Machine Learning

Neural Networks 2

Hiroshi Shimodaira and Hao Tang

2026

Ver. 1.0

1/26

Topics - you should be able to explain after this week

Neural network with logistic sigmoid activation functions
Interpretation of the output

Training of single-layer neural network with MSE / cross entropy
Gradient descent

Activation functions

Training of multi-layer neural network — error back propagation (EBP)
Relationships with linear regression and logistic regression

Computation graphs

2/26

Recap: Perceptron structures and decision boundaries

3/26

Recap: Perceptron structures and decision boundaries

3/26

Recap: Perceptron structures and decision boundaries

3/26

Recap: Output of NN — threshold func. vs sigmoid func.

NN2: W=[45, -30, -30]

NN1: W=[-25,5, 5] NN2: W=[7.5, -5, -5]

0.8 08
06 06
> 04 04
0.2 02
0 0

-05

-05

4/26

Recap: Ability of neural networks

® Universal approximation theorem

o “Univariate function and a set of affine functionals can uniformly approximate any
continuous function of n real variables with support in the unit hypercube; only mild
conditions are imposed on the univariate function. * (G. Cybenko (1989)

—

A single-output node neural network with a single hidden layer with a finite neurons
can approximate continuous (and discontinuous) functions.

o K. Hornik (1990) doi:10.1016/0893-6080(91)90009-T

o N. Guliyev, V. Ismailov (2018) doi:10.31219/osf.io /xgnw8

o V. Ismailov (2023) “A three layer neural network can represent any multivariate
function” https://doi.org/10.1016/j.jmaa.2023.127096

5/26

https://doi.org/10.1016/0893-6080(91)90009-T
https://doi.org/10.31219/osf.io/xgnw8
https://doi.org/10.1016/j.jmaa.2023.127096

Output of logistic sigmoid activation function

e Consider a single-layer network with a single output node logistic sigmoid
activation function: (cf. logistic regression)

1 d
———— where a= W X;
1+ exp(—a) ,Z:O: o

1
1+ exp (-7, W;x;)

y=g(a) =

6/26

Output of logistic sigmoid activation function

e Consider a single-layer network with a single output node logistic sigmoid
activation function: (cf. logistic regression)

1 d
= where a= Y wix;
pr—— where a ,Z:o: Wi X;

1
1+ exp (-7, W,'X,')

® Consider a two class problem, with classes C; and C,. The posterior probability of

y=g(a) =

C12
x|C) P(C x|CG) P(C
P(Cl‘x):p(|G) P(G) _ p(x|G1) P(&)
p(x) p(x|C1) P(C1) + p(x|C2) P(C2)
1 1
- x|G)P(C) x|C1) P(C1
L+ ierpe) Lt exe (-~ loa pictac)

6/26

Approximation of posterior probabilities

P(S)=0.5, P(T)=0.5

1/ (1+exp(-z))

h(z)

L L L L L L L — L T
-6 -4 -2 0 2 4 6 0 5 10 15 20

Logistic sigmoid function: Posterior probabilities of two classes
1 with Gaussian distributions:
g(a) = 1+ exp(—a)

7/26

Training single layer neural network with MSE

® Training set : D = {(x1,y1),---, (Xn, ¥Yn)}, where y; € {0,1}

8/26

Training single layer neural network with MSE

® Training set : D = {(x1,y1),---, (Xn, ¥Yn)}, where y; € {0,1}
® FError function: LN
Evse(w) = > Z (9n—Yn)2
n=1
1 2
=53 (g(WTXn) - yn)
n=1
1 ?
EZ < <Z W/Xn/> _Yn>
n=1

8/26

Training single layer neural network with MSE

® Training set : D = {(x1,y1),---, (Xn, ¥Yn)}, where y; € {0,1}
® FError function: LN
Evse(w) = > Z (9n—Yn)2
n=1
1 2
=5 (8w %)~ yn)
n=1
1N d 2
= EZ <g <Z Wani> _Yn>
n=1 i=0

® Definition of the training problem as an optimisation problem

mMiIn Eyvse(w)

8/26

Training single layer neural network with MSE (cont)

® Optimisation problem: min Eygse(w)
w

9/26

Training single layer neural network with MSE (cont)

® Optimisation problem: min Eygse(w)
w

® No analytical (closed-form) solutions

9/26

Training single layer neural network with MSE (cont)

® Optimisation problem: min Eygse(w)
w
® No analytical (closed-form) solutions

® Employ an iterative method (requires initial values)
e.g. Gradient descent, Newton's method, Conjugate gradient methods

9/26

Training single layer neural network with MSE (cont)

Optimisation problem: min Eyse(w)
w

No analytical (closed-form) solutions

Employ an iterative method (requires initial values)
e.g. Gradient descent, Newton's method, Conjugate gradient methods

Gradient descent

9/26

Training single layer neural network with MSE (cont)

Optimisation problem: min Eyse(w)
w

No analytical (closed-form) solutions

Employ an iterative method (requires initial values)

e.g. Gradient descent, Newton's method, Conjugate gradient methods
Gradient descent

(scalar form)

(new)

)
w; +— w;—naW,E(W), (n>0)

9/26

Training single layer neural network with MSE (cont)

Optimisation problem: min Eyse(w)
w

No analytical (closed-form) solutions

Employ an iterative method (requires initial values)
e.g. Gradient descent, Newton's method, Conjugate gradient methods

Gradient descent
(scalar form)

W'(new)

; — w;

g EW). (>0

(vector form)
wW) « w -V, E(w), (n>0)

9/26

Training single layer neural network with MSE (cont)

Optimisation problem: min Eyse(w)
w

No analytical (closed-form) solutions

Employ an iterative method (requires initial values)

e.g. Gradient descent, Newton's method, Conjugate gradient methods
Gradient descent

(scalar form)

(new)

)
w; +— w;—naW,E(W), (n>0)

(vector form)
wW) « w -V, E(w), (n>0)

Online/stochastic gradient descent (cf. Batch training)
Sample (xp, yn) from the data set and update the weights at a time.

9/26

Gradient descent

(new)

)
w; — w;—naW_E(W), (n>0)

global minimum

10/26

Gradient descent

(new)

0
w; — W;—naw_E(w), (n>0)

P —

global minimum local minimum

10/26

Training single layer neural network with MSE (cont)

N —

Evse(w) = Z E,, where E, =

2
N 1 d
(y”_yn)2 = E (g <Z Wani> _)/n>
n=1 i=0

11/26

Training single layer neural network with MSE (cont)

N —

Evse(w) = Z E,, where E, =

2
N 1 d
(y”_yn)2 = E (g <Z Wani> _)/n>
n=1 i=0

~ J 0 a,
where Yn = g(an)a an = ZWania o = Xni
i=0 aW

i

11/26

Training single layer neural network with MSE (cont)

2
N 1 ~ 1 d
EMSE(W) = Z E,, where E, = 5 (Yn —Yn)2 = E g Z WiXnpi | — Yn
n=1 i=0

N d dap
where Yn = g(an)a dn = ;Wixnia aw = Xni
0E,(w) O0E,(w) 0y, 0a,
ow; 0y, 0a, 0w,
dg(an) %

:(}/n_}/n) 8a,, 8W;
= (yn - }/n)g/(an)xni

A

= (Vn—yn)g(an) (L —g(an)) xni if g() is a sigmoid function

11/26

Training single layer neural network with MSE (cont)

2
N 1 ~ 1 d
EMSE(W) = Z E,, where E, = 5 (Yn —Yn)2 = E g Z WiXnpi | — Yn
n=1 i=0

N d dap
where Yn = g(an)a dn = ;Wixnia aw = Xni
0E,(w) O0E,(w) 0y, 0a,
ow; 0y, 0a, 0w,
(e 0g(an) %
= Un) da, Ow;

g/(an)xni
g(an) (1 —g(an)) xni if g() is a sigmoid function
n (1 - yn) Xni

11/26

Another training criterion — cross-entropy error

® Training problem with the mean squared error (MSE) criterion with the sigmoid

function
1 N
EMSE EZ bl)A/”:g(a”)
n=1
0 E
g# = Z — ¥n) &' (an) Xni, &'(3) = g(a)(1 - g(a))
Wl n=1

g'(a) =~ 0 for such a that g(a) ~0or 1.

ﬁﬁﬁﬁﬁ

12/26

Another training criterion — cross-entropy error

® Training problem with the mean squared error (MSE) criterion with the sigmoid
function

1 N
EMSE EZ bl)A/”:g(a”)
n=1 z
0 E N
g# =" (Jn—yn) &' (an) xni, &'(2) = &(a)(1— g(a))
Wi n=1

g'(a) =~ 0 for such a that g(a) ~0or 1.

® Cross-entropy error

Eu(w) =~ 3" {yalog i+ (1-30) eti-0}

For multi classes, Ey(w) = NZ" 12 vilog yi

12/26

Another training criterion — cross-entropy error

® Training problem with the mean squared error (MSE) criterion with the sigmoid
function

1 N
EMSE 5 Z » = g(an)
n=1 EN
OE N
% =" (n—yn) &' (an) xni, &'(a)=gla)1—gla) &
Wi n=1

g'(a) =~ 0 for such a that g(a) ~0or 1.

® Cross-entropy error

Eu(w) =~ 3" {yalog i+ (1-30) eti-0}

For multi classes, Ey(w) = NZ" 12 vilog yi

It can be shown that: 9 Eu(w) y
w 1 R
= NZ (yn - _)/n) Xni

12/26

Other activation functions

® Tanh , '
1—e - 05
a) =tanh(a) = ——= g
s@) =)= o
o Mapping (—o0,4+00) — (—1,1) Tos
o 0 (zero) centred — faster convergence than sigmoid B

13/26

https://probml.github.io/pml-book/book1.html

Other activation functions

® Tanh , '
1—e - 05
a) =tanh(a) = ——= g
s@) =)= o
o Mapping (—o0,4+00) — (—1,1) Tos
o 0 (zero) centred — faster convergence than sigmoid B

® RelLU (Rectified Linear Unit)

g(a) = max(0, a)

o Several times faster than tanh.
o 'Dying ReLU’ problem — a unit of outputting 0 always
— use Leaky RelU instead

-3 -2 -1 0 1 2 3
a

https://probml.github.io/pml-book/book1.html

Single-layer network with multiple output nodes
1 (x) = g(w{ x + wo)
yi(x) = g(whx + wio)

1

Wip W11 ... Wig X1
C=e| | ;
WKo WK1 ... - WKd X.d

y = g (Wx)

d d
Ik = g(Z Wi Xni) = g(ank) ank = Y Wki Xni
i=0 i=0
14/26

Single-layer network with multiple output nodes
1 (x) = g(w{ x + wo)
yi(x) = g(whx + wio)

1

Wip W11 ... Wig X1
C=e| | ;
WKo WK1 ... - WKd X.d

y = g (Wx)

d d
Ik = g(Z Wi Xni) = g(ank) ank = Y Wki Xni
i=0 i=0
14/26

Training of single-layer network with multiple output nodes

® Training set : D = {(x1,¥1),---,(Xn,Yn)}
where 'y, = (Vn1,---,¥nk) and ynx € {0,1}

15/26

Training of single-layer network with multiple output nodes

® Training set : D = {(x1,¥1),---,(Xn,Yn)}
where 'y, = (Vn1,---,¥nk) and ynx € {0,1}

® Error function:

1M
EMSE(W) = EZ Hyn - YnH2
n=1

N 1 2 15 2
=> E,, where E,= EHyn —yul|© = 52 (Vnk — Ynk)
n=1 k=1

15/26

Training of single-layer network with multiple output nodes

® Training set : D = {(x1,¥1),---,(Xn,Yn)}
where 'y, = (Vn1,---,¥nk) and ynx € {0,1}

® Error function:
1N 5
Evse(w) = 52 197 — ¥all
n=1

N 1 2 15 2
=> E,, where E,= EHyn —yul|© = 52 (Vnk — Ynk)
n=1 k=1

® Training with the gradient descent:

OE
n@wk,- ’

Wy < Wy (77 > 0)

15/26

The derivatives of the error function (single-layer)

()A/nk - ynk)2

m

Il
N| =
M=

x
1
—

g(ank)

D
Z WikiXni
i=0

=]
\3<>
==

Il

dnk

16 /26

The derivatives of the

—

K
En — EZ (}A/nk - ynk)2
k=1
)A/nk = g(ank)
D

dnk = ZWkani
i=0

OE, OE, 09k Dank

OWki OPnk Oapk Owi;
= (Pnk — Ynk) &' (3nk) Xni

error function (single-layer)

16 /26

Normalisation of output nodes - softmax

® Qutputs with sigmoid activation function:

K
Dok # 1
k=1

1
vk = g(ak)

d
= HTP(—akY Ak = Z Wi Xi

i=0

17/26

Normalisation of output nodes - softmax

® Qutputs with sigmoid activation function:
K
Dok # 1
k=1
1

d
vk = glak) = Thep(—ar) %~ ; Wi Xi

e Softmax activation function:

~exp(ak)
yk - K
>y exp(ar)

17/26

Normalisation of output nodes - softmax

® Qutputs with sigmoid activation function:

e Softmax activation function:

~exp(ak)
yk - K
>y exp(ar)

® Properties of the softmax function

17/26

Normalisation of output nodes - softmax

® Qutputs with sigmoid activation function:

e Softmax activation function:

~exp(ak)
yk - K
>y exp(ar)

® Properties of the softmax function
(i) o<y <1

17/26

Normalisation of output nodes - softmax

® Qutputs with sigmoid activation function:

e Softmax activation function:

~exp(ak)
yk - K
>y exp(ar)

® Properties of the softmax function
(i) o<y <1
K

(i) D ow=1

17/26

Normalisation of output nodes - softmax

® Qutputs with sigmoid activation function:

K
Dok # 1
k=1
O p—
Vi = 8Lk 1+ exp(—ax)’

e Softmax activation function:

~exp(ak)
yk - K
>y exp(ar)

® Properties of the softmax function
() o<wy<1 (iii) differentiable
K

(i) D ow=1

17/26

Normalisation of output nodes - softmax

® Qutputs with sigmoid activation function:

K
Dok # 1
k=1
1
= a fy y
v = 8(2) 1+ exp(—ax)
e Softmax activation function:
exp(ak)

Yk = =k
22{:1 eXp(a@)

® Properties of the softmax function

() o<wy<1 (iii) differentiable

K
i) > =1 iv ~ P(Cilx) = —pHIPC)
(”) kZka () .yk (k|) Z?le(xlck)P(Ck)

17/26

Training of multi-layer neural networks

Multi-layer perceptron (MLP)

18/26

Training of multi-layer neural networks

Multi-layer perceptron (MLP)

® Hidden-to-output weights:

2 2 OE
o

18/26

Training of multi-layer neural networks

Multi-layer perceptron (MLP)

® Hidden-to-output weights:

2) 2) OE
Wy = W= 8W(2)
kj

® Input-to-hidden weights:

18/26

Training of MLP

1940s Warren McCulloch and Walter Pitts : 'threshold logic’
Donald Hebb : 'Hebbian learning’
1957 Frank Rosenblatt : 'Perceptron’

1969 Marvin Minsky and Seymour Papert : limitations of neural networks
1980 Kunihiro Fukushima: '"Neocognitoron’

19/26

Training of MLP

1940s Warren McCulloch and Walter Pitts : 'threshold logic’

1957
1969
1980

1986

Donald Hebb : 'Hebbian learning’

Frank Rosenblatt : 'Perceptron’

Marvin Minsky and Seymour Papert : limitations of neural networks
Kunihiro Fukushima: "Neocognitoron’

D. Rumelhart, G. Hinton, and R. Williams, “Learning representations by
back-propagating errors” (1974, Paul Werbos)

19/26

The derivatives of the error function (two-layers)

a 2
Z (ynk_)/nk)

k=1
M
A 2
Ynk = g(ank)7 dnk = E W;Ej)znj
=1

N

E,=

d
1
Znj = h(bnj)7 bnj = Z WJ(,)Xni
i=0

20/26

The derivatives of the error function (two-layers)

a 2
Z (ynk_)/nk)

k=1

N

E, =
M

Vnk = g(ank)7 dnk = Z W;EJ?)an
i=t

Znj = h(bnj)7 bnj = Z Wj(,'l)xni
i=0

OE, OE, 99w Oame
8Wl£j2) OYnk Oank 8Wl£12)

= (ynk _}/nk) g/(ank) Znj

20/26

The derivatives of the error function (two-layers)

a 2
Z (ynk_)/nk)

k=1

M
o _ (2)
Ynk = & ank)7 dnk = Z Wyj ™ Znj
j=1

E,=

N

d
1
Znj = h(bnj)7 bnj = Z WJ(,)Xni
OE, OE, 09 Oape
8Wl£j2) OYnk Oank 8Wl£12)

= (ynk _}/nk) g/(ank) Znj

8En N 3En 6sz- 6b,,j N (K aE,, 8)7,,k>h,(b ')X)
nj ni

aVVJ(Il) - 3an 8bn_/ 6VVJ(’1) N k=1 8_9!1/(8znj

$ 2))
= (Z (ynk_ynk)g,(ank)wkj)h (bnj)Xni
20/26

k=1

Error back propagation

6En B aEn a_)/}nk aank
8W1512) 8.)7nk Oank anEf)

= (ynk _ynk) g/(ank) Znj

2 2) OE,
= 5$;k) Znj> 55;/3 = Dans

21/26

Error back propagation

6En B aEn a_)/}nk aank
8W1512) 8.)7nk Oank anEf)

= (ynk_ynk)g/(ank)znj
2 2) OE,
= 5$;k) Znj> 55;/3 = Da
0E, B 0E, 32,,j 8bnj
3Mé” __azm Obyj 8Méﬂ

K
— (Z (ynk _Ynk)g/(ank)W;Ef)) h/(bnj) Xni
k=1

2 (2
= (51(‘lk)WlEj))h/(an) Xni
k=1

21/26

Practical representations - computation graph

® Consider a two-layer neural network with softmax output
o 1st layer with sigmoid activation functions:

z = g(x) = o(Wix + wyp)
o 2nd layer with a softmax activation function:
y = softmax(Wa z + wag)

o Cross-entropy loss function

L==Y"yilogy; = —log . = — log softmax(W, z+waxo).

22/26

Practical representations - computation graph

® Consider a two-layer neural network with softmax output
o 1st layer with sigmoid activation functions:

z = g(x) = o(Wix + wyp)
o 2nd layer with a softmax activation function:
y = softmax(Wa z + wag)

o Cross-entropy loss function

L==Y"yilogy; = —log . = — log softmax(W, z+waxo).

f 1y fi
NOE NGNS

22/26

Computation graph

Represents computation as a directed graph comprising of simple operations on vectors
and matrices = Automatic differentiation (NE)

L= f(x) = fs(fs(fa(3(f2(£(x)))))) fi: xo = Wix
f=fgofsofaofzofhof fr: x3 =x2+ wig

f3: x4 = 0(x3)

fa: x5 = Whxq

fs © X6 = X5 + wap

fo . L = logsoftmax(xe)i—y

23/26

Computation graph (cont)

oL oL 8X6 8X5 o
= NB: matrix transpose is omitted for simplicity

8W2 - 8X6 8X5 BWQ

oL OL Ox¢ Oxs Ox4 Ox3
8W1 B 8X6 8X5 8X4 (9X3 an

® Forward pass: compute Xp,...,Xg, Y, L.

. oL oL oL oL
® Backward pass: compute 50~ 5777 gy a1 -

24 /26

Computation graph (cont)

oL oL 8X6 8X5 o
= NB: matrix transpose is omitted for simplicity

8W2 - 8X6 8X5 BWQ

oL OL Ox¢ Oxs Ox4 Ox3
8W1 B 8X6 8X5 8X4 (9X3 an

® Forward pass: compute Xp,...,Xg, Y, L.

. oL oL oL oL
® Backward pass: compute 50~ 5777 gy a1 -

24 /26

Computation graph — cross entropy layer

ac

¥,e’

oL 0 o e .
aa’ aa’ <|Og Ze J - ac) — Zjeaj -]li:c =Yi—]lI:C
oL

axe VY

L=—logy.=—log where c is the true class, a = x4

25 /26

Quizzes

® On slide 12, show the following:

) R

8W,' N

n=1
® On Slide 24, find the following:
8X6
Owag
8X5
(@]
oW,

8X4
o —
8X3

26/26

	Training of a single-layer neural network
	Single-layer network with multiple output nodes
	Multi-layer neural network

