Machine Learning
Neural Network 1

Hiroshi Shimodaira and Hao Tang

2026

Ver. 1.0.1

1/30

Topics - you should be able to explain after this week

Perceptron

Perceptron learning algorithm (perceptron error correction algorithm)
Linearly separable vs linearly non-separable

Logical operations with perceptron

Multilayer perceptron (MLP)

Activation functions

Universal approximation theorem

2/30

Background of Perceptron

(https://en.wikipedia.org/wiki/File:Neuron_Hand-tuned.svg)

3/30

https://en.wikipedia.org/wiki/File:Neuron_Hand-tuned.svg

(a) function unit

(https://en.wikipedia.org/wiki/File:Neuron_Hand-tuned.svg)

3/30

https://en.wikipedia.org/wiki/File:Neuron_Hand-tuned.svg

-0

(a) function unit

(https://en.wikipedia.org/wiki/File:Neuron_Hand-tuned.svg)

1940s Warren McCulloch and Walter Pitts : 'threshold logic’
Donald Hebb : "Hebbian learning’

3/30

https://en.wikipedia.org/wiki/File:Neuron_Hand-tuned.svg

1940s

1957

Background of Perceptron

W1 g
W;*\]
X —> % Y
(https://en.wikipedia.org/wiki/File:Neuron_Hand-tuned.svg) (a) function unit

Warren McCulloch and Walter Pitts : 'threshold logic’
Donald Hebb : "Hebbian learning’
Frank Rosenblatt : 'Perceptron’

3/30

https://en.wikipedia.org/wiki/File:Neuron_Hand-tuned.svg

Character recognition with Perceptron

(LD

y(x) = H(w " x + wo)

1, ifa>0,
H(a):ﬂ(azo):{ 0, ifa<0

Heaviside step function

4/30

Decision boundary of linear discriminant (2D)

y(x) = wixs + waxa +wp =0

wi wo

(X2 = ——X1—= —,
Wo Wo

when wy # 0)

C,
/

w =(wiz)
slope = w,/w, ‘

5/30

Decision boundary of linear discriminant (3D)
y(x) = wixy + waxp + waxs + wo =0

X
W=, 1,)"

6/30

Decision boundary of linear discriminants

® Decision boundary:
y(x)=w'x+w =0

Dimension | Decision boundary
2 line wixi + woxo +wp =0
3 plane wixy + woxo +wixs +wy =0
d hyperplane (27:1 w;ix;) + wp = 0

NB: w is a normal vector to the hyperplane

7/30

Training of Perceptron

® A discriminant for a two-class problem:

y(x)=w'x+wp

8/30

Training of Perceptron

® A discriminant for a two-class problem:

y(x)=w'x+wp

X2 (@)
o (@) .
o X
@)
@) X X
X
X
> X1
(W w)

8/30

Training of Perceptron

® A discriminant for a two-class problem:

y(x)=w'x+wp

8/30

Perceptron error correction algorithm

ax)=w'x+w = w'x
where w = (wp, WT)T, X = (1,xT)—r

Let’s just use w and x to denote w and x from now on!

9/30

Perceptron error correction algorithm

ax)=w'x+w = w'x
where w = (wo,w)", x=(1,x")"
Let’s just use w and x to denote w and x from now on!

y(x)=g(a(x)) = g(w'x)

9/30

Perceptron error correction algorithm

ax)=w'x+w = w'x

where w = (wo,w)", x=(1,x")"
Let’s just use w and x to denote w and x from now on!

T

y(x)=g(alx)) = g(w x) where g(a)zl(aEO):{ o a0

0, ifa<o

g(a): activation / transfer function. g(a) = H(a) for perceptron

9/30

Perceptron error correction algorithm

ax)=w'x+w = w'x

where w = (wo,w)", x=(1,x")"
Let’s just use w and x to denote w and x from now on!
Tx)

y(x)=g(a(x)) = g(w ' x 1, ifa>0,

where g(a)zl(azO):{ 0. ifa<o

g(a): activation / transfer function. g(a) = H(a) for perceptron

® Training set : D = {(x1,y1),...,(xn,yn)}, yi €{0,1} : target value or label
® [nitialise w

9/30

Perceptron error correction algorithm

ax)=w'x+w = w'x

where w = (wo,w)", x=(1,x")"
Let’s just use w and x to denote w and x from now on!
Tx)

y(x)=g(a(x)) = g(w ' x 1, ifa>0,

f > e
where g(a) = 1(a > 0) { 0. ifa<o
g(a): activation / transfer function. g(a) = H(a) for perceptron

® Training set : D = {(x1,y1),...,(xn,yn)}, yi €{0,1} : target value or label
® [nitialise w
® Modify w if x; was misclassified

w™) < w (v — y (%)) i (0<n<1)
learning rate

9/30

Perceptron error correction algorithm
ax)=w'x+w = w'x
where w = (wp, WT)T, X = (1,xT)—r
Let’s just use w and x to denote w and x from now on!

v =g(ax)) = g(wix) here g(a)zﬂ(azo)={ 0 o

g(a): activation / transfer function. g(a) = H(a) for perceptron

® Training set : D = {(x1,y1),...,(xn,yn)}, yi €{0,1} : target value or label
® [nitialise w

® Modify w if x; was misclassified

w™) < w (v — y (%)) i (0<n<1)
learning rate

(W) i = w T+ (v = v (%) il

NB:

9/30

Geometry of Perceptron error correction

y(xi) = g(w'x;)
w) o wt (- y(x)x (0<n<1)

X,
o X C,
Y(Xi)
yi=y(x) | g 1 \ o
0/0 -1 ®
Y11 o LY
o S X2
o
X,
o < o
wx = |wl|x] cos ©
CO o O O
©

10/30

Geometry of Perceptron error correction (cont)

y(xi) = g(w'x;)
w) o wt (- y(x)x (0<n<1)

X,
y(xi) © <
lx ! o @
Yi y(x) 0 1 X
00 -1)
Yi 111 o w
& ® Y
YO\
3 X7
W 361 X,
o < o
wTx = |[wl||x] cos 6 ©
CO o O &
O

11/30

Geometry of Perceptron error correction (cont)

y(xi) = g(w'x;)

w) o w (v — y (%)) i

(0<n<1)

X,
) y(x) ©
i i 0 1 \\\ x
. 00 -1 \\.\
Vi 111 0 ‘\:\\ X
o)
o \ |,/
<
o <
w' x = ||w]|| x| cos
CO o O
o

12/30

The Perceptron learning algorithm
Incremental (online) Perceptron algorithm:

fori=1,...,N
w o w + n(yi —y(xi))xi

13/30

The Perceptron learning algorithm

Incremental (online) Perceptron algorithm:

fori=1,...,N
w o w + n(yi —y(xi))xi

Batch Perceptron algorithm:
Vsum = 0
fori=1,...,N

Vsum = Vsum + (yi - y(X,‘)) X
w — w + 1 Vsum

13/30

The Perceptron learning algorithm

Incremental (online) Perceptron algorithm:

fori=1,...,N
w o w + n(yi —y(xi))xi

Batch Perceptron algorithm:
Vsum = 0
fori=1,...,N

Vsum = Vsum + (yi - y(X,‘)) X
w — w + 1 Vsum

What about convergence?
The Perceptron learning algorithm terminates if training samples are
linearly separable.

13/30

Linearly separable vs linearly non-separable

(a-1) (a-2) (b)
Linearly separable Linearly non—-separable

14/30

Perceptron structures and decision boundaries

y(x) = g(a(x)) w = (wp, wi,...,Wy)
=g(w'x) x=(1,x1,...,%q)

1, ifa>0,

where g(a) = { 0. ifa<o cf. sigmoid function

15/30

Perceptron structures and decision boundaries

y(x) = g(a(x)) w = (wp, wi,...,Wy)
=g(w'x) x:(i.l,xl,...,xd)
where g(a) = { é: I;Zi%’

X2

cf. sigmoid function

0 (W1 "\ WM

15/30

Perceptron structures and decision boundaries

y(x) = g(a(x)) w = (wg,wy,...,wg)"
=g(w'x) x=(1,x1,...,xq)"

1, ifa>0, . . .

where g(a) = { 0. ifa<o cf. sigmoid function
X2
xa >x3— 1

a(x) =1-—x1+x

0 Wl W2 = Wp+wi1Xx1+waxp

Wo:].,le—l,WQ:l

15/30

Perceptron structures and decision boundaries

y(x) = g(a(x)) w = (wg,wy,...,wg)"
=g(w'x) x=(1,x1,...,xq)"

1, ifa>0, . . .

where g(a) = { 0. ifa<o cf. sigmoid function
X2
xa >x3— 1

a(x) =1-—x1+x

0 Wl W2 = Wp+wi1Xx1+waxp

Wo:].,le—l,WQ:l

Xo X1 Xy =i

NB: A one node/neuron constructs a decision boundary, which splits the input space

into two regions
15/30

Perceptron as a logical function

OR NAND XOR

NOT
X1

X2

X1

X2

X1

X2

X1

16 /30

Perceptron as a logical function

XOR

OR NAND

NOT
X1

X2

X1

X2

X1

X2

X1

16 /30

Perceptron as a logical function

XOR

OR NAND

NOT
X1

X2

X1

X2

X1

X2

X1

16 /30

Perceptron as a logical function

NOT OR NAND XOR
X1 |y X1 | X2 |y X1 | X2 |y X1 | X2 |y
0|1 0010 0[0]1 0010
11]0 0 1|1 0 1|1 0 1|1
1 011 1 011 1 011
1 1|1 1 10 1 10

X2 X2

1 O

16 /30

Perceptron as a logical function

NOT OR NAND XOR

X1 | X2 X1 | X2

X

0
1

= O
O R

0
1

X2 X2

=1
= O = O
O R R
= = O O
O R R Ol

Question: find the weights for each function

16 /30

A perceptron for

M1:W=[-05,1, 1]

XOR

AND

¥,=1

M2 W=[1.5, -1, -1]

Perceptron structures and decision boundaries (cont.)

18/30

Perceptron structures and decision boundaries (cont.)

18/30

Perceptron structures and decision boundaries (cont.)

'49

19/30

Perceptron structures and decision boundaries (cont.)

19/30

Perceptron structures and decision boundaries (cont.)

20/30

Perceptron structures and decision boundaries (cont.)

20/30

Perceptron structures and decision boundaries (cont.)

21/30

Perceptron structures and decision boundaries (cont.)

-

21/30

Single-layer network with multiple output nodes
y1(x) = g(w{ x + wio)

yk(x) = g(wjx + wko)

1
Y1 Wip Wit ... Wid X1
l=el ;
YK WKO WK1 - - - WKd '
Xd
y = g(Wx)
® K output nodes: y1,...,yk. NB: we sometimes use y to denote y for simplicity’s sake.

22/30

Single-layer network with multiple output nodes
y1(x) = g(w{ x + wio)

yk(x) = g(wjx + wko)

1
y1 Wio Wit ... Wid X
=8
YKk WKo WK1 - - - WKd
Xd
y = g(Wx)
® K output nodes: y1,...,yk. NB: we sometimes use y to denote y for simplicity’s sake.
® For x, = (Xn0, -+ XaD) ",
d d
Yok = g(z Wkd Xnd) =g(ank), Ak = D Wkd Xnd
d=0 d=0

22/30

Limitations of Perceptron

® Single-layer perceptron is just a linear classifier
(Marvin Minsky and Seymour Papert, 1969)

23/30

Limitations of Perceptron

® Single-layer perceptron is just a linear classifier
(Marvin Minsky and Seymour Papert, 1969)

® Training does not stop if data are linearly non-separable

23/30

Limitations of Perceptron

® Single-layer perceptron is just a linear classifier
(Marvin Minsky and Seymour Papert, 1969)

® Training does not stop if data are linearly non-separable

® Weights w are adjusted for misclassified data only (correctly classified data are
not considered at all)

23/30

Limitations of Perceptron

Single-layer perceptron is just a linear classifier
(Marvin Minsky and Seymour Papert, 1969)

Training does not stop if data are linearly non-separable

Weights w are adjusted for misclassified data only (correctly classified data are
not considered at all)

Multi-layer perceptron can form complex decision boundaries (piecewise-linear),
but the Perceptron training algorithm is not applicable.

23/30

How can we resolve the problem of training?

® Use the least squares error criterion for training
N

Ex(w) =" (9n—yn)’

n=1

24 /30

How can we resolve the problem of training?

® Use the least squares error criterion for training
N

Ex(w) =" (9n—yn)’

n=1

® Replace g() with a differentiable function

24/30

How can we resolve the problem of training?

® Use the least squares error criterion for training
N

Ex(w) =" (9n—yn)’

n=1
® Replace g() with a differentiable function
What about removing g() in the hidden layers?

24/30

How can we resolve the problem of training?

® Use the least squares error criterion for training
N

Ex(w) =" (9n—yn)’

n=1
® Replace g() with a differentiable function
What about removing g() in the hidden layers?

9o = g(WPg(WWx,)) = 3, =gWAWDx,) = g(Wx,)

24/30

How can we resolve the problem of training?

® Use the least squares error criterion for training
N
N 2
Ex(w) =3 (Jn—yn)
n=1

® Replace g() with a differentiable function
What about removing g() in the hidden layers?

9o = g(WPg(WWx,)) = 3, =gWAWDx,) = g(Wx,)

;
e
2N

24/30

How can we resolve the problem of training?

® Use the least squares error criterion for training
N
N 2
Ex(w) =3 (Jn—yn)
n=1

® Replace g() with a differentiable function
What about removing g() in the hidden layers?

9o = g(WPg(WWx,)) = 3, =gWAWDx,) = g(Wx,)

: .
Q) i S ORSO)
AA

24/30

How can we resolve the problem of training?
® Use the least squares error criterion for training
N
o 2
Ex(w) =3 (Jn—yn)
n=1

® Replace g() with a differentiable function
What about removing g() in the hidden layers?

9o = g(WPg(WWx,)) = 3, =gWAWDx,) = g(Wx,)

&
9 -99 -
VLA A N

Xo X Xy Xo X X

24/30

How can we resolve the problem of training?

® Use the least squares error criterion for training
N

Ex(w) =" (9n—yn)’

n=1
® Replace g() with a differentiable function
What about removing g() in the hidden layers?

9o = g(WPg(WWx,)) = 3, =gWAWDx,) = g(Wx,)

& e
9 °9 (x) B
A A TN

O
X0 2 X0 X X2 Xo X X2
Question: Show networks with linear hidden nodes reduce to single-layer networks

24/30

How can we resolve the problem of training?(cont)

® Replace g() with a differentiable non-linear function

25/30

How can we resolve the problem of training?(cont)

® Replace g() with a differentiable non-linear function
e.g., Logistic sigmoid function:
1 1

T1tea 1+ exp(—a)

g(a)

25/30

How can we resolve the problem of training?(cont)

® Replace g() with a differentiable non-linear function
e.g., Logistic sigmoid function:

1 1

g(a) = 1+e2 1+exp(—a)

o
o

o
=

9(a) = 1/(1+exp(-a))

25/30

How can we resolve the problem of training?(cont)

® Replace g() with a differentiable non-linear function
e.g., Logistic sigmoid function:

1 1

g(a) = 1+e2 1+exp(—a)

o
o

o
=

9(a) = 1/(1+exp(-a))

6 -4 2 0 2 4 6
a

Mapping: (—o0,+00) — (0,1), Use a threshold=0.5 for binary classification

25/30

How can we resolve the problem of training?(cont)

® Replace g() with a differentiable non-linear function
e.g., Logistic sigmoid function:

1 1

g(a) = 1+e2 1+exp(—a)

o
o

o
=

9(a) = 1/(1+exp(-a))

6 -4 2 0 2 4 6

Mapping: (—o0,+00) — (0,1), Use a threshold=0.5 for binary classification

8) = g) = g(a)(1-£(2)

25/30

Output of NN — threshold func. vs sigmoid func.

NN2: W=[45, -30, -30]

NN1: W=[-25,5, 5] NN2: W=[7.5, -5, -5]

-05 -05

Input-Output — demos

27/30

Ability of neural networks

® Universal approximation theorem

28/30

https://doi.org/10.1016/0893-6080(91)90009-T
https://doi.org/10.1016/j.neunet.2017.12.007
https://doi.org/10.1016/j.jmaa.2023.127096

Ability of neural networks

® Universal approximation theorem
o “Univariate function and a set of affine functionals can uniformly approximate any
continuous function of n real variables with support in the unit hypercube; only mild
conditions are imposed on the univariate function. * (G. Cybenko (1989)
—

A single-output node neural network with a single hidden layer with a finite neurons
can approximate continuous (and discontinuous) functions.

28/30

https://doi.org/10.1016/0893-6080(91)90009-T
https://doi.org/10.1016/j.neunet.2017.12.007
https://doi.org/10.1016/j.jmaa.2023.127096

Ability of neural networks

® Universal approximation theorem

o “Univariate function and a set of affine functionals can uniformly approximate any
continuous function of n real variables with support in the unit hypercube; only mild
conditions are imposed on the univariate function. * (G. Cybenko (1989)

—

A single-output node neural network with a single hidden layer with a finite neurons
can approximate continuous (and discontinuous) functions.

o K. Hornik (1990) doi:10.1016/0893-6080(91)90009-T

o N. Guliyev, V. Ismailov (2018) https://doi.org/10.1016/j.neunet.2017.12.007

o V. Ismailov (2023) “A three layer neural network can represent any multivariate
function” https://doi.org/10.1016/j.jmaa.2023.127096

28/30

https://doi.org/10.1016/0893-6080(91)90009-T
https://doi.org/10.1016/j.neunet.2017.12.007
https://doi.org/10.1016/j.jmaa.2023.127096

Quizzes

® Answer the question of slide 16

® Find the structure of the perceptron for a two-class classification problem that
gives the decision boundaries and decision regions shown in the figure below, in
which grey areas correspond to one class, and the white areas to the other class.
You do not need to identify the weight values, but you need to describe how many
nodes are required and how each node should be connected to other nodes.

X
X

® Derive the derivative of the logistic sigmoid function

® Discuss how the decision boundary will change if you replace the Heaviside step
function in a Rosenblatt’s perceptron with a logistic sigmoid function in which you
use a threshold=0.5 for classification.
29/30

References

® [LWLS] Section 6.1

® Neural Networks and Deep Learning by Michael Nielsen
(http://neuralnetworksanddeeplearning.com/)

e [M] Chapter 13

30/30

http://neuralnetworksanddeeplearning.com/
http://neuralnetworksanddeeplearning.com/

	Perceptron
	Structures and decision boundaries of Perceptron
	Problems with perceptron
	Extensions of Perceptron

