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Subgradient

• A subgradient at x is a vector g that satisfies

f (y) ≥ f (x) + g⊤(y − x) (1)

for any y.

• In other words, a subgradient defines a supporting hyperplane.

• In fact, any supporting hyperplane gives a subgradient, so a subgradient, unlike
the gradient, might not be unique.
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Hinge loss

• The hinge loss is defined as

ℓhinge(w ; x , y) = max(0, 1− yw⊤x). (2)

• Just like the absolute value, the hinge loss is continuous and convex, but it is not
differentiable.

∇w ℓ =

{
0 if yw⊤x ≥ 1

−yx if yw⊤x < 1
(3)

• When yw⊤x = 1, we can pick and choose any vector that supports the loss
function from below as the subgradient. In fact, 0 and −yx both work.
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An example problem with constraints

• The problem

min
x

x2

s.t. − 2.5 ≤ x ≤ −0.5 (4)

is an example of a contrained optimization problem.

• The inequality −2.5 ≤ x ≤ −0.5 is called a constraint.

• Solutions that satisfy the constraints are called feasible solutions.
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Setting up a barrier

• The problem

min
x

x2

s.t. − 2.5 ≤ x ≤ −0.5 (5)

is equivalent to

min
x

x2 + V−(x) (6)

if

V−(x) =

{
0 if −2.5 ≤ x ≤ −0.5

∞ otherwise
(7)
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Another example problem with constraints

• The problem

min
w

L(w)

s.t. ∥w∥2 ≤ 1 (8)

is an example of a contrained optimization problem.

• The inequality ∥w∥2 ≤ 1 is called a constraint.
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Setting up a barrier

• We can write the optimization problem as

min
w

L(w) + V−(∥w∥22 − 1), (9)

where

V−(s) =

{
0 if s ≤ 0

∞ if s > 0
. (10)
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Setting up a barrier

• Setting up the barrier moves the constraints to the objective function.

• This technique reduces the problem of constrained optimization back to
unconstrained optimization.

• This does not change anything; both problems are equally hard (or easy) to solve.

12 / 35



Soften the constraints

• We can linearize the barrier and turn

min
w

L(w) + V−(∥w∥22 − 1) (11)

into

min
w

L(w) + λ(∥w∥22 − 1), (12)

for some λ ≥ 0.

• Note that λs ≤ V−(s) for all s.

• In other words, the linearized objective value is always lower than the one with the
barrier.
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Soften the constraints

• We start with this constrained optimization problem

min
w

L(w)

s.t. ∥w∥2 ≤ 1 (13)

• We end up with the problem

min
w

L(w) + λ(∥w∥22 − 1) (14)

which is just an ordinary unconstrained optimization, and we know how to solve it.
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Lagrangian

• In general, if we have an optimization problem

min
x

f (x)

s.t. h(x) ≤ 0 (15)

the Lagrangian is defined as

F (x , λ) = f (x) + λh(x). (16)

• The value λ ≥ 0 is called the Lagrange multiplier.
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A unigram model

Row, row, row your boat, gently down the stream
Merrily, merrily, merrily, merrily, life is but a dream

• There are 18 words.

• Intuitively,

p(row) =
3

18
p(merrily) =

4

18
p(is) =

1

18
(17)
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A unigram model

• There are 13 unique words.

• We refer to the set of unique words V = {row, your, boat, gently, down, the,
stream,merrily, life, is, but, a, dream} as the vocabulary.

• The goal is to estimate the probability of each word, i.e., figuring out what the
β’s are in the table.

v row your boat . . .

βv βrow βyour βboat . . .
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A unigram model

• We assign each word v a probability βv .

• Since β is a probability vector, we have the constraint∑
v∈V

βv = 1. (18)

• The probability of a word is

p(w) =
∏
v∈V

β1v=w
v . (19)
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A unigram model

• We assume that each word is independent of others.

• This assumption is obviously wrong, but can go really far.

• The likelihood of β given the data is

log p(w1, . . . ,wN) = log
N∏
i=1

p(wi ) = log
N∏
i=1

∏
v∈V

β
1v=wi
v . (20)
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A unigram model

• We arrive at the optimization problem

min
β

−
N∑
i=1

∑
v∈V

1v=wi log βv

s.t.
∑
v∈V

βv = 1 (21)

• Its Lagrangian is

F = −
N∑
i=1

∑
v∈V

1v=wi log βv + λ

(∑
v∈V

βv − 1

)
. (22)
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A unigram model

• Solving the optimality condition gives

∂F

∂βk
=

N∑
i=1

1k=wi

1

βk
− λ = 0 =⇒ βk =

1

λ

N∑
i=1

1k=wi
. (23)
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A unigram model

∑
v∈V

βv =
∑
v∈V

1

λ

N∑
i=1

1v=wi = 1 =⇒ λ =
∑
v∈V

N∑
i=1

1v=wi = N (24)

βk =

∑N
i=1 1k=wi∑

v∈V
∑N

i=1 1v=wi

=
1

N

N∑
i=1

1k=wi
(25)
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Solving the Lagrangian

• Find x̂ = argminx [f (x) + λh(x)] for any λ.

• For example, one approach to finding x̂ is to solve

∇x [f (x) + λh(x)] = 0 (26)

• Find λ̂ such that λh(x̂) = 0.

• The pair x̂ and λ̂ gives a feasible and optimal solution (if they exist).
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Why solving the Lagrangian works

• Suppose x̂ = argminx [f (x) + λh(x)] and x∗ = argminx :h(x)≤0 f (x).

f (x̂) + λh(x̂) ≤ f (x∗) + λf (x∗) ≤ f (x∗) (27)

• If λh(x̂) = 0, then x̂ is an optimial solution.

• If x̂ is an optimial solution, then λh(x̂) = 0.
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Complementary slackness

• There are two cases where λh(x) can be 0.

1. One is that λ = 0 and h(x) < 0.

In this case, the optimal solution is within the constraint set.

2. The other is that λ > 0 and h(x) = 0.

In this case, the optimal solution is on the boundary of the constraint set.

• The condition λh(x) = 0 is so important that it has a name called complementary
slackness.
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