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Convexity on more points
® |f a function f is convex,

f(Oé1X1 —+ aoXxo + a3X3) < g f(Xl) + Oézf(XQ) =+ a3f(X3) (1)

for vy, an, a3 > 0 and a3 + ap + a3z = 1.
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Convexity on more points

® |f a function f is convex,
f(Ole —+ aoXxo + a3X3) < g f(Xl) + Oézf(Xz) =+ a3f(X3) (1)
for vy, an, a3 > 0 and a3 + ap + a3z = 1.

® |f a function f is convex,

f (Z Oé,'X,') S Za,-f(x,-) (2)
i=1 i=1
foraj >0and >0 ;i =1
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Jensen’s inequality

® |f a function f is convex,
f(Exwp(x) [X]) < IExwp(x)[f(x)]‘ (3)

® Jensen's inequality will get used when we talk about expectation
maximization (EM).
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One optimization strategy

® To find miny f(x), the first step is to check whether f is convex.

® The second step is to solve V,f(x) = 0.
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A quick reminder on notation again

® We will use x and f(x) for generic optimization, but will use w and L(w) in the

context of machine learning (say, optimizing log loss).

® The gradient V,f(x) should be parenthesized as (Vf)(x).

® |n particular,

Vif(x)  (Vxf)(x)  Dif(x) (Dx)f(x)

50 () 5o (5)eo 2

all mean the same thing.
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The case for log loss

® The log loss in the binary case is

L(w) == log (1 + exp(—y,-wa,->). (4)

i=1

® \We have shown that L is convex in w.

6/27



The case for log loss

1<~ exp(—yiw'x)
| 1 U
Vwl(w) nZ - 1—|—exp(—y,'WTXi)( yixi)
=

! Z 1 ! (—yixi)
1 B Cvixi
L 1+ exp(—yiw " x;) a

=157 (1= plyilx)) (—yixi)
i=1

n f—
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We need a new optimization strategy

® What happens when we cannot solve V,f(x) = 07
® Do we need to get to the optimal solution?

e Can we get an approximate solution? What does it mean to approximate?

8/27



Gradient descent

® Gradient descent is an iterative algorithm that tries to lower the objective value by
following the gradient.

fort=1,2,... do
Xt4+1 = Xt — Utvxf(xt)
end for

® The variable n; > 0 is called the step size (or learning rate), and can depend on t.
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Gradient descent
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Gradient descent on log loss

® The update rule for gradient descent on log loss is

Wiyl = W — 'f]tVL(Wt) (8)
1 — 1

= — — 1-— —ViXi). 9

Wes1 = W ng( 1+exp(_y,ng,.))( yixi) 9)

i=1
® Note that VL is a function of w;.

® Note that 1/n can technically be subsumed into 7;.
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Problems with gradient descent

® Fach update needs to go over the entire data set once.

® A single update takes O(nd), where d is the dimension of w and n is the number
of samples in the data set.

® This scales poorly, especially when the data set is large.
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A potential solution

® \We can rewrite the gradient as
L(W)—lilo 1+ exp(—y;w' x) —lie( X0, Vi) (10)
< - g EXp\—Yiw  X; Yy Wi Xi, Yi)s
=
where £(w; x, y) = log(1 + exp(—yw  x)).

® \We can now treat the loss as an expectation because
1
Lw)=>" SUwixi, yi) = By lwi x, )l (11)
i=1

where S = {(x1,1),---,(xn, yn)} is our data set and the expectation E(, ) u(s)
is taken uniformly over the samples in S.

13/27



A potential solution

® We also treat the gradient as an expectation because

VL(w) = VE(x )usll(w; x, y)] = E(x ,)~s[VUW; x, y)]. (12)
® The gradient is an estimate with the entire data set.

® \What happens if we estimate the gradient with a smaller set?
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Estimating the gradient

® Choose a subset of B indices | = {i1, 2, ..., ig} uniformly from {1,2,...

® |n expectation, we have an unbiased estimation of the gradient.

“| ZVE (w; x,,y,)] E(Xy [VK(W X, y)]
iel

® This holds even when the size of the subset B = 1.
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Stochastic gradient descent

® |nstead of computing the gradient on the entire data set, we choose a subset of
samples Sg uniformly at random (with replacement) from the the data set S.

fort=1,2, ... do
Choose a subset of samples Sg C S uniformly at random

Wil = Wr — Ut% Z(x,y)ess Vi(we; x, y)
end for

® The subset of samples is sometimes called a mini-batch.

® When Sg = S, this falls back to gradient descent, and is sometimes also called
full-batch gradient descent.
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Stochastic gradient descent

In practice, we don't actually sample a subset Sg at random.

Instead, we group samples in the data set into non-overlapping mini-batches of
size B.

We then go over all mini-batches at a random order.
All samples are guaranteed seen when we do a pass over the data set.
A pass over the data set is called an epoch.

We usually need multiple epochs to get a satisfactory result.
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Evaluating (stochastic) gradient descent

® When do we know the result is satisfactory?
® |s stochastic gradient descent always better?

® How do we compare gradient descent and stochastic gradient descent?
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Approximate solutions in optimization

® We say that X is an approximate solution of the minimizer x* if, for a given € > 0,

f(R) = f(x*) <e. (14)

® Note that it is close in function value, not close in the input.
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Approximate solutions for iterative algorithms

An iterative algorithm creates a sequence xi, ..., X;.
How many updates do we need to achieve an approximate solution?

Given € > 0, how large does t needs to be to achieve

f(xe) — f(x*) < e€?

We want to express € as a function of t.
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Potential results

® Sublinear
c
- )~ ) <
® |inear

- f(xe) = f(x*) <crffor0O<r<1

® Quadratic
— flx) —f(x*)<cr? for0<r<1

21/27



Potential results

® Sublinear
c
- flx) —f(x) < 5
-e=0(%)o rt:O(ﬁ)
® |inear

- f(xe) = f(x*) <crffor0O<r<1
- e=0(" ort=0(log?)

® Quadratic

— flx) —f(x*)<cr? for0<r<1
-e=0 (2’?) or t = O(loglog 1)
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Convergence rates

100 B
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Convergence results

Convergence results come with assumptions.
Usually, stronger assumptions lead to faster convergence.
Many assumptions are beyond the scope of this course.

When reading the convergence results, focus on the convergence rates.
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Guarantees for gradient descent

® |f we do gradient descent on a M-smooth, p-strongly convex function with
n=1/2M, then

F(xe) — F(x*) < (1 - ﬁ)t (F(x0) — F(x7))- (16)
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Guarantees for gradient descent

® |f we do gradient descent on a M-smooth, p-strongly convex function with
n=1/2M, then

F(xe) — F(x*) < (1 - ﬁ)t (F(x0) — F(x7))- (16)

® The convergence rate in this case O(27F) is linear.
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Guarantees for gradient descent

¢ |f we do gradient descent on a M-smooth convex function with n < 1/M, then

_ o= x|

Floxe) = () < 0

(17)
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Guarantees for gradient descent

¢ |f we do gradient descent on a M-smooth convex function with n < 1/M, then

[x0 — x*|?

F) = ) < 20 (17)

® The convergence rate in this case O(1/t) is sublinear.
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Guarantees for stochastic gradient descent

e If we do SGD on a convex function with 1 = %, then

[wo — w*|[R

Vit

where ||V4(w; x,y)|2 < R for any t, x, and y, and w; =

Exy~u(s)[L(w)] — L(w?) <

wit-+we
W

® The convergence rate is O(1/+/t), independent of the data set size n!
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Guarantees for stochastic gradient descent

If we do SGD on a M-smooth convex function, then

NV * DR BMD2
ExvyNU(S)[L(Wt)] — L(W ) < 2W + .
where [|[V4(we; x, y)|l2 < R for any t, x, and y, W, = “F=F% and
|lw — w'|| < D for all reachable w and w'.

Note where the size of the mini-batch B is.
When B = O(1/t), the convergence is O(1//t).

A mini-batch size B bigger than O(1/t) might give a slower convergence.

(19)
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