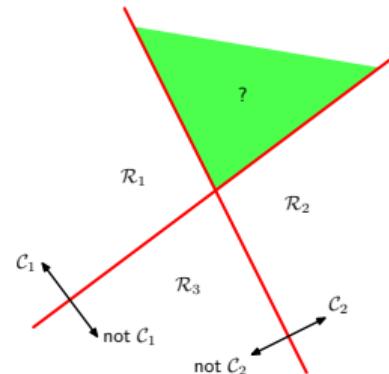
$$\hat{y}(\mathbf{x}) = \arg \max_k g_k(\mathbf{x})$$

Discriminant function	+1 class	-1 class
$g_1(\mathbf{x})$	C_1	C_2, \dots, C_K
$g_2(\mathbf{x})$	C_2	C_1, C_3, \dots, C_K
\vdots	\vdots	\vdots
$g_{K-1}(\mathbf{x})$	C_{K-1}	C_1, \dots, C_{K-2}, C_K
$g_K(\mathbf{x})$	C_K	C_1, \dots, C_{K-1}

One-versus-rest

$$\hat{y}(\mathbf{x}) = \arg \max_k g_k(\mathbf{x})$$

Discriminant function	+1 class	-1 class
$g_1(\mathbf{x})$	C_1	C_2, \dots, C_K
$g_2(\mathbf{x})$	C_2	C_1, C_3, \dots, C_K
\vdots	\vdots	\vdots
$g_{K-1}(\mathbf{x})$	C_{K-1}	C_1, \dots, C_{K-2}, C_K
$g_K(\mathbf{x})$	C_K	C_1, \dots, C_{K-1}



Issues:

- Ambiguous decision regions
- Separate training of each $g_k(\mathbf{x})$ from the others - no global training
- Imbalance training data set - negative classes are much larger than positive ones

One-versus-one

$$\{g_{kk'}(\mathbf{x})\} \quad k' > k, \quad k, k' = 1, \dots, K \quad \dots \quad K(K-1)/2 \text{ discriminants}$$

Discriminant function	+1 class	-1 class
$g_{12}(\mathbf{x})$	C_1	C_2
\vdots	\vdots	\vdots
$g_{23}(\mathbf{x})$	C_2	C_3
\vdots	\vdots	\vdots
$g_{K-1,K}(\mathbf{x})$	C_{K-1}	C_K

→ Classification by voting: the class that wins the most is chosen

One-versus-one

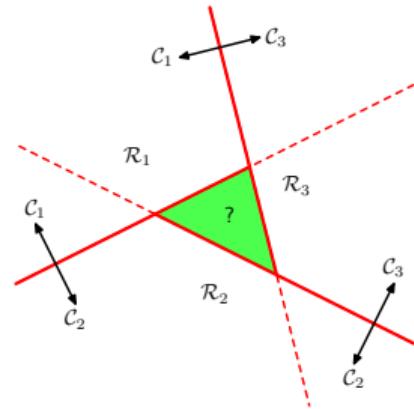
$$\{g_{kk'}(\mathbf{x})\} \quad k' > k, \quad k, k' = 1, \dots, K \quad \dots \quad K(K-1)/2 \text{ discriminants}$$

Discriminant function	+1 class	-1 class
$g_{12}(\mathbf{x})$	C_1	C_2
\vdots	\vdots	\vdots
$g_{23}(\mathbf{x})$	C_2	C_3
\vdots	\vdots	\vdots
$g_{K-1,K}(\mathbf{x})$	C_{K-1}	C_K

→ Classification by voting: the class that wins the most is chosen

Issues:

- Ambiguous decision regions
- Not scalable in K



Practical issues with logistic regression

- Linear classifier – what if the data set is not linearly separable?

Practical issues with logistic regression

- Linear classifier – what if the data set is not linearly separable?
→ We will discuss this at the lecture on 'features and kernels'

Practical issues with logistic regression

- Linear classifier – what if the data set is not linearly separable?
→ We will discuss this at the lecture on 'features and kernels'
- Overfitting - the model overfits on to the training set and does not generalise

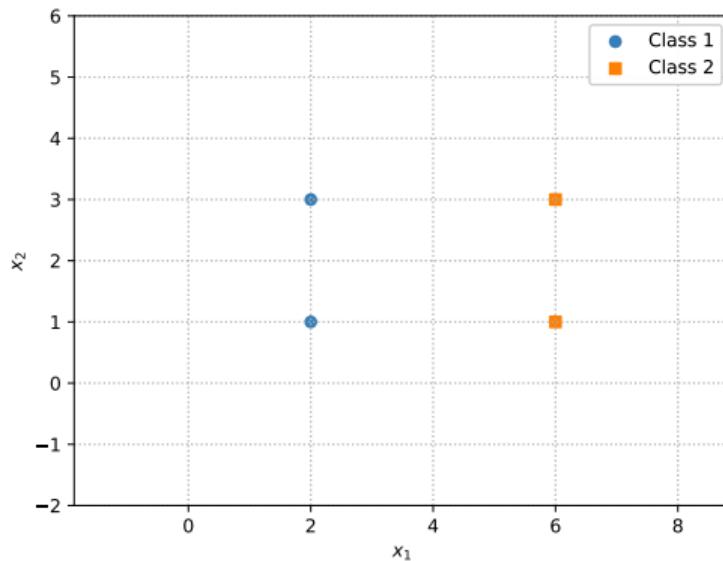
Practical issues with logistic regression

- Linear classifier – what if the data set is not linearly separable?
→ We will discuss this at the lecture on 'features and kernels'
- Overfitting - the model overfits on to the training set and does not generalise
→ Employ 'regularisation' (or a penalty) in the cost function – this will be discussed in 'optimisation'.

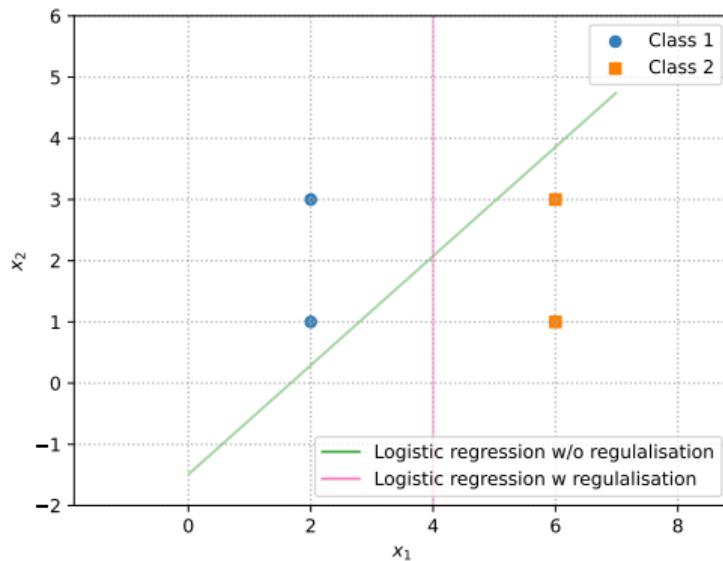
$$L = \sum_{i=1}^N -\log \left(1 + \exp(-y_i(\mathbf{w}^\top \mathbf{x}_i + b)) \right) - \text{regulariser} \quad (35)$$

$$\text{A regulariser} = \lambda \|\boldsymbol{\theta}\|_2^2$$

Overfitting



Overfitting



Summary

- Log loss in the binary case

$$\sum_{i=1}^N \log \left(1 + \exp(-y_i \mathbf{w}^\top \mathbf{x}_i) \right) \quad (36)$$

- Log loss in the multiclass case

$$\sum_{i=1}^N -\mathbf{w}_{y_i}^\top \mathbf{x}_i + \log \left(\sum_{y' \in \mathcal{Y}} \exp(\mathbf{w}_{y'}^\top \mathbf{x}_i) \right) \quad (37)$$

Logistic regression vs LDA

- Logistic regression:

$$p(y=k | \mathbf{x}, \boldsymbol{\theta}) = \frac{\exp(\mathbf{w}_k^\top \mathbf{x})}{\sum_{k'=1}^K \exp(\mathbf{w}_{k'}^\top \mathbf{x})}$$

- LDA

$$g_k(\mathbf{x}) = \log p(y=k | \mathbf{x}, \boldsymbol{\theta}) = \mathbf{w}_k^\top \mathbf{x} + w_{k0} + \text{const} \quad (38)$$

$$p(y=k | \mathbf{x}, \boldsymbol{\theta}) = \frac{\exp(\mathbf{w}_k^\top \mathbf{x} + w_{k0})}{\sum_{k'} \exp(\mathbf{w}_{k'}^\top \mathbf{x} + w_{k'0})} \quad (39)$$

$$\text{where } \mathbf{w}_k^\top = \boldsymbol{\mu}_k^\top \boldsymbol{\Sigma}^{-1} \quad w_{k0} = -\frac{1}{2} \boldsymbol{\mu}_k^\top \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu}_k + \log p(C_k)$$

Summary (cont.)

binary classification

$$h(\mathbf{x}) = \begin{cases} -1 & \text{if } \mathbf{w}^\top \mathbf{x} < 0 \\ +1 & \text{if } \mathbf{w}^\top \mathbf{x} \geq 0 \end{cases}$$

multiclass classification

$$h(\mathbf{x}) = \arg \max_{y \in \mathcal{Y}} \mathbf{w}_y^\top \mathbf{x}$$

$$p(y | \mathbf{x}, \boldsymbol{\theta}) = \frac{1}{1 + \exp(-y \mathbf{w}^\top \mathbf{x})} \quad p(y | \mathbf{x}, \boldsymbol{\theta}) = \frac{\exp(\mathbf{w}_y^\top \mathbf{x})}{\sum_{y' \in \mathcal{Y}} \exp(\mathbf{w}_{y'}^\top \mathbf{x})}$$

Appendix – softmax

$$\text{softmax} \left(\begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{bmatrix} \right) = \begin{bmatrix} \frac{\exp(a_1)}{\sum_{i=1}^n \exp(a_i)} \\ \frac{\exp(a_2)}{\sum_{i=1}^n \exp(a_i)} \\ \vdots \\ \frac{\exp(a_n)}{\sum_{i=1}^n \exp(a_i)} \end{bmatrix} \quad (40)$$

Appendix – softmax (*cont.*)

- $\text{softmax}([1 \ 2 \ 3]^\top) = [0.09 \ 0.24 \ 0.67]^\top$
- $\text{softmax}([100 \ 200 \ 300]^\top) = [10^{-87} \ 10^{-44} \ 1.0]^\top$
- Softmax always returns a probability distribution.
- When the dynamic range of the input is large, the result of softmax becomes “sharp.”

Appendix – softmax (cont.)

- Claim: $\frac{\exp(a_{\max}/\tau)}{\sum_{i=1}^n \exp(a_i/\tau)} \rightarrow 1$ when $\tau \rightarrow 0$.
- That means $\frac{\exp(a_j/\tau)}{\sum_{i=1}^n \exp(a_i/\tau)} \rightarrow 0$ when $\tau \rightarrow 0$ for any a_j that is not the max.
- We have

$$\frac{\exp(a_m/\tau)}{\sum_{i=1}^n \exp(a_i/\tau)} = \frac{\exp(a_m/\tau)}{\exp(a_m/\tau) + \sum_{i \neq m} \exp(a_i/\tau)} \quad (41)$$

$$= \frac{1}{1 + \sum_{i \neq m} \exp((a_i - a_m)/\tau)} \rightarrow 1 \quad (42)$$

when $\tau \rightarrow 0$ because a_m is the largest and $a_i - a_m < 0$.

Quizzes

1. Consider two column vectors such that $\mathbf{a} = (1, 2, 3)^\top$ and $\mathbf{b} = (-3, 3, -1)^\top$.
 - Find $\mathbf{a} + \mathbf{b}$.
 - Find $\mathbf{a} - \mathbf{b}$.
 - Find $\|\mathbf{a}\|$, $\|\mathbf{b}\|$, and $\|\mathbf{a} - \mathbf{b}\|$.
 - Find $\mathbf{a}^\top \mathbf{b}$.
 - Find $\mathbf{a} \mathbf{b}^\top$.
 - What is the geometric relationship between \mathbf{a} and \mathbf{b} ?
2. Considering a classification problem of two classes, whose discriminant function takes the form, $y(\mathbf{x}) = \mathbf{w}^\top \mathbf{x} + w_0$.
 - Show that the decision boundary is a straight line when $D = 2$.
 - Show that the weight vector \mathbf{w} is a normal vector to the decision boundary.
3. Derive a formula for the Euclidean distance between the origin $(0, 0)$ and a line $y = ax + b$, where a and b are arbitrary constants.

Quizzes (cont.)

4. Considering a linear classifier of binary classification in a two-dimensional vector space, such that the points $(-2, -3)$ and $(4, 1)$ are on the decision boundary, and the point $(2, -3)$ lies in the -1 class region.
 - Find the parameters (\mathbf{w}, b) of the classifier.
 - Find the unit normal vector of \mathbf{w} .
5. Consider the following logistic regression model:

$$p(y=+1 | x) = \frac{1}{1 + \exp(-(wx + b))}$$

Plot $p(y=+1 | x)$ for each of the following cases, where you use a fixed plotting range or show all the plots on a single graph for comparison, and report your findings.

- $w = 1, b = 0$
- $w = 1, b = 1$
- $w = -1, b = 1$
- $w = 0.5, b = 1$
- $w = 2, b = 1$

Quizzes (cont.)

6. Consider the logistic sigmoid function.

$$\sigma(x) = \frac{1}{1 + \exp(-x)}$$

- Based on the graph of $\sigma(x)$, make an educated guess about the shape of the derivative $\sigma'(x)$ without performing any calculations and illustrate it by hand.
- Find the derivative of $\sigma(x)$.
- Plot the derivative on a graph.