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Recap: Maximum likelihood estimation of the Gaussian
mean

® \We find the maximum solution by solving

0

—log L() =0 1
ORI (1)
where L(u) is the likelihood function.

® Why does this work? When does this work?
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An ideal scenario

log L
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Not so ideal scenarios
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Questions

Points with derivative 0 can be a maximal, a minimal, or a saddle point.

The “nice” functions are the ones where the points with derivative 0 are all
minimal solutions.

How do we know our functions are “nice”?
How do we exactly characterize these “nice” functions?

Convex functions are a family of “nice” functions that we are looking for.
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Optimization

® \We are mostly interested in functions of the type RY — R.
® The goal is solve

min f(x). (2)
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Optimization

® \We are mostly interested in functions of the type RY — R.
® The goal is solve

min f(x). (2)

X

® The term min, f(x) is a value, and it means

min f(x) < f(y) for any y. (3)

X
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Optimization

We want to find x* such that f(x*) = miny f(x).
The point x* is called an optimal solution or a minimizer of f.

For some functions, there might be many minimizers. (In most cases, we are
content with finding one.)

For some functions, a minimizer might not even exist.
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Convex functions

® A function f is convex if
flax + (1 —a)y) < af(x) + (1 - a)f(y), (4)

for every x, y,and 0 < a < 1.

® A function f is concave if —f is convex.
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ax +(1—a)y
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ax +(1—a)y
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af(x) + (1 — a)f(y)
VI

flax+ (1 —a)y)
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Affine functions are both convex and concave

® The function f(x) = w'x + b is both convex and concave.

® Proof:

flax+(1—ay))=w (ax+ (1 —ay))+b (5)
= a(w'x+b) + (1 —a)(w'y + b) (6)
= af(x) + (1 —a)f(y) (7)
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A convex function is supported by hyperplanes

If fis convex, then

F(x) = f(y) + VF(y) " (x —y). (8)

for any x and y.
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Hyperplanes
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Hyperplanes

® A hyperplane is a set of points perpendicular to the normal vector.
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Hyperplanes

® A hyperplane is a set of points perpendicular to the normal vector.

® |n math, a hyperplane is written as

{x: R w'(x—u) =0},

where u is vector that shifts the plane and w is the normal vector.
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Hyperplanes

® A hyperplane is a set of points perpendicular to the normal vector.
® In math, a hyperplane is written as
{x:RY|w'(x - u) =0}, 9)
where u is vector that shifts the plane and w is the normal vector.
® Alternatively, we can also write a hyperplane as
{x:RY|w'x+b=0}, (10)

for some constant b.
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Hyperplanes
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A convex function is supported by hyperplanes

® For some y, the set of points x that satisfy
fy) +Vi(y) (x—y)=0 (11)
forms a hyperplane with a normal vector Vf(y).

® The function value of a convex function f(x) has to be greater than the
hyperplane

F(x) > Fly)+ VE(y) (x = y). (12)

® |n other words, a convex function is supported by hyperplanes everywhere.
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Supporting hyperplanes
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Supporting hyperplanes
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A convex function is supported by hyperplanes

® |f f is convex, then

f(x) > f(y) + VF(y) ' (x —y), (13)

for any x and y.

16 /29



A convex function is supported by hyperplanes

® |f f is convex, then
F(x) 2 f(y) + VI(y) (x = y), (13)
for any x and y.

® Proof:

flax+ (1 —a)y)
af(y) +f(y +alx—y)) — f(y)

Fly) + f(y+a(X;y))—f(y) ;
fly)+ VE(y) (x—y) < f(x)
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Optimality condition

® |f f is convex and
Vi(x*)=0 (14)

at x*, then x* is the minimizer of f.
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Optimality condition

e |f f is convex and
Vi(x*)=0 (14)
at x*, then x* is the minimizer of f.
® Proof: For any x,

f(x) > F(x*) + VF(x") " (x = x*) = f(x*). (15)
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A definition is not enough

® |s the log likelihood of Gaussian mean convex?

n d 1 1 _
og L) = 3" [—2 log2r — Slog|Z| — 304 1) T )| (16)
=1

® We could check for convexity using the definition but it's not straightforward.
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Second-order derivative

If the Hessian of f exists and is positive semidefinite everywhere, then f is convex.
If the Hessian of f is not positive semidefinite somewhere, then f is not convex.
Just as a reminder, a matrix H is positive semidefinite if v Hv > 0 for any v.

The proof amounts to reducing to the 1D case by taking slices of the function and
showing that the second-order derivative is positive.
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Convexity of squared distance

® The squared distance f(x) = (x — x')? is convex in x.
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Convexity of squared distance

® The squared distance f(x) = (x — x')? is convex in x.

® Proof:

O2f
—=2>
0x2 20

(17)
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Convexity of the /, norm

e Show that f(x) = ||x||3 is convex in x.
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Convexity of the /, norm

e Show that f(x) = ||x||3 is convex in x.

® Proof:

0%f O%f
0x;0x; =0 ox2 2 (18)
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Saddle point

® Show that f(x,y) = x?> — y? is not convex.
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Saddle point

® Show that f(x,y) = x?> — y? is not convex.

.. 120
® The Hessian is [0 _2].
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Saddle point

® Show that f(x,y) = x?> — y? is not convex.

.. 120
® The Hessian is [O _2].

® To show that the Hessian is not positive semidefinite, we just need to find one
vector that breaks.

o af; Yo
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Saddle point

20
10

-10
=20
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The likelihood of the Gaussian mean

® |s the likelihood of the Gaussian mean convex?

n d 1 1 _
og () = Y |5 log2n ~ Jlog ||~ 30— ) T M w-m)|  (20)
i=1

® The Hessian of the log likelihood is —n¥ 1.

ey 1js positive semidefinite, so the log likelihood of the Gaussian mean is concave.
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The Hessian is still not enough

® |s the log loss convex?

N
L= log (1 + eXP(—y,'WTXi)> (21)

i=1

® We could derive the Hessian but it's going to be hairy.
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Preserving convexity

® How can we compose functions to maintain convexity?

® Once we know that, we can break up a function into smaller functions and only
check the convexity of small functions.
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Preserving convexity

o Affine transform preserves convexity.

If f is convex, then g(x) = f(Ax + b) is also convex.

® Nonnegative weighted sum preserves convexity.

If fi,...,fx are convex, then f = 811 + - - - + Bkfk is also convex for
Bi,..., Bk = 0.
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Convexity of log loss

® The log loss in the binary case is

N
L= Z log (l + exp(—y,-WTx,-)> . (22)

i=1
® We just need to show /(s) = log(1 + exp(—s)) is convex in s.

® Use affine transform and nonnegative weighted sum to obtain the log loss.
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ol —exp(—s) 1

s 1+exp(—s) 1+exp(—s) 1 (23)
8725 _ 1 exp(—s) 1 1
0s2 14+ eXp(—S) 1+ exp(_s) T 1 eXp(—s) (1 1+ exp(—S)) >0 (24)
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