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Classification with a linear classifier

o S={(x1,%1),...,(xn,yn)}: data set
° X = [Xil Xid]—r7 i=1,...,N: input, feature vector, features

e y;: label, ground truth, gold reference, for x;.

® f(x) = w'x+ b: linear separator, linear predictor

o w= [Wl Wd}—r: weights, weight vector
e b e R: bias
o {w,b}: parameters --- (@ =[bw']")
-1 ifz<0
® h(x) =sgn(f(x)), where sgn(z) =
(x) = sgn(F(x)). where sgn(z) {+1 BN

NB: This is a non-standard definition of a sign function
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Geometry of linear classification
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X2

v 'x+b>0

Geometry of linear classification

X1

wixy +woxo +b=0

w'x+b=0 wherex = [Xl] , W= [Wl}
X2

W2

hyperplane, decision boundary,
splitting the space into decision regions

NB: w is a normal vector of the hyper-
plane. b is not the x» intercept.
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Geometry of linear classification (cont)

f(x)=wixi +waxp + b

f(x)
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Geometry of linear classification (cont)

f(x)=wixi +waxp + b

f(x)
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Linearly separable vs linearly non-separable
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Linearly separable vs linearly non-separable

(a-1) (a-2) (b)

Linearly separable Linearly non-separable
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Binary classification with discriminative classifier

-1 fwix+b<0
hxy =4 0 v
+1 fw'x+b>0

® The hyperplane w'x + b = 0 separates the two classes.
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Binary classification with discriminative classifier

h(x) =

-1 fwix+b<0
+1 ifw'x+b>0
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® The function h labels one class as —1 and the other class as +1.

6/43



Binary classification with discriminative classifier

-1 fwix+b<0
hxy =4 0 v
+1 fw'x+b>0

® The hyperplane w'x + b = 0 separates the two classes.
® The function h labels one class as —1 and the other class as +1.

® The task is called binary classification, because there are two classes.

6/43



Binary classification with discriminative classifier

-1 fwix+b<0
hxy =4 0 v
+1 fw'x+b>0

The hyperplane w ' x + b = 0 separates the two classes.
The function h labels one class as —1 and the other class as +1.
The task is called binary classification, because there are two classes.

Why not finding the model parameters {w, b} directly based on a
misclassification loss?

N
min _ £(9;.yi),  where §i = h(x;)
i=1

)
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Zero-one loss

lor(y,y) = = lyzy (2)

0 otherwise

{1 ify+£y

® Think y as the prediction and y as the label.
e We suffer a loss of 1 if we predict the label wrong.

® In the binary case, o1(9,y) = Iyy<o.

7/43



Discriminative training of a classifier

® Given S = {(x1,)1),.--,(xn,yn)}, find 8 such that the zero-one loss

LN
L= N gﬁm(h(xi),)/i) (3)

is minimised. NB: L is called a cost function.
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Discriminative training of a classifier
® Given S = {(x1,)1),.--,(xn,yn)}, find 8 such that the zero-one loss

1 N
= N E 601(h(x,-),y,') (3)
i=1

is minimised. NB: L is called a cost function.

® The act of finding the model parameter 0 is called training.
(We also say “fit the model on the training data” to mean the training)

® |n the binary case,

i(sgn(w T x;+b))<0 (4)

HMZ

NZEm(sgn w x,+b ), i) =
i=1
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Training based on the zero-one loss

® Slightly changing w and b does not change the loss.
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Training based on the zero-one loss

Slightly changing w and b does not change the loss.

The loss value only changes when the hyperplane flips the sign of a data point,
and it either increases by 1 or none at all.

The loss function (with respect to w and b) is like step functions, flat everywhere
with discontinuity when the value changes.

Finding the optimal w and b is inherently combinatorial and hard.
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What about minimising the squared error?

N 2
| Z(w x;j + b) — ) . yie{-1,+1}

i=1
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What about minimising the squared error?

N
2
miB ((WTX; +b) — }’i> o yi€{-1,+1}
w,b

® We will discuss this in the lecture on linear regression.
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What about minimising the squared error?
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® \We know we can find a solution in closed form.
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What about minimising the squared error?

N
2
mIB ((WTXi+b)_Yi) y Y 6{_17+1}
w,b

® We will discuss this in the lecture on linear regression.
® We know we can find a solution in closed form.

® Training samples far from the decision boundary influence the solution than those
near it.
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Types of linear classifiers

Linear Discriminant Analysis (LDA)
Template-based matching with Euclidean distance
Fisher's linear discriminant

Logistic regression

Support Vector Machine (linear version)
Perceptron (original version)

Single-layer neural networks with no hidden nodes

Q: Which of the above are from a generative approach?
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A probabilistic approach

® The range of f(x) =w'x+ b : (—o0,+0c0)

® We want to squeeze the range into [0, 1] with a function g(s) so that it can be
treated as a probability.

g(f(x)) = g(w'x+b) — p(y=+1]x)
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A probabilistic approach

The range of f(x) =w'x + b : (—o0, +00)

We want to squeeze the range into [0, 1] with a function g(s) so that it can be
treated as a probability.

g(f(x)) = g(w'x+b) — p(y=+1]x)

A candidate for g(s) is the logistic (sigmoid) function:

(s) e’ 1
S) = =
g 1+es 1+tes

Logistic regression model:

1
1+ exp(—(w"x + b))

ply=-1|x,0) =1— p(y=+1]x)

: exp(—(w ' x + b))
1+ exp(—(w'x + b))

ply=+1]x,0) =
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Sigmoid function

-4 -2 0 2 4

® When s — oo, o(s) = 1.

® When s - —o0, o(s) — 0.
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Sigmoid function vs step function

1.04 — u(s)

— o(s)

0.8

0.6

0.4

0.2

0.01

-10.0 -75 =50 =25 0.0 25 5.0 7.5 10.0
wix+b

0 ifs<O

Step function: u(s) =
P () {1 ifs>0
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Interpretation of the logistic regression model

Data distributions p(x | y)

— Plxly=0)
— Plxly=1)
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Interpretation of the logistic regression model

Data distributions p(x |y Posterior prob. p(y | x log POZLIX)
: o
() (i) & p(y=0[x)
o —— log(ply = 1|x)/ply = 0|x))
.5 o .
0.3 o — ply=0[x) :é; i
— ply=1[x) ‘i,m
1 2 3 4 1 0 1 2 3 4 1 0 1 2
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Interpretation of the logistic regression model

Data distributions p(x | y) Posterior prob. p(y | x)

— ply=0[x)
— ply=1ix)

Model the log odds ratio with a line:

Log-odds ratio
|

p(y=1]x)

log 55012

— 1og(ply = 1x)/ply = 01x))
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Classification with the logistic regression model

For a test input x,
1. calculate the posterior probability with the model.

1
1+ exp(—(w'x + b))

p(y:1 | X, 0) =
2. make a prediction:

N +1 p(y=+1|x,80) > threshold,
. { ( | x,0) 9)

-1 p(y=+1]|x,0) < threshold

NB: threshold = 0.5 normally — it gives a minimum misclassification rate.
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Decision surface - step function version

u(w'x + b)
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Decision

surface - step function version

u(w'x + b)

0.8

0.6

0.4

0.2

0.0
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Decision surface - sigmoid function version

o(w'x +b)
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Decision

surface - sigmoid function

o(w'x +b)

version

15

0.8

0.6

0.4

0.2

0.0
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A logistic regression model

1

ply=+1[x,0) = 1+ exp(—(w'x + b))
1 __exp(—(w'x + b))
Py ==11x0) =1 - s w1 b)) T+ exp(—(w x 1 b))

1
~exp(w!x+b)+1

Thus,

1
1+ exp(—y(wTx + b))

p(y|x,6)=

(10)

(11)
(12)

(13)
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How to train the logistic regression model?

® Apply the maximum likelihood estimation (MLE):

Given a data set {(x1,y1),...,(xn, yn)}
maximise the likelihood L of w and b.

max L (14)
w,b
N N 1
L=1 [ x,0) =31 15
o LLpb 0= 2 to8 1o w4 ) 1)

N

= Z —log (1 + exp(—y,'(WTX,' + b))) (16)

i=1
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How to find the optimal solutions w and b?

The zero-one loss Z,’V:l L, (wTx+b)<o Is flat, and is hard to optimise.

The log likelihood of the logistic regression model
N

L= Z —log(1 + exp(—yi(w' x; + b)) is differentiable.
i=1

However,

oL . oL
ow; -

do not have closed-form solutions.
— employ gradient ascent.

We will come back to this in a lecture on optimisation.

(17)
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What if we use 0/1 labels instead of -1/+417

e yc{0,1} instead of {—1,+1}
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What if we use 0/1 labels instead of -1/+417
e yec{0,1} instead of {—1,+1}

ply=1]x)= l—i-exp(—(lex—Fb)) (18)

1
ply=0[x) =1—1 +exp(—(w'x + b))
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What if we use 0/1 labels instead of -1/+417
e yec{0,1} instead of {—1,+1}

ply=1]x)= l—i-exp(—(lex—Fb)) (18)
1

1+ exp(—(wx+ b))

p(y=0|x)=1-—

1 Y 1 o
P Ix) = <1 + exp(—(w Tx + b))> (1 T 1tep(—(wix+ b))) 0
=s/(1—s)t (21)

1
1+exp(—(w'x+ b))

where s =
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What if we use 0/1 labels instead of -1/4+17 (cont)

Training with MLE,

N
L= |0gHP(Yi|Xi,9) (22)
i—1
IogHsy’ — )i (23)
= ZYi log s; + (1 — y;) log(1 — s;) (24)
B N
= —ZH(y,',S,') (25)

i=1
where H(p,q) = — >, p(x)log q(x) is a cross entropy between the two probability
distributions p and q. For a binary case, H(p,q) = —(plog g + (1 — p) log(1 — q)).
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Classification losses

Suppose we have a labelled data point (x, y).
® /ero-one loss
L, (wTx4+b)<0 (26)

® Log loss (logistic loss)

—log p(y | x) = log(1 + exp(—y(w ' x + b)) (27)

NB: this is the negative log likelihood
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Notation caveat

The log loss notation — log p(y | x) can be misleading.

Is y the ground truth or is it a free variable?

What it really means is — log p(y =y* | x) given a pair (x,y"*).

Or —log p(y =y | x;) given a pair (x;,y;) in a data set.
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Multiclass classification with logistic regression

Replace the sigmoid g(z) with the softmax function g(a) = [g1(a) - gk(a)]"

— _ exp(a1)
61(3) = 55 e(a)
(a) = 2
o exp(a) 2 ZkK,:l exp(a))
gla)=g—— = —
1+ exp(a) :
_ _ exp(ak) _ T
gk(a)= SF_ explan) a=a a... ak]
Redefining x = [1 x; xo -+ x4]" and w = [wp wy --- wy] ", logistic regression is given as:
T
exp(w, x
ply=k|x,0) = — =Pk X). (28)
Y ow—1 exp(w,, x)
T
exp(w, x
y =argmax —p xp(w )T = arg max exp(w, x)
ko > o1 exp(w,, x) k
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Softmax for binary classification

exp(w/;x)
p(y:+1|x,0): T -~ T
exp(w,; x) + exp(w_x)
1 1

1+ exp(—(wi1 — wyq) Tx) T 1+ exp(—w " x)

exp(w;x)

=—1 ’0 =
ply |x,6) exp(w];x) + exp(w ' x)

exp(—(wi1 —w-1)"x)  exp(-—w'x)

T ltexp(—(wi—w 1)Tx)  1+exp(—w) x)

where w = w1 — w_j.
— the same as the sigmoid.

(29)

(30)

(31)

(32)
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Training of the multiclass logistic regression model

The log likelihood for a training set {(x,-,y,-)}f\/:1 :
N
L=">"loggy(xi:0) (33)
i=1

N K
= Z (w;x,- — log <Z exp(wka,')>> (34)
i=1 k=1

We can apply the maximum likelihood estimation (MLE).
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Decision regions

with a multiclass logistic

regression model

Class 1
Class 2
Class 3
Class 4
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Decision regions

with a multiclass logistic regression model

Class 1
Class 2
Class 3
Class 4
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Adapting a binary classifier to multiclass classification

® one-versus-rest (one-against-all)

® one-versus-one
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One-versus-rest

y(x) = arg max gi(x)
k

Discriminant function | +1 class -1 class
gl(X) Cl Cz,...,CK
&(x) G G,G,...,Ck
gK—l(x) CK_l Cl, ey CK_27 CK
gK(X) Ck G,...,Ck
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One-versus-rest

y(x) = arg max gi(x)
k

Discriminant function | +1 class -1 class
gl(X) Cl Cz,...,CK
&(x) G G, G,...,Ck
gK—l(x) Cka C], ceey CK—27 Ck
gK(X) Ck Cl,«anKl
Issues:

® Ambiguous decision regions
® Separate training of each gx(x) from the others - no global training

® |mbalance training data set - negative classes are much larger than positive ones
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One-versus-one

{grrr (x)} K'>k kK =1,....,K --- K(K—1)/2 discriminants
Discriminant function | +1 class | -1 class
g12(x) G G
g23(x) C:z C:3
gK—l,-K(X) C;.<—1 C:K

— Classification by voting: the class that wins the most is chosen
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One-versus-one

{grrr (x)} K'>k kK =1,....,K --- K(K—1)/2 discriminants
Discriminant function | +1 class | -1 class
g12(x) G G
g23(x) C:z C:3
gK—l,-K(X) C;.<—1 C:K

— Classification by voting: the class that wins the most is chosen

Issues:
® Ambiguous decision regions

® Not scalable in K
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Practical issues with logistic regression

® |inear classifier — what if the data set is not linearly separable?
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Practical issues with logistic regression

® |inear classifier — what if the data set is not linearly separable?

— We will discuss this at the lecture on 'features and kernels’

e Qverfitting - the model overfits on to the training set and does not generalise

— Employ 'regularisation’ (or a penalty) in the cost function — this will be
discussed in 'optimisation’.

N

L= Z —log (1 + exp(—yi(w " x; + b))) — regulariser (35)

i=1

A regulariser = )03
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X2

Overfitting

® Class1
m Class 2

X1
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X2

Overfitting

® Class1
m Class 2

—— Logistic regression w/o regulalisation
Logistic regression w regulalisation

2 4 6 8
x1
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Summary

® | og loss in the binary case

ZN: log (1 + exp(—y,-wa,-)>

i=1

® | og loss in the multiclass case

Z w,, x,+|og Zexp /X:

y'ey
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Logistic regression vs LDA

® | ogistic regression:

exp(w, x)
py=k|x,0) =
> k=1 exp(w,)x)
e LDA

gi(x) =log p(y =k | x,0) = w)| x + wyq + const (38)

T

exp (w, X + wo

ply—k|x.6) = <21 ) (39)

D ok exp (w;x + Wklo)

where w,| = ) 37 wio = — S By + log p(C)
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Summary (cont.)

binary classification

multiclass classification

-1 ifw' 0
hx) =9 L
+1 ifw'x>0
1
p(y|x,0) =

1+ exp(—yw ' x)

h(x) = arg max w}:rx
yey
.
exp(w, x)
ply|x.0) = i
> yrey exp(w,, x)
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Appendix — softmax

exp(a1)
>oi1 exp(a;)
a1 exp(az)
a S exo(ar)
softmax _2 = 21:1 exp(a;) (40)
an
exp(an)
| Do exp(ai)
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Appendix — softmax (cont)

softmax([1 2 3]')=1[0.09 024 0.67]"

softmax([100 200 300] ') = [10787 104 1.0]"
Softmax always returns a probability distribution.

When the dynamic range of the input is large, the result of softmax becomes
“sharp.”
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Appendix — softmax (cont)

e Claim: % — 1 when 7 = 0.

® That means % — 0 when 7 — 0 for any a; that is not the max.
i=1 !

® \\e have
exp(am/7) exp(am/7)
ST exp(@/7) - op(an/T) + Som oxB(a/7) ()
- 1 (42)

1t mee((a — am)/7)

when 7 — 0 because a, is the largest and a; — a,,, < 0.
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Quizzes

1. Consider two column vectors such that a = (1,2,3)" and b = (-3,3,-1)".
e Finda+b.
e Find a—b.

Find [[al, [[b]|, and [la — b].

o Finda'b.

o Findab'.

e What is the geometric relationship between a and b?

2. Considering a classification problem of two classes, whose discriminant function
takes the form, y(x) = w'x + wy.

e Show that the decision boundary is a straight line when D = 2.
e Show that the weight vector w is a normal vector to the decision boundary.

3. Derive a formula for the Euclidean distance between the origin (0,0) and a line
y = ax + b, where a and b are arbitrary constants.
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Quizzes (cont.)

4. Considering a linear classifier of binary classification in a two-dimensional vector
space, such that the points (—2, —3) and (4,1) are on the decision boundary, and
the point (2, —3) lies in the —1 class region.

o Find the parameters (w, b) of the classifier.
e Find the unit normal vector of w.

5. Consider the following logistic regression model:

1
ply=+1[x) = 1+ exp(—(wx + b))

Plot p(y =+1|x) for each of the following cases, where you use a fixed plotting
range or show all the plots on a single graph for comparison, and report your
findings.
ew=1b=0
ew=1b=1
ew=-1b=1
e w=050b=1
ow=2b=1 42/43




Quizzes (cont.)

6. Consider the logistic sigmoid function.

1
70 = T ()

o Based on the graph of o(x), make an educated guess about the shape of the
derivative ¢’(x) without performing any calculations and illustrate it by hand.

o Find the derivative of o(x).

e Plot the derivative on a graph.
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