
Machine Learning
Neural Networks 2

Hiroshi Shimodaira and Hao Tang

2026

Ver. 1.0

1 / 26

Topics - you should be able to explain after this week

• Neural network with logistic sigmoid activation functions

• Interpretation of the output

• Training of single-layer neural network with MSE / cross entropy

• Gradient descent

• Activation functions

• Training of multi-layer neural network – error back propagation (EBP)

• Relationships with linear regression and logistic regression

• Computation graphs

2 / 26

Recap: Perceptron structures and decision boundaries

10 2xx x

Σ

Σ

Σ

2

1

X

X

3 / 26

Recap: Perceptron structures and decision boundaries

10 2xx x

Σ

Σ

Σ

10 2xx x

Σ

Σ

ΣΣ Σ

2

1

X

X 1

2

X

X

3 / 26

Recap: Perceptron structures and decision boundaries

10 2xx x

Σ

Σ

Σ

10 2xx x

Σ

Σ

ΣΣ Σ

0 21 xxx

ΣΣ

ΣΣΣ

Σ

Σ

Σ

2

1

X

X 1

2

X

X

1

2X

X

3 / 26

Recap: Output of NN – threshold func. vs sigmoid func.

4 / 26

Recap: Ability of neural networks

• Universal approximation theorem

◦ “Univariate function and a set of affine functionals can uniformly approximate any
continuous function of n real variables with support in the unit hypercube; only mild
conditions are imposed on the univariate function. “ (G. Cybenko (1989)

−→
A single-output node neural network with a single hidden layer with a finite neurons
can approximate continuous (and discontinuous) functions.

◦ K. Hornik (1990) doi:10.1016/0893-6080(91)90009-T
◦ N. Guliyev, V. Ismailov (2018) doi:10.31219/osf.io/xgnw8
◦ V. Ismailov (2023) “A three layer neural network can represent any multivariate

function” https://doi.org/10.1016/j.jmaa.2023.127096

5 / 26

https://doi.org/10.1016/0893-6080(91)90009-T
https://doi.org/10.31219/osf.io/xgnw8
https://doi.org/10.1016/j.jmaa.2023.127096

Output of logistic sigmoid activation function

• Consider a single-layer network with a single output node logistic sigmoid
activation function: (cf. logistic regression)

y = g(a) =
1

1 + exp(−a)
, where a =

d∑
i=0

wixi

=
1

1 + exp
(
−∑d

i=0 wixi
)

D0 1 ww w

0 1 Dx

y

x x

g

• Consider a two class problem, with classes C1 and C2. The posterior probability of
C1:

P(C1|x) =
p(x |C1)P(C1)

p(x)
=

p(x |C1)P(C1)

p(x |C1)P(C1) + p(x |C2)P(C2)

=
1

1 + p(x |C2)P(C2)
p(x |C1)P(C1)

=
1

1 + exp
(
− log p(x |C1)P(C1)

p(x |C2)P(C2)

)

6 / 26

Output of logistic sigmoid activation function

• Consider a single-layer network with a single output node logistic sigmoid
activation function: (cf. logistic regression)

y = g(a) =
1

1 + exp(−a)
, where a =

d∑
i=0

wixi

=
1

1 + exp
(
−∑d

i=0 wixi
)

D0 1 ww w

0 1 Dx

y

x x

g

• Consider a two class problem, with classes C1 and C2. The posterior probability of
C1:

P(C1|x) =
p(x |C1)P(C1)

p(x)
=

p(x |C1)P(C1)

p(x |C1)P(C1) + p(x |C2)P(C2)

=
1

1 + p(x |C2)P(C2)
p(x |C1)P(C1)

=
1

1 + exp
(
− log p(x |C1)P(C1)

p(x |C2)P(C2)

)
6 / 26

Approximation of posterior probabilities

-6 -4 -2 0 2 4 6

0

0.2

0.4

0.6

0.8

1

z

h
(z

)
=

 1
 /

 (
1

+
e

x
p

(-
z
))

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20

p
(
x
)

x

P(S)=0.5, P(T)=0.5

p(S|x)

p(T|x)

Logistic sigmoid function: Posterior probabilities of two classes
with Gaussian distributions:

g(a) =
1

1 + exp(−a)
7 / 26

Training single layer neural network with MSE

• Training set : D = {(x1, y1), . . . , (xN , yN)}, where yi ∈ {0, 1}

• Error function:
EMSE(w) =

1

2

N∑
n=1

(ŷn − yn)
2

=
1

2

N∑
n=1

(
g(wTxn)− yn

)2
=

1

2

N∑
n=1

(
g

(
d∑

i=0

wixni

)
− yn

)2

• Definition of the training problem as an optimisation problem

min
w

EMSE(w)

8 / 26

Training single layer neural network with MSE

• Training set : D = {(x1, y1), . . . , (xN , yN)}, where yi ∈ {0, 1}
• Error function:

EMSE(w) =
1

2

N∑
n=1

(ŷn − yn)
2

=
1

2

N∑
n=1

(
g(wTxn)− yn

)2
=

1

2

N∑
n=1

(
g

(
d∑

i=0

wixni

)
− yn

)2

• Definition of the training problem as an optimisation problem

min
w

EMSE(w)

8 / 26

Training single layer neural network with MSE

• Training set : D = {(x1, y1), . . . , (xN , yN)}, where yi ∈ {0, 1}
• Error function:

EMSE(w) =
1

2

N∑
n=1

(ŷn − yn)
2

=
1

2

N∑
n=1

(
g(wTxn)− yn

)2
=

1

2

N∑
n=1

(
g

(
d∑

i=0

wixni

)
− yn

)2

• Definition of the training problem as an optimisation problem

min
w

EMSE(w)

8 / 26

Training single layer neural network with MSE (cont.)

• Optimisation problem: min
w

EMSE(w)

• No analytical (closed-form) solutions

• Employ an iterative method (requires initial values)
e.g. Gradient descent, Newton’s method, Conjugate gradient methods

• Gradient descent

(scalar form)

w
(new)
i ← wi − η

∂

∂wi
E (w), (η > 0)

(vector form)
w (new) ← w − η∇wE (w), (η > 0)

• Online/stochastic gradient descent (cf. Batch training)

Sample (xn, yn) from the data set and update the weights at a time.

9 / 26

Training single layer neural network with MSE (cont.)

• Optimisation problem: min
w

EMSE(w)

• No analytical (closed-form) solutions

• Employ an iterative method (requires initial values)
e.g. Gradient descent, Newton’s method, Conjugate gradient methods

• Gradient descent

(scalar form)

w
(new)
i ← wi − η

∂

∂wi
E (w), (η > 0)

(vector form)
w (new) ← w − η∇wE (w), (η > 0)

• Online/stochastic gradient descent (cf. Batch training)

Sample (xn, yn) from the data set and update the weights at a time.

9 / 26

Training single layer neural network with MSE (cont.)

• Optimisation problem: min
w

EMSE(w)

• No analytical (closed-form) solutions

• Employ an iterative method (requires initial values)
e.g. Gradient descent, Newton’s method, Conjugate gradient methods

• Gradient descent

(scalar form)

w
(new)
i ← wi − η

∂

∂wi
E (w), (η > 0)

(vector form)
w (new) ← w − η∇wE (w), (η > 0)

• Online/stochastic gradient descent (cf. Batch training)

Sample (xn, yn) from the data set and update the weights at a time.

9 / 26

Training single layer neural network with MSE (cont.)

• Optimisation problem: min
w

EMSE(w)

• No analytical (closed-form) solutions

• Employ an iterative method (requires initial values)
e.g. Gradient descent, Newton’s method, Conjugate gradient methods

• Gradient descent

(scalar form)

w
(new)
i ← wi − η

∂

∂wi
E (w), (η > 0)

(vector form)
w (new) ← w − η∇wE (w), (η > 0)

• Online/stochastic gradient descent (cf. Batch training)

Sample (xn, yn) from the data set and update the weights at a time.

9 / 26

Training single layer neural network with MSE (cont.)

• Optimisation problem: min
w

EMSE(w)

• No analytical (closed-form) solutions

• Employ an iterative method (requires initial values)
e.g. Gradient descent, Newton’s method, Conjugate gradient methods

• Gradient descent

(scalar form)

w
(new)
i ← wi − η

∂

∂wi
E (w), (η > 0)

(vector form)
w (new) ← w − η∇wE (w), (η > 0)

• Online/stochastic gradient descent (cf. Batch training)

Sample (xn, yn) from the data set and update the weights at a time.

9 / 26

Training single layer neural network with MSE (cont.)

• Optimisation problem: min
w

EMSE(w)

• No analytical (closed-form) solutions

• Employ an iterative method (requires initial values)
e.g. Gradient descent, Newton’s method, Conjugate gradient methods

• Gradient descent

(scalar form)

w
(new)
i ← wi − η

∂

∂wi
E (w), (η > 0)

(vector form)
w (new) ← w − η∇wE (w), (η > 0)

• Online/stochastic gradient descent (cf. Batch training)

Sample (xn, yn) from the data set and update the weights at a time.

9 / 26

Training single layer neural network with MSE (cont.)

• Optimisation problem: min
w

EMSE(w)

• No analytical (closed-form) solutions

• Employ an iterative method (requires initial values)
e.g. Gradient descent, Newton’s method, Conjugate gradient methods

• Gradient descent

(scalar form)

w
(new)
i ← wi − η

∂

∂wi
E (w), (η > 0)

(vector form)
w (new) ← w − η∇wE (w), (η > 0)

• Online/stochastic gradient descent (cf. Batch training)

Sample (xn, yn) from the data set and update the weights at a time.

9 / 26

Gradient descent

w
(new)
i ← wi − η

∂

∂wi
E (w), (η > 0)

i

E

w

global minimum

10 / 26

Gradient descent

w
(new)
i ← wi − η

∂

∂wi
E (w), (η > 0)

i

E

w iw

E

global minimum local minimum

10 / 26

Training single layer neural network with MSE (cont.)

EMSE(w) =
N∑

n=1

En, where En =
1

2
(ŷn − yn)

2 =
1

2

(
g

(
d∑

i=0

wixni

)
− yn

)2

where ŷn = g(an), an =
d∑

i=0

wixni ,
∂ an
∂ wi

= xni

∂ En(w)

∂ wi
=

∂ En(w)

∂ ŷn

∂ ŷn
∂ an

∂ an
∂ wi

= (ŷn − yn)
∂ g(an)

∂ an

∂ an
∂ wi

= (ŷn − yn) g
′(an) xni

= (ŷn − yn) g(an) (1− g(an)) xni if g() is a sigmoid function

= (ŷn − yn) ŷn (1− ŷn) xni

11 / 26

Training single layer neural network with MSE (cont.)

EMSE(w) =
N∑

n=1

En, where En =
1

2
(ŷn − yn)

2 =
1

2

(
g

(
d∑

i=0

wixni

)
− yn

)2

where ŷn = g(an), an =
d∑

i=0

wixni ,
∂ an
∂ wi

= xni

∂ En(w)

∂ wi
=

∂ En(w)

∂ ŷn

∂ ŷn
∂ an

∂ an
∂ wi

= (ŷn − yn)
∂ g(an)

∂ an

∂ an
∂ wi

= (ŷn − yn) g
′(an) xni

= (ŷn − yn) g(an) (1− g(an)) xni if g() is a sigmoid function

= (ŷn − yn) ŷn (1− ŷn) xni

11 / 26

Training single layer neural network with MSE (cont.)

EMSE(w) =
N∑

n=1

En, where En =
1

2
(ŷn − yn)

2 =
1

2

(
g

(
d∑

i=0

wixni

)
− yn

)2

where ŷn = g(an), an =
d∑

i=0

wixni ,
∂ an
∂ wi

= xni

∂ En(w)

∂ wi
=

∂ En(w)

∂ ŷn

∂ ŷn
∂ an

∂ an
∂ wi

= (ŷn − yn)
∂ g(an)

∂ an

∂ an
∂ wi

= (ŷn − yn) g
′(an) xni

= (ŷn − yn) g(an) (1− g(an)) xni if g() is a sigmoid function

= (ŷn − yn) ŷn (1− ŷn) xni

11 / 26

Training single layer neural network with MSE (cont.)

EMSE(w) =
N∑

n=1

En, where En =
1

2
(ŷn − yn)

2 =
1

2

(
g

(
d∑

i=0

wixni

)
− yn

)2

where ŷn = g(an), an =
d∑

i=0

wixni ,
∂ an
∂ wi

= xni

∂ En(w)

∂ wi
=

∂ En(w)

∂ ŷn

∂ ŷn
∂ an

∂ an
∂ wi

= (ŷn − yn)
∂ g(an)

∂ an

∂ an
∂ wi

= (ŷn − yn) g
′(an) xni

= (ŷn − yn) g(an) (1− g(an)) xni if g() is a sigmoid function

= (ŷn − yn) ŷn (1− ŷn) xni

11 / 26

Another training criterion – cross-entropy error

• Training problem with the mean squared error (MSE) criterion with the sigmoid
function

EMSE(w) =
1

2

N∑
n=1

(ŷn − yn)
2 , ŷn = g(an)

∂ EMSE(w)

∂ wi
=

N∑
n=1

(ŷn − yn) g
′(an) xni , g ′(a) = g(a)(1− g(a))

g ′(a) ≈ 0 for such a that g(a) ≈ 0 or 1. -6 -4 -2 0 2 4 6

0

0.2

0.4

0.6

0.8

1

z

h
(z

)
=

 1
 /
 (

1
+

e
x
p
(-

z
))

• Cross-entropy error

EH(w) = − 1

N

N∑
n=1

{ yn log ŷn + (1−yn) log (1−ŷn) }
For multi classes, EH(w) = − 1

N

∑N
n=1

∑
iyi log ŷi

It can be shown that:
∂ EH(w)

∂ wi
=

1

N

N∑
n=1

(ŷn − yn) xni

12 / 26

Another training criterion – cross-entropy error

• Training problem with the mean squared error (MSE) criterion with the sigmoid
function

EMSE(w) =
1

2

N∑
n=1

(ŷn − yn)
2 , ŷn = g(an)

∂ EMSE(w)

∂ wi
=

N∑
n=1

(ŷn − yn) g
′(an) xni , g ′(a) = g(a)(1− g(a))

g ′(a) ≈ 0 for such a that g(a) ≈ 0 or 1. -6 -4 -2 0 2 4 6

0

0.2

0.4

0.6

0.8

1

z

h
(z

)
=

 1
 /
 (

1
+

e
x
p
(-

z
))

• Cross-entropy error

EH(w) = − 1

N

N∑
n=1

{ yn log ŷn + (1−yn) log (1−ŷn) }
For multi classes, EH(w) = − 1

N

∑N
n=1

∑
iyi log ŷi

It can be shown that:
∂ EH(w)

∂ wi
=

1

N

N∑
n=1

(ŷn − yn) xni

12 / 26

Another training criterion – cross-entropy error

• Training problem with the mean squared error (MSE) criterion with the sigmoid
function

EMSE(w) =
1

2

N∑
n=1

(ŷn − yn)
2 , ŷn = g(an)

∂ EMSE(w)

∂ wi
=

N∑
n=1

(ŷn − yn) g
′(an) xni , g ′(a) = g(a)(1− g(a))

g ′(a) ≈ 0 for such a that g(a) ≈ 0 or 1. -6 -4 -2 0 2 4 6

0

0.2

0.4

0.6

0.8

1

z

h
(z

)
=

 1
 /
 (

1
+

e
x
p
(-

z
))

• Cross-entropy error

EH(w) = − 1

N

N∑
n=1

{ yn log ŷn + (1−yn) log (1−ŷn) }
For multi classes, EH(w) = − 1

N

∑N
n=1

∑
iyi log ŷi

It can be shown that:
∂ EH(w)

∂ wi
=

1

N

N∑
n=1

(ŷn − yn) xni
12 / 26

Other activation functions

• Tanh

g(a) = tanh(a) =
1− e−2a

1 + e−2a

◦ Mapping (−∞,+∞) → (−1, 1)
◦ 0 (zero) centred → faster convergence than sigmoid

-6 -4 -2 0 2 4 6

-1

-0.5

0

0.5

1

a

g
(a

)
=

 t
a

n
h

(a
)

• ReLU (Rectified Linear Unit)

g(a) = max(0, a)

◦ Several times faster than tanh.
◦ ’Dying ReLU’ problem – a unit of outputting 0 always
→ use Leaky ReLU instead

-3 -2 -1 0 1 2 3
-0.5

0

0.5

1

1.5

g
(a

)

a

ReLU

Leaky ReLU

For details, see Kevin Murphy, “Probabilistic Machine Learning: An Introduction”, Sec. 13.4.3.

13 / 26

https://probml.github.io/pml-book/book1.html

Other activation functions

• Tanh

g(a) = tanh(a) =
1− e−2a

1 + e−2a

◦ Mapping (−∞,+∞) → (−1, 1)
◦ 0 (zero) centred → faster convergence than sigmoid

-6 -4 -2 0 2 4 6

-1

-0.5

0

0.5

1

a

g
(a

)
=

 t
a

n
h

(a
)

• ReLU (Rectified Linear Unit)

g(a) = max(0, a)

◦ Several times faster than tanh.
◦ ’Dying ReLU’ problem – a unit of outputting 0 always
→ use Leaky ReLU instead

-3 -2 -1 0 1 2 3
-0.5

0

0.5

1

1.5

g
(a

)

a

ReLU

Leaky ReLU

For details, see Kevin Murphy, “Probabilistic Machine Learning: An Introduction”, Sec. 13.4.3.
13 / 26

https://probml.github.io/pml-book/book1.html

Single-layer network with multiple output nodes

KD

k0 kD

10

w

w

w

w

i

k K1

0 D1 x

yy

xxx

y

gg g

y1(x) = g(wT
1 x+ w10)

...
yK (x) = g(wT

Kx+ wK0) y1
...
yK

 = g


w10 w11 . . .w1d

...
. . .

...
wK0wK1 . . .wKd




1
x1
...
xd




y = g (Wẋ)

• K output nodes: y1, . . . , yK .

• For xn = (xn0, . . . , xnd)
T ,

ŷnk = g
(d∑

i=0

wki xni

)
= g(ank) , ank =

d∑
i=0

wki xni

14 / 26

Single-layer network with multiple output nodes

k0 kD

KD10

ww

ww

i

k K1

0 D1 x

yy

xxx

y

gg g

y1(x) = g(wT
1 x+ w10)

...
yK (x) = g(wT

Kx+ wK0) y1
...
yK

 = g


w10 w11 . . .w1d

...
. . .

...
wK0wK1 . . .wKd




1
x1
...
xd




y = g (Wẋ)

• K output nodes: y1, . . . , yK .

• For xn = (xn0, . . . , xnd)
T ,

ŷnk = g
(d∑

i=0

wki xni

)
= g(ank) , ank =

d∑
i=0

wki xni

14 / 26

Training of single-layer network with multiple output nodes

• Training set : D = {(x1, y1), . . . , (xN , yN)}
where yn = (yn1, . . . , ynK) and ynk ∈ {0, 1}

• Error function:

EMSE(w) =
1

2

N∑
n=1

∥ŷn − yn∥2

=
N∑

n=1

En, where En =
1

2
∥ŷn − yn∥2 =

1

2

K∑
k=1

(ŷnk − ynk)
2

• Training with the gradient descent:

wki ← wki − η
∂E

∂wki
, (η > 0)

15 / 26

Training of single-layer network with multiple output nodes

• Training set : D = {(x1, y1), . . . , (xN , yN)}
where yn = (yn1, . . . , ynK) and ynk ∈ {0, 1}

• Error function:

EMSE(w) =
1

2

N∑
n=1

∥ŷn − yn∥2

=
N∑

n=1

En, where En =
1

2
∥ŷn − yn∥2 =

1

2

K∑
k=1

(ŷnk − ynk)
2

• Training with the gradient descent:

wki ← wki − η
∂E

∂wki
, (η > 0)

15 / 26

Training of single-layer network with multiple output nodes

• Training set : D = {(x1, y1), . . . , (xN , yN)}
where yn = (yn1, . . . , ynK) and ynk ∈ {0, 1}

• Error function:

EMSE(w) =
1

2

N∑
n=1

∥ŷn − yn∥2

=
N∑

n=1

En, where En =
1

2
∥ŷn − yn∥2 =

1

2

K∑
k=1

(ŷnk − ynk)
2

• Training with the gradient descent:

wki ← wki − η
∂E

∂wki
, (η > 0)

15 / 26

The derivatives of the error function (single-layer)

En =
1

2

K∑
k=1

(ŷnk − ynk)
2

ŷnk = g(ank)

ank =
D∑
i=0

wkixni

10 KDww

1

1

k

i0

K

Dx

y y

x

y

x x

gg g

∂En

∂wki
=

∂En

∂ŷnk

∂ŷnk
∂ank

∂ank
∂wki

= (ŷnk − ynk) g
′(ank) xni

16 / 26

The derivatives of the error function (single-layer)

En =
1

2

K∑
k=1

(ŷnk − ynk)
2

ŷnk = g(ank)

ank =
D∑
i=0

wkixni

10 KDww

1

1

k

i0

K

Dx

y y

x

y

x x

gg g

∂En

∂wki
=

∂En

∂ŷnk

∂ŷnk
∂ank

∂ank
∂wki

= (ŷnk − ynk) g
′(ank) xni

16 / 26

Normalisation of output nodes - softmax

KD

k0 kD

10

w

w

w

w

i

k K1

0 D1 x

yy

xxx

y

gg g

• Outputs with sigmoid activation function:

K∑
k=1

yk ̸= 1

yk = g(ak) =
1

1 + exp(−ak)
, ak =

d∑
i=0

wkixi

• Softmax activation function:

yk =
exp(ak)∑K
ℓ=1 exp(aℓ)

• Properties of the softmax function

(i) 0 ≤ yk ≤ 1

(ii)
K∑

k=1

yk = 1

(iii) differentiable

(iv) yk ≈ P(Ck |x) = p(x|Ck)P(Ck)∑K
ℓ=1 p(x|Ck)P(Ck)

17 / 26

Normalisation of output nodes - softmax

KD

k0 kD

10

w

w

w

w

i

k K1

0 D1 x

yy

xxx

y

gg g

• Outputs with sigmoid activation function:

K∑
k=1

yk ̸= 1

yk = g(ak) =
1

1 + exp(−ak)
, ak =

d∑
i=0

wkixi

• Softmax activation function:

yk =
exp(ak)∑K
ℓ=1 exp(aℓ)

• Properties of the softmax function

(i) 0 ≤ yk ≤ 1

(ii)
K∑

k=1

yk = 1

(iii) differentiable

(iv) yk ≈ P(Ck |x) = p(x|Ck)P(Ck)∑K
ℓ=1 p(x|Ck)P(Ck)

17 / 26

Normalisation of output nodes - softmax

KD

k0 kD

10

w

w

w

w

i

k K1

0 D1 x

yy

xxx

y

gg g

• Outputs with sigmoid activation function:

K∑
k=1

yk ̸= 1

yk = g(ak) =
1

1 + exp(−ak)
, ak =

d∑
i=0

wkixi

• Softmax activation function:

yk =
exp(ak)∑K
ℓ=1 exp(aℓ)

• Properties of the softmax function

(i) 0 ≤ yk ≤ 1

(ii)
K∑

k=1

yk = 1

(iii) differentiable

(iv) yk ≈ P(Ck |x) = p(x|Ck)P(Ck)∑K
ℓ=1 p(x|Ck)P(Ck)

17 / 26

Normalisation of output nodes - softmax

KD

k0 kD

10

w

w

w

w

i

k K1

0 D1 x

yy

xxx

y

gg g

• Outputs with sigmoid activation function:

K∑
k=1

yk ̸= 1

yk = g(ak) =
1

1 + exp(−ak)
, ak =

d∑
i=0

wkixi

• Softmax activation function:

yk =
exp(ak)∑K
ℓ=1 exp(aℓ)

• Properties of the softmax function

(i) 0 ≤ yk ≤ 1

(ii)
K∑

k=1

yk = 1

(iii) differentiable

(iv) yk ≈ P(Ck |x) = p(x|Ck)P(Ck)∑K
ℓ=1 p(x|Ck)P(Ck)

17 / 26

Normalisation of output nodes - softmax

KD

k0 kD

10

w

w

w

w

i

k K1

0 D1 x

yy

xxx

y

gg g

• Outputs with sigmoid activation function:

K∑
k=1

yk ̸= 1

yk = g(ak) =
1

1 + exp(−ak)
, ak =

d∑
i=0

wkixi

• Softmax activation function:

yk =
exp(ak)∑K
ℓ=1 exp(aℓ)

• Properties of the softmax function

(i) 0 ≤ yk ≤ 1

(ii)
K∑

k=1

yk = 1

(iii) differentiable

(iv) yk ≈ P(Ck |x) = p(x|Ck)P(Ck)∑K
ℓ=1 p(x|Ck)P(Ck)

17 / 26

Normalisation of output nodes - softmax

KD

k0 kD

10

w

w

w

w

i

k K1

0 D1 x

yy

xxx

y

gg g

• Outputs with sigmoid activation function:

K∑
k=1

yk ̸= 1

yk = g(ak) =
1

1 + exp(−ak)
, ak =

d∑
i=0

wkixi

• Softmax activation function:

yk =
exp(ak)∑K
ℓ=1 exp(aℓ)

• Properties of the softmax function

(i) 0 ≤ yk ≤ 1

(ii)
K∑

k=1

yk = 1

(iii) differentiable

(iv) yk ≈ P(Ck |x) = p(x|Ck)P(Ck)∑K
ℓ=1 p(x|Ck)P(Ck)

17 / 26

Normalisation of output nodes - softmax

KD

k0 kD

10

w

w

w

w

i

k K1

0 D1 x

yy

xxx

y

gg g

• Outputs with sigmoid activation function:

K∑
k=1

yk ̸= 1

yk = g(ak) =
1

1 + exp(−ak)
, ak =

d∑
i=0

wkixi

• Softmax activation function:

yk =
exp(ak)∑K
ℓ=1 exp(aℓ)

• Properties of the softmax function

(i) 0 ≤ yk ≤ 1

(ii)
K∑

k=1

yk = 1

(iii) differentiable

(iv) yk ≈ P(Ck |x) = p(x|Ck)P(Ck)∑K
ℓ=1 p(x|Ck)P(Ck)

17 / 26

Training of multi-layer neural networks

Multi-layer perceptron (MLP)

(1)

(2)
(2)

(1)

10

10 MD

KM

w

w

w

w

1

1

i

Mj

0

k K

D

0

1

x

z z

x

zz

x x

y y y

h

g

h

gg

h

• Hidden-to-output weights:

w
(2)
kj ← w

(2)
kj − η

∂E

∂w
(2)
kj

• Input-to-hidden weights:

w
(1)
ji ← w

(1)
ji − η

∂E

∂w
(1)
ji

18 / 26

Training of multi-layer neural networks

Multi-layer perceptron (MLP)

(1)

(2)
(2)

(1)

10

10 MD

KM

w

w

w

w

1

1

i

Mj

0

k K

D

0

1

x

z z

x

zz

x x

y y y

h

g

h

gg

h

• Hidden-to-output weights:

w
(2)
kj ← w

(2)
kj − η

∂E

∂w
(2)
kj

• Input-to-hidden weights:

w
(1)
ji ← w

(1)
ji − η

∂E

∂w
(1)
ji

18 / 26

Training of multi-layer neural networks

Multi-layer perceptron (MLP)

(1)

(2)
(2)

(1)

10

10 MD

KM

w

w

w

w

1

1

i

Mj

0

k K

D

0

1

x

z z

x

zz

x x

y y y

h

g

h

gg

h

• Hidden-to-output weights:

w
(2)
kj ← w

(2)
kj − η

∂E

∂w
(2)
kj

• Input-to-hidden weights:

w
(1)
ji ← w

(1)
ji − η

∂E

∂w
(1)
ji

18 / 26

Training of MLP

1940s Warren McCulloch and Walter Pitts : ’threshold logic’
Donald Hebb : ’Hebbian learning’

1957 Frank Rosenblatt : ’Perceptron’
1969 Marvin Minsky and Seymour Papert : limitations of neural networks
1980 Kunihiro Fukushima: ’Neocognitoron’

1986 D. Rumelhart, G. Hinton, and R. Williams, “Learning representations by
back-propagating errors” (1974, Paul Werbos)

19 / 26

Training of MLP

1940s Warren McCulloch and Walter Pitts : ’threshold logic’
Donald Hebb : ’Hebbian learning’

1957 Frank Rosenblatt : ’Perceptron’
1969 Marvin Minsky and Seymour Papert : limitations of neural networks
1980 Kunihiro Fukushima: ’Neocognitoron’

1986 D. Rumelhart, G. Hinton, and R. Williams, “Learning representations by
back-propagating errors” (1974, Paul Werbos)

19 / 26

The derivatives of the error function (two-layers)

En =
1

2

K∑
k=1

(ŷnk−ynk)2

ŷnk = g(ank), ank =
M∑
j=1

w
(2)
kj znj

znj = h(bnj), bnj =
d∑

i=0

w
(1)
ji xni

(1)

(2)

(1)

(2)

10

KM10

MD

w

ww

w

0 D

1 M

i

k

0 j

1 K

1

z z

y

z

y

x x

z

y

xx

h h

gg g

h

∂En

∂w
(2)
kj

=
∂En

∂ŷnk

∂ŷnk
∂ank

∂ank

∂w
(2)
kj

= (ŷnk−ynk) g ′(ank) znj

∂En

∂w
(1)
ji

=
∂En

∂znj

∂znj
∂bnj

∂bnj

∂w
(1)
ji

=
(K∑

k=1

∂En

∂ŷnk

∂ŷnk
∂znj

)
h′(bnj) xni

=
(K∑

k=1

(ŷnk−ynk)g ′(ank)w
(2)
kj

)
h′(bnj) xni

20 / 26

The derivatives of the error function (two-layers)

En =
1

2

K∑
k=1

(ŷnk−ynk)2

ŷnk = g(ank), ank =
M∑
j=1

w
(2)
kj znj

znj = h(bnj), bnj =
d∑

i=0

w
(1)
ji xni

(1) (1)

(2)
(2)

10

KM10

MD

w

ww

w

i0

K1

j

D

k

M0 1

1 x

z z

x

zz

x x

y y y

h

gg g

h h

∂En

∂w
(2)
kj

=
∂En

∂ŷnk

∂ŷnk
∂ank

∂ank

∂w
(2)
kj

= (ŷnk−ynk) g ′(ank) znj

∂En

∂w
(1)
ji

=
∂En

∂znj

∂znj
∂bnj

∂bnj

∂w
(1)
ji

=
(K∑

k=1

∂En

∂ŷnk

∂ŷnk
∂znj

)
h′(bnj) xni

=
(K∑

k=1

(ŷnk−ynk)g ′(ank)w
(2)
kj

)
h′(bnj) xni

20 / 26

The derivatives of the error function (two-layers)

En =
1

2

K∑
k=1

(ŷnk−ynk)2

ŷnk = g(ank), ank =
M∑
j=1

w
(2)
kj znj

znj = h(bnj), bnj =
d∑

i=0

w
(1)
ji xni

(1)

(2)

(1)

(2)

(1)
MD

KM

ji

10

10w

ww

w
w

M

D

1

i

j0

k K1

10

zz

yy

x x x

y

x

zz

gg

h

g

h h

∂En

∂w
(2)
kj

=
∂En

∂ŷnk

∂ŷnk
∂ank

∂ank

∂w
(2)
kj

= (ŷnk−ynk) g ′(ank) znj

∂En

∂w
(1)
ji

=
∂En

∂znj

∂znj
∂bnj

∂bnj

∂w
(1)
ji

=
(K∑

k=1

∂En

∂ŷnk

∂ŷnk
∂znj

)
h′(bnj) xni

=
(K∑

k=1

(ŷnk−ynk)g ′(ank)w
(2)
kj

)
h′(bnj) xni

20 / 26

Error back propagation

∂En

∂w
(2)
kj

=
∂En

∂ŷnk

∂ŷnk
∂ank

∂ank

∂w
(2)
kj

= (ŷnk−ynk) g ′(ank) znj

= δ
(2)
nk znj , δ

(2)
nk =

∂En

∂ank (1)

(2)

(1)

(2)

(1)
MD

KM

ji

10

10w

ww

w
w

M

D

1

i

j0

k K1

10

zz

yy

x x x

y

x

zz

gg

h

g

h h

∂En

∂w
(1)
ji

=
∂En

∂znj

∂znj
∂bnj

∂bnj

∂w
(1)
ji

=
(K∑

k=1

(ŷnk−ynk)g ′(ank)w
(2)
kj

)
h′(bnj) xni

=
(K∑

k=1

δ
(2)
nk w

(2)
kj

)
h′(bnj) xni

21 / 26

Error back propagation

∂En

∂w
(2)
kj

=
∂En

∂ŷnk

∂ŷnk
∂ank

∂ank

∂w
(2)
kj

= (ŷnk−ynk) g ′(ank) znj

= δ
(2)
nk znj , δ

(2)
nk =

∂En

∂ank (1)

(2)

(1)

(2)

(1)
MD

KM

ji

10

10w

ww

w
w

M

D

1

i

j0

k K1

10

zz

yy

x x x

y

x

zz

gg

h

g

h h

∂En

∂w
(1)
ji

=
∂En

∂znj

∂znj
∂bnj

∂bnj

∂w
(1)
ji

=
(K∑

k=1

(ŷnk−ynk)g ′(ank)w
(2)
kj

)
h′(bnj) xni

=
(K∑

k=1

δ
(2)
nk w

(2)
kj

)
h′(bnj) xni

21 / 26

Practical representations - computation graph
• Consider a two-layer neural network with softmax output

◦ 1st layer with sigmoid activation functions:

z = g(x) = σ(W1 x+ w10)

◦ 2nd layer with a softmax activation function:

ŷ = softmax(W2 z+ w20)

◦ Cross-entropy loss function

L = −
∑

yi log ŷi = − log ŷc = − log softmax(W2 z+w20)c

(2)

(1)

(2)

(1)

10 MD

KM10 w

w

w

w

^^ ^^

M

0

0

i

1 k K

j

1 D

1z

x

y

zz z

y y

xx x

ggg

Softmax

4

4 6

63 52

1 2 3 5

^

Lx

f f

xx

f f

y

f

y

f

xx x

201 10 2

log+σ

W w

Softmax

w

+

W

22 / 26

Practical representations - computation graph
• Consider a two-layer neural network with softmax output

◦ 1st layer with sigmoid activation functions:

z = g(x) = σ(W1 x+ w10)

◦ 2nd layer with a softmax activation function:

ŷ = softmax(W2 z+ w20)

◦ Cross-entropy loss function

L = −
∑

yi log ŷi = − log ŷc = − log softmax(W2 z+w20)c

(2)

(1)

(2)

(1)

10 MD

KM10 w

w

w

w

^^ ^^

M

0

0

i

1 k K

j

1 D

1z

x

y

zz z

y y

xx x

ggg

Softmax

4

4 6

63 52

1 2 3 5

^

Lx

f f

xx

f f

y

f

y

f

xx x

201 10 2

log+σ

W w

Softmax

w

+

W

22 / 26

Computation graph

Represents computation as a directed graph comprising of simple operations on vectors
and matrices ⇒ Automatic differentiation (NE)

4

4 6

63 52

1 2 3 5

^

Lx

f f

xx

f f

y

f

y

f

xx x

201 10 2

log+σ

W w

Softmax

w

+

W

L = f (x) = f6(f5(f4(f3(f2(f1(x))))))

f = f6 ◦ f5 ◦ f4 ◦ f3 ◦ f2 ◦ f1
f1 : x2 = W1 x

f2 : x3 = x2 + w10

f3 : x4 = σ(x3)

f4 : x5 = W2 x4

f5 : x6 = x5 + w20

f6 : L = log softmax(x6)i=y

23 / 26

Computation graph (cont.)

4

4 6

63 52

1 2 3 5

^

Lx

f f

xx

f f

y

f

y

f

xx x

201 10 2

log+σ

W w

Softmax

w

+

W

∂L

∂W2
=

∂L

∂ x6

∂ x6
∂x5

∂ x5
∂W2

NB: matrix transpose is omitted for simplicity

∂L

∂W1
=

∂L

∂ x6

∂ x6
∂ x5

∂ x5
∂ x4

∂ x4
∂ x3

∂ x3
∂W1

• Forward pass: compute x2, . . . , x6, ŷ, L.

• Backward pass: compute ∂L
∂w20

, ∂L
∂W2

, ∂L
∂w10

, ∂L
∂W1

.

24 / 26

Computation graph (cont.)

5

4

^
2 4

1 2

3

3 6

6

5

x x
x

x

f f f

y

f

xx

ff

y

L

2 201 10 W

+ log+ Softmaxσ

W ww

∂L

∂W2
=

∂L

∂ x6

∂ x6
∂x5

∂ x5
∂W2

NB: matrix transpose is omitted for simplicity

∂L

∂W1
=

∂L

∂ x6

∂ x6
∂ x5

∂ x5
∂ x4

∂ x4
∂ x3

∂ x3
∂W1

• Forward pass: compute x2, . . . , x6, ŷ, L.

• Backward pass: compute ∂L
∂w20

, ∂L
∂W2

, ∂L
∂w10

, ∂L
∂W1

.

24 / 26

Computation graph – cross entropy layer

4

4 6

63 52

1 2 3 5

^

Lx

f f

xx

f f

y

f

y

f

xx x

201 10 2

log+σ

W w

Softmax

w

+

W

L = − log ŷc = − log
eac∑
je

aj
, where c is the true class, a = x4

∂L

∂ai
=

∂

∂ai

(
log(

∑
j

eaj)− ac

)
=

eai∑
je

aj
− 1i=c = ŷi − 1i=c

∂L

∂ x6
= ŷ − y

25 / 26

Quizzes

• On slide 12, show the following:

∂ EH(w)

∂ wi
=

1

N

N∑
n=1

(ŷn − yn) xni

• On Slide 24, find the following:

◦ ∂ x6
∂w20

◦ ∂x5
∂W2

◦ ∂ x4
∂ x3

26 / 26

	Training of a single-layer neural network
	Single-layer network with multiple output nodes
	Multi-layer neural network

