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Questions you should be able to answer after this week

Feature transformation
Meaning of linear classifiers
Non-linear SVMs

kernel tricks

Mercer kernels
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How to resolve a linearly non-separable case?

Feature transformation / mapping: ¢ : RY — RY

= sgn(w ' x + b)

-1 fw'x+b<0
hx)=4 - Y
+1 ifw' x+b>0

0

— if w!o(x
h(x):{ Lfwiob) <0 W Tax)

+1 ifwlo(x)>0
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Logistic regression with feature transformation

1
~ 1+exp(—y(w'x+ b))

p(y|x,0)

1
T 1+ exp(—y(wTo(x)))

p(y|x,6)
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Feature transformation - examples

(x1,x) — (x1,x2,x3)

Decision surface

1.0

0.0
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Feature transformation - examples

2 2 2
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X2

Feature transformation - examples

(x1,%) — (x1,%2,x3) (x1,%0) — (x1,%2,x2,x3)
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Two-circle example
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Two-circle example




What is it meant by linear classifiers?

® A linear classifier is linear in the parameters w, not in the features.
(i.e., classification based on a linear combination between w and x.)

® A linear classifier can have arbitrary nonlinear features.
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Should we consider very complex transformation?

® Not necessarily so.
® Complex models may overfit the training data and may not generalise very well.

® \We will come back to this in some lectures later.
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Non-linear SVM
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Non-linear SVM (cont)

® Conceptual steps to construct a non-linear SVM
Step 1 Transform x to ¢(x) in a high-dimensional space (feature space)
Step 2 Train a SVM in the feature space
Step 3 Classify data in the feature space

ZOA y/ xl T(b( )+WO
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Non-linear SVM (cont)

® Conceptual steps to construct a non-linear SVM
Step 1 Transform x to ¢(x) in a high-dimensional space (feature space)
Step 2 Train a SVM in the feature space
Step 3 Classify data in the feature space

ZOA y/ xl T(b( )+WO

® |nstead of applying the non-linear transformation and carrying out calculation in
the feature space, use a kernel function k(x;, x;) such that

k(xi, x;) = o(x;) T b(x)) (cf. "kernel trick’)
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Non-linear SVM (cont)

® Conceptual steps to construct a non-linear SVM
Step 1 Transform x to ¢(x) in a high-dimensional space (feature space)
Step 2 Train a SVM in the feature space
Step 3 Classify data in the feature space

ZOA y/ xl T(b( )+WO

® |nstead of applying the non-linear transformation and carrying out calculation in
the feature space, use a kernel function k(x;, x;) such that

k(xi, x;) = o(x;) T b(x)) (cf. "kernel trick’)

N
Z i yj o aj k(x;, x; —i—Za,

iJ i=1

L(a, &) =

l\)\b—l

N
Z i Yi k(xla + wp
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Kernel functions for SVM
An example of kernel that maps data to a feature space explicitly
k(a,b) 2 (1 +aTh)2 = (1 + aibs + arh»)?
= 1+ 2a1by + 2asby + a2b? + 2a1byapby + a2 b3
= (1,V2a1,V2ay, 3}, V2a1a2,33) " (1, V2b1, V2b2, b3, \/2b1 by, b3)
= ¢(a) " ¢(b)
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Kernel functions for SVM

An example of kernel that maps data to a feature space explicitly

k(a,b) 2 (1 +aTh)2 = (1 + aibs + arh»)?
= 1+ 2a1by + 2asby + a2b? + 2a1byapby + a2 b3
= (17 \/5317 \/5327 3%, \/58132, a%)—r(]'? \/§b17 \/§b27 b%: \/§b1b27 b%)

= ¢(a)"¢(b)
Popular kernels
Kernel k(xi, x;)
Polynomial (1 + (x;, x;))¢

Radial basis function (RBF)
Hyperbolic tangent

exp (_M> o > 0 (bandwidth)

202

tanh(m(x,-,xj) + KQ), k1 >0,k <0

where (x;, x;) is an inner product (e.g. dot product) between x; and x;.
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Making kernels

How can we ensure if a kernel works as an inner product in a feature space?

It should satisfy:

® k(x,x) = < (x), p(x’
® k(x,x')? < k(x,x) (x,x)
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Making kernels

How can we ensure if a kernel works as an inner product in a feature space?

It should satisfy:
* k(x,X) = (¢(x), ¢(X)) = (¢(X), 9(x)) = k(X',x)
® k(x,x')? < k(x,x) k(x',x")
® The Gram matrix K = (k(xj, x;)), which is a N-by-N matrix, is positive definite.

— Mercer kernels or positive-definite kernel

13/18



Making kernels

How can we ensure if a kernel works as an inner product in a feature space?

It should satisfy:

* k(x,X) = (¢(x), ¢(X)) = (¢(X), 9(x)) = k(X',x)
® k(x,x')? < k(x,x) k(x',x")
® The Gram matrix K = (k(xj, x;)), which is a N-by-N matrix, is positive definite.

— Mercer kernels or positive-definite kernel

k(Xl,Xl) k(Xl,XN)
K = s (5)
k(xn,x1) -+ k(xn,xn)
a’Ka>0 VacRV\{0} (6)
ZZ ajaj k(xi,x;) >0 Va; e R\ {0} (7)

i=1 j=1
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Mercer’s theorem

Suppose k is a continuous symmetric non-negative definite kernel (i.e. Mercer kernel),
then k can be expressed as:

k(x,z) = i)\i i(x) ¢i(2)

where {¢;} are eigen-functions, ||¢;|| = 1, and {\;} are positive eigenvalues \; > 0.
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Making kernels from kernels

Letting ki, k2, and ks are kernels, we can create a new kernel k.

® k(x,x') = ki(x,x") + ko(x,x)

® k(x,x') = aki(x,x"), a>0

® k(x,x") = ky(x,x) ka(x,x")

® k(x,x") = f(x)ky(x,x")f(x)

. k(X’X’):k( (x), o(x'))

® k(x,x') =x"Bx';, where B is a N-by-N positive-definite matrix
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Example — SVM with a polynomial kernel
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Example — SVM with a polynomial kernel

polynomial kernel, C=100, degree= 3, Error =0/8
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Example — SVM with an RBF kernel
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Example — SVM with an RBF kernel

rbf kernel, C=10, y=0.3 (0=1.29099), Error=0/8
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Example — SVM with an RBF kernel

rbf kernel, C=10, y=10 (0=0.223607), Error=0/8
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Quizzes

® Considering a kernel k(a, b) = (a' b)?, find the corresponding transformation
function ¢(a) when a € R?.

® Discuss how the dimensionality of the input vectors and the size of the training
set affect the time and memory required to train a linear SVM. Do you expect the
same for an SVM with the RBF kernel?

® How many dimensions does the feature space induced by the RBF kernel have?
Explain your answer.
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