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Recap: Maximum likelihood estimation of the Gaussian
mean

• We find the maximum solution by solving

∂

∂µ
log L(µ) = 0, (1)

where L(µ) is the likelihood function.

• Why does this work? When does this work?
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An ideal scenario

µ

log L

µ∗

∂ log L

∂µ
= 0
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Not so ideal scenarios
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Questions

• Points with derivative 0 can be a maximal, a minimal, or a saddle point.

• The “nice” functions are the ones where the points with derivative 0 are all
minimal solutions.

• How do we know our functions are “nice”?

• How do we exactly characterize these “nice” functions?

• Convex functions are a family of “nice” functions that we are looking for.
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Optimization

• We are mostly interested in functions of the type Rd → R.

• The goal is solve

min
x

f (x). (2)

• The term minx f (x) is a value, and it means

min
x

f (x) ≤ f (y) for any y . (3)
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Optimization

• We want to find x∗ such that f (x∗) = minx f (x).

• The point x∗ is called an optimal solution or a minimizer of f .

• For some functions, there might be many minimizers. (In most cases, we are
content with finding one.)

• For some functions, a minimizer might not even exist.
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Convex functions

• A function f is convex if

f (αx + (1− α)y) ≤ αf (x) + (1− α)f (y), (4)

for every x , y , and 0 ≤ α ≤ 1.

• A function f is concave if −f is convex.
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x y

αx + (1− α)y

αf (x) + (1− α)f (y)

≤

f (αx + (1− α)y)
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Affine functions are both convex and concave

• The function f (x) = w⊤x + b is both convex and concave.

• Proof:

f (αx + (1− αy)) = w⊤(αx + (1− αy)) + b (5)

= α(w⊤x + b) + (1− α)(w⊤y + b) (6)

= αf (x) + (1− α)f (y) (7)
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A convex function is supported by hyperplanes

If f is convex, then

f (x) ≥ f (y) +∇f (y)⊤(x − y), (8)

for any x and y .
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Hyperplanes

• A hyperplane is a set of points perpendicular to the normal vector.

• In math, a hyperplane is written as

{x : Rd |w⊤(x − u) = 0}, (9)

where u is vector that shifts the plane and w is the normal vector.

• Alternatively, we can also write a hyperplane as

{x : Rd |w⊤x + b = 0}, (10)

for some constant b.
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Hyperplanes

w

x
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A convex function is supported by hyperplanes

• For some y , the set of points x that satisfy

f (y) +∇f (y)⊤(x − y) = 0 (11)

forms a hyperplane with a normal vector ∇f (y).

• The function value of a convex function f (x) has to be greater than the
hyperplane

f (x) ≥ f (y) +∇f (y)⊤(x − y). (12)

• In other words, a convex function is supported by hyperplanes everywhere.
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Supporting hyperplanes
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Supporting hyperplanes
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A convex function is supported by hyperplanes

• If f is convex, then

f (x) ≥ f (y) +∇f (y)⊤(x − y), (13)

for any x and y .

• Proof:

f (αx + (1− α)y) ≤ αf (x) + (1− α)f (y)

αf (y) + f (y + α(x − y))− f (y) ≤ αf (x)

f (y) +
f (y + α(x − y))− f (y)

α
≤ f (x)

f (y) +∇f (y)⊤(x − y) ≤ f (x)
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Optimality condition

• If f is convex and

∇f (x∗) = 0 (14)

at x∗, then x∗ is the minimizer of f .

• Proof: For any x ,

f (x) ≥ f (x∗) +∇f (x∗)⊤(x − x∗) = f (x∗). (15)
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A definition is not enough

• Is the log likelihood of Gaussian mean convex?

log L(µ) =
n∑

i=1

[
−d

2
log 2π − 1

2
log |Σ| − 1

2
(xi − µ)⊤Σ−1(xi − µ)

]
(16)

• We could check for convexity using the definition but it’s not straightforward.
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Second-order derivative

• If the Hessian of f exists and is positive semidefinite everywhere, then f is convex.

• If the Hessian of f is not positive semidefinite somewhere, then f is not convex.

• Just as a reminder, a matrix H is positive semidefinite if v⊤Hv ≥ 0 for any v .

• The proof amounts to reducing to the 1D case by taking slices of the function and
showing that the second-order derivative is positive.
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Convexity of squared distance

• The squared distance f (x) = (x − x ′)2 is convex in x .

• Proof:

∂2f

∂x2
= 2 ≥ 0 (17)
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Convexity of the ℓ2 norm

• Show that f (x) = ∥x∥22 is convex in x .

• Proof:

∂2f

∂xi∂xj
= 0

∂2f

∂x2i
= 2 (18)
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Saddle point

• Show that f (x , y) = x2 − y2 is not convex.

• The Hessian is

[
2 0
0 −2

]
.

• To show that the Hessian is not positive semidefinite, we just need to find one
vector that breaks. [

0 1
] [2 0

0 −2

] [
0
1

]
≤ 0 (19)
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Saddle point
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The likelihood of the Gaussian mean

• Is the likelihood of the Gaussian mean convex?

log L(µ) =
n∑

i=1

[
−d

2
log 2π − 1

2
log |Σ| − 1

2
(xi − µ)⊤Σ−1(xi − µ)

]
(20)

• The Hessian of the log likelihood is −nΣ−1.

• Σ−1 is positive semidefinite, so the log likelihood of the Gaussian mean is concave.
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The Hessian is still not enough

• Is the log loss convex?

L =
N∑
i=1

log

(
1 + exp(−yiw

⊤xi )

)
(21)

• We could derive the Hessian but it’s going to be hairy.
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Preserving convexity

• How can we compose functions to maintain convexity?

• Once we know that, we can break up a function into smaller functions and only
check the convexity of small functions.
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Preserving convexity

• Affine transform preserves convexity.

If f is convex, then g(x) = f (Ax + b) is also convex.

• Nonnegative weighted sum preserves convexity.

If f1, . . . , fk are convex, then f = β1f1 + · · ·+ βk fk is also convex for
β1, . . . , βk ≥ 0.
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Convexity of log loss

• The log loss in the binary case is

L =
N∑
i=1

log

(
1 + exp(−yiw

⊤xi )

)
. (22)

• We just need to show ℓ(s) = log(1 + exp(−s)) is convex in s.

• Use affine transform and nonnegative weighted sum to obtain the log loss.

28 / 29



∂ℓ

∂s
=

− exp(−s)

1 + exp(−s)
=

1

1 + exp(−s)
− 1 (23)

∂2ℓ

∂s2
=

1

1 + exp(−s)

exp(−s)

1 + exp(−s)
=

1

1 + exp(−s)

(
1− 1

1 + exp(−s)

)
≥ 0 (24)
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