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Convexity on more points

• If a function f is convex,

f (α1x1 + α2x2 + α3x3) ≤ α1f (x1) + α2f (x2) + α3f (x3) (1)

for α1, α2, α3 ≥ 0 and α1 + α2 + α3 = 1.

• If a function f is convex,

f

(
n∑

i=1

αixi

)
≤

n∑
i=1

αi f (xi ) (2)

for αi ≥ 0 and
∑n

i=1 αi = 1.
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Jensen’s inequality

• If a function f is convex,

f (Ex∼p(x)[x ]) ≤ Ex∼p(x)[f (x)]. (3)

• Jensen’s inequality will get used when we talk about expectation
maximization (EM).
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One optimization strategy

• To find minx f (x), the first step is to check whether f is convex.

• The second step is to solve ∇x f (x) = 0.
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A quick reminder on notation again

• We will use x and f (x) for generic optimization, but will use w and L(w) in the
context of machine learning (say, optimizing log loss).

• The gradient ∇x f (x) should be parenthesized as (∇x f )(x).

• In particular,

∇x f (x) (∇x f )(x) Dx f (x) (Dx)f (x)

∂

∂x
f (x)

(
∂

∂x
f

)
(x)

∂f

∂x
(x)

(
∂f

∂x

)
(x)

∂f (x)

∂x

all mean the same thing.

5 / 27



The case for log loss

• The log loss in the binary case is

L(w) =
1

n

n∑
i=1

log

(
1 + exp(−yiw

⊤xi )

)
. (4)

• We have shown that L is convex in w .
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The case for log loss

∇wL(w) =
1

n

n∑
i=1

exp(−yiw
⊤xi )

1 + exp(−yiw⊤xi )
(−yixi ) (5)

=
1

n

n∑
i=1

(
1− 1

1 + exp(−yiw⊤xi )

)
(−yixi ) (6)

=
1

n

n∑
i=1

(1− p(yi |xi )) (−yixi ) (7)
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We need a new optimization strategy

• What happens when we cannot solve ∇x f (x) = 0?

• Do we need to get to the optimal solution?

• Can we get an approximate solution? What does it mean to approximate?
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Gradient descent

• Gradient descent is an iterative algorithm that tries to lower the objective value by
following the gradient.

for t = 1, 2, . . . do
xt+1 = xt − ηt∇x f (xt)

end for

• The variable ηt > 0 is called the step size (or learning rate), and can depend on t.
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Gradient descent

L

w
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Gradient descent on log loss

• The update rule for gradient descent on log loss is

wt+1 = wt − ηt∇L(wt) (8)

wt+1 = wt − ηt
1

n

n∑
i=1

(
1− 1

1 + exp(−yiw⊤
t xi )

)
(−yixi ). (9)

• Note that ∇L is a function of wt .

• Note that 1/n can technically be subsumed into ηt .
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Problems with gradient descent

• Each update needs to go over the entire data set once.

• A single update takes O(nd), where d is the dimension of w and n is the number
of samples in the data set.

• This scales poorly, especially when the data set is large.
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A potential solution

• We can rewrite the gradient as

L(w) =
1

n

n∑
i=1

log

(
1 + exp(−yiw

⊤xi )

)
=

1

n

n∑
i=1

ℓ(w ; xi , yi ), (10)

where ℓ(w ; x , y) = log(1 + exp(−yw⊤x)).

• We can now treat the loss as an expectation because

L(w) =
n∑

i=1

1

n
ℓ(w ; xi , yi ) = E(x ,y)∼U(S)[ℓ(w ; x , y)], (11)

where S = {(x1, y1), . . . , (xn, yn)} is our data set and the expectation E(x ,y)∼U(S)

is taken uniformly over the samples in S .
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A potential solution

• We also treat the gradient as an expectation because

∇L(w) = ∇E(x ,y)∼S [ℓ(w ; x , y)] = E(x ,y)∼S [∇ℓ(w ; x , y)]. (12)

• The gradient is an estimate with the entire data set.

• What happens if we estimate the gradient with a smaller set?
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Estimating the gradient

• Choose a subset of B indices I = {i1, i2, . . . , iB} uniformly from {1, 2, . . . , n}.

• In expectation, we have an unbiased estimation of the gradient.

EI

[
1

|I |
∑
i∈I

∇ℓ(w ; xi , yi )

]
= E(x ,y)∼U(S)[∇ℓ(w ; x , y)] (13)

• This holds even when the size of the subset B = 1.
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Stochastic gradient descent

• Instead of computing the gradient on the entire data set, we choose a subset of
samples SB uniformly at random (with replacement) from the the data set S .

for t = 1, 2, . . . do
Choose a subset of samples SB ⊆ S uniformly at random
wt+1 = wt − ηt

1
B

∑
(x ,y)∈SB ∇ℓ(wt ; x , y)

end for

• The subset of samples is sometimes called a mini-batch.

• When SB = S , this falls back to gradient descent, and is sometimes also called
full-batch gradient descent.
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Stochastic gradient descent

• In practice, we don’t actually sample a subset SB at random.

• Instead, we group samples in the data set into non-overlapping mini-batches of
size B.

• We then go over all mini-batches at a random order.

• All samples are guaranteed seen when we do a pass over the data set.

• A pass over the data set is called an epoch.

• We usually need multiple epochs to get a satisfactory result.
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Evaluating (stochastic) gradient descent

• When do we know the result is satisfactory?

• Is stochastic gradient descent always better?

• How do we compare gradient descent and stochastic gradient descent?
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Approximate solutions in optimization

• We say that x̂ is an approximate solution of the minimizer x∗ if, for a given ϵ > 0,

f (x̂)− f (x∗) < ϵ. (14)

• Note that it is close in function value, not close in the input.
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Approximate solutions for iterative algorithms

• An iterative algorithm creates a sequence x1, . . . , xt .

• How many updates do we need to achieve an approximate solution?

• Given ϵ > 0, how large does t needs to be to achieve

f (xt)− f (x∗) < ϵ? (15)

• We want to express ϵ as a function of t.
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Potential results

• Sublinear

– f (xt)− f (x∗) ≤ c

t2

– ϵ = O
(

1
t2

)
or t = O( 1√

ϵ
)

• Linear

– f (xt)− f (x∗) ≤ cr t for 0 < r < 1

– ϵ = O (2−t) or t = O(log 1
ϵ )

• Quadratic

– f (xt)− f (x∗) ≤ cr2
t

for 0 < r < 1

– ϵ = O
(
2−2t

)
or t = O(log log 1

ϵ )
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Convergence rates
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Convergence results

• Convergence results come with assumptions.

• Usually, stronger assumptions lead to faster convergence.

• Many assumptions are beyond the scope of this course.

• When reading the convergence results, focus on the convergence rates.
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Guarantees for gradient descent

• If we do gradient descent on a M-smooth, µ-strongly convex function with
η = 1/2M, then

f (xt)− f (x∗) ≤
(
1− µ

2M

)t
(f (x0)− f (x∗)). (16)

• The convergence rate in this case O(2−t) is linear.
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Guarantees for stochastic gradient descent

• If we do SGD on a convex function with η = ∥w0−w∗∥2
R
√
t

, then

Ex ,y∼U(S)[L(w̄t)]− L(w∗) ≤ ∥w0 − w∗∥R√
t

(18)

where ∥∇ℓ(wt ; x , y)∥2 ≤ R for any t, x , and y , and w̄t =
w1+···+wt

t .

• The convergence rate is O(1/
√
t), independent of the data set size n!
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Guarantees for stochastic gradient descent

• If we do SGD on a M-smooth convex function, then

Ex ,y∼U(S)[L(w̄t)]− L(w∗) ≤ 2
DR√
t
+

BMD2

t
(19)

where ∥∇ℓ(wt ; x , y)∥2 ≤ R for any t, x , and y , w̄t =
w1+···+wt

t , and
∥w − w ′∥ ≤ D for all reachable w and w ′.

• Note where the size of the mini-batch B is.

• When B = O(
√
t), the convergence is O(1/

√
t).

• A mini-batch size B bigger than O(
√
t) might give a slower convergence.
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