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Questions you should be able to answer after this week

• Feature transformation

• Meaning of linear classifiers

• Non-linear SVMs

• kernel tricks

• Mercer kernels
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How to resolve a linearly non-separable case?

Feature transformation / mapping: ϕ : Rd → Rd ′

h(x) =

{
−1 if w⊤x + b < 0

+1 if w⊤x + b ≥ 0
= sgn(w⊤x + b) (1)

↓

h(x) =

{
−1 if w⊤ϕ(x) < 0

+1 if w⊤ϕ(x) ≥ 0
= sgn(w⊤ϕ(x)) (2)
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Logistic regression with feature transformation

p(y |x ,θ) = 1

1 + exp(−y(w⊤x + b))
(3)

p(y |x ,θ) = 1

1 + exp(−y(w⊤ϕ(x)))
(4)
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Feature transformation - examples

(x1, x2) → (x1, x2, x
2
2 )
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Two-circle example
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Two-circle example
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What is it meant by linear classifiers?

• A linear classifier is linear in the parameters w , not in the features.
(i.e., classification based on a linear combination between w and x .)

• A linear classifier can have arbitrary nonlinear features.
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Should we consider very complex transformation?

• Not necessarily so.

• Complex models may overfit the training data and may not generalise very well.

• We will come back to this in some lectures later.
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Non-linear SVM
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Non-linear SVM (cont.)

• Conceptual steps to construct a non-linear SVM
Step 1 Transform x to ϕ(x) in a high-dimensional space (feature space)
Step 2 Train a SVM in the feature space
Step 3 Classify data in the feature space

f (x) =
N∑
i=1

α∗
i yi ϕ(xi )

Tϕ(x) + w0

• Instead of applying the non-linear transformation and carrying out calculation in
the feature space, use a kernel function k(xi , xj) such that

k(xi , xj) = ϕ(xi )Tϕ(xj) (cf. ’kernel trick’)

L(α, ξ) = −1

2

N∑
i,j=1

yi yj αi αj k(xi , xj) +
N∑
i=1

αi

f (x) =
N∑
i=1

α∗
i yi k(xi , x) + w0
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Kernel functions for SVM

An example of kernel that maps data to a feature space explicitly

k(a,b)
△
= (1 + aTb)2 = (1 + a1b1 + a2b2)

2

= 1 + 2a1b1 + 2a2b2 + a21b
2
1 + 2a1b1a2b2 + a22b

2
2

= (1,
√
2a1,

√
2a2, a

2
1,
√
2a1a2, a

2
2)

⊤(1,
√
2b1,

√
2b2, b

2
1,
√
2b1b2, b

2
2)

= ϕ(a)Tϕ(b)

Popular kernels

Kernel k(xi , xj)
Polynomial (1 + ⟨xi , xj⟩)d

Radial basis function (RBF) exp
(
−∥xi−xj∥2

2σ2

)
, σ > 0 (bandwidth)

Hyperbolic tangent tanh(κ1⟨xi , xj⟩+ κ2), κ1 > 0, κ2 < 0

where ⟨xi , xj⟩ is an inner product (e.g. dot product) between xi and xj .
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Making kernels

How can we ensure if a kernel works as an inner product in a feature space?

It should satisfy:
• k(x, x′) = ⟨ϕ(x), ϕ(x′)⟩ = ⟨ϕ(x′), ϕ(x)⟩ = k(x′, x)
• k(x, x′)2 ≤ k(x, x) k(x′, x′)

• The Gram matrix K = (k(xi , xj)), which is a N-by-N matrix, is positive definite.
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How can we ensure if a kernel works as an inner product in a feature space?

It should satisfy:
• k(x, x′) = ⟨ϕ(x), ϕ(x′)⟩ = ⟨ϕ(x′), ϕ(x)⟩ = k(x′, x)
• k(x, x′)2 ≤ k(x, x) k(x′, x′)
• The Gram matrix K = (k(xi , xj)), which is a N-by-N matrix, is positive definite.

→ Mercer kernels or positive-definite kernel

K =

 k(x1, x1) · · · k(x1, xN)
...

k(xN , x1) · · · k(xN , xN)

 (5)

aTKa > 0 ∀a ∈ RN \ {0} (6)

i.e.,
N∑
i=1

N∑
j=1

ai aj k(xi , xj) > 0 ∀ai ∈ R \ {0} (7)
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Mercer’s theorem

Suppose k is a continuous symmetric non-negative definite kernel (i.e. Mercer kernel),
then k can be expressed as:

k(x, z) =
∞∑
i=1

λi ϕi (x)ϕi (z)

where {ϕi} are eigen-functions, ∥ϕi∥ = 1, and {λi} are positive eigenvalues λi > 0.
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Making kernels from kernels

Letting k1, k2, and k3 are kernels, we can create a new kernel k.

• k(x, x′) = k1(x, x′) + k2(x, x′)

• k(x, x′) = ak1(x, x′), a > 0

• k(x, x′) = k1(x, x′) k2(x, x′)

• k(x, x′) = f (x)k1(x, x′)f (x′)

• k(x, x′) = k3(ϕ(x), ϕ(x′))

• k(x, x′) = xTBx′, where B is a N-by-N positive-definite matrix
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Example – SVM with a polynomial kernel
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Example – SVM with an RBF kernel
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Example – SVM with an RBF kernel

2 1 0 1 2 3 4 5 6
x1

1

2

3

4

5

6

7

x 2

0

1

2

3

4

5

6

7

rbf kernel, C=10, =10 ( =0.223607),  Error = 0 / 8

17 / 18



Quizzes

• Considering a kernel k(a,b) = (aTb)2, find the corresponding transformation
function ϕ(a) when a ∈ R2.

• Discuss how the dimensionality of the input vectors and the size of the training
set affect the time and memory required to train a linear SVM. Do you expect the
same for an SVM with the RBF kernel?

• How many dimensions does the feature space induced by the RBF kernel have?
Explain your answer.
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