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Subgradients for absolute values
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Subgradient

® A subgradient at x is a vector g that satisfies
fy) = f(x)+g" (v —x) (1)
for any vy.
® In other words, a subgradient defines a supporting hyperplane.

® In fact, any supporting hyperplane gives a subgradient, so a subgradient, unlike
the gradient, might not be unique.
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Subgradients for absolute values
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Hinge loss

® The hinge loss is defined as
Chinge(W; X, y) = max(0,1 — yWTX). (2)

® Just like the absolute value, the hinge loss is continuous and convex, but it is not
differentiable.

0 if yw'x >1
Vil = P ()
—yx ifyw'x <1

® When yw"x =1, we can pick and choose any vector that supports the loss
function from below as the subgradient. In fact, 0 and —yx both work.
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Constrained optimization

6/35



Constrained optimization

6/35



Constrained optimization

6/35



Setting up a barrier
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An example problem with constraints

® The problem

min x2
X

st. —25<x<-05 (4)

is an example of a contrained optimization problem.
® The inequality —2.5 < x < —0.5 is called a constraint.

® Solutions that satisfy the constraints are called feasible solutions.
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Setting up a barrier

® The problem

2

min X
s.t. —25<x<-05 (5)
is equivalent to
min x* + V_(x) (6)
if
0 if-25<x<-05
V_(x) = { : (7)
oo otherwise
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Another example problem with constraints

® The problem

min L(w)
st wl2<1 (8)

is an example of a contrained optimization problem.

® The inequality ||w||? < 1 is called a constraint.
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Setting up a barrier

® \We can write the optimization problem as

min - L(w) + V_([lw]z - 1), (9)
where
R i w
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Setting up a barrier

® Setting up the barrier moves the constraints to the objective function.

® This technique reduces the problem of constrained optimization back to
unconstrained optimization.

® This does not change anything; both problems are equally hard (or easy) to solve.
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Soften the constraints

® \We can linearize the barrier and turn
min  L(w) + V_(|w]3 - 1) (11)
into
min - L(w)+A(|w]f3 - 1), (12)
for some A > 0.
® Note that As < V_(s) for all s.

® |n other words, the linearized objective value is always lower than the one with the
barrier.
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Soften the constraints

® \We start with this constrained optimization problem

min L(w)
st. wlP<1 (13)
® We end up with the problem
min  L(w) + Al — 1) (14)

which is just an ordinary unconstrained optimization, and we know how to solve it.
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Lagrangian

® In general, if we have an optimization problem

mXin f(x)
s.t. h(x) <0 (15)
the Lagrangian is defined as
F(x,A) = f(x) + Ah(x). (16)

® The value A > 0 is called the Lagrange multiplier.
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A unigram model

Row, row, row your boat, gently down the stream
Merrily, merrily, merrily, merrily, life is but a dream
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A unigram model
Row, row, row your boat, gently down the stream
Merrily, merrily, merrily, merrily, life is but a dream

® There are 18 words.

® Intuitively,

p(row) = 18 p(merrily) = % p(is) = 1—18 (17)
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A unigram model

® There are 13 unique words.

® We refer to the set of unique words V = {row, your, boat, gently, down, the,
stream, merrily, life, is, but, a, dream} as the vocabulary.

® The goal is to estimate the probability of each word, i.e., figuring out what the
(s are in the table.

v ‘row your  boat

/Bv ‘ ﬁrow /Byour Bboat
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A unigram model

® \We assign each word v a probability 3, .

® Since [ is a probability vector, we have the constraint

Zﬁv: L. (18)

veV

® The probability of a word is

p(w) = T B (19)

veVv
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A unigram model

® We assume that each word is independent of others.
® This assumption is obviously wrong, but can go really far.

® The likelihood of /3 given the data is

N N
log p(wi,...,wy) = IogH p(w;) = IogH H By . (20)
i=1

i=lveV
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A unigram model

® \We arrive at the optimization problem

N
mﬁin - Z Z ﬂv:w,- |0g ﬁv

i=1veV

st. > By=1 (21)

veV

® |ts Lagrangian is

N
F:—ZZ]lvzwilOgﬁv‘F)\(Zﬁv_l)- (22)

i=1veV veV
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A unigram model

® Solving the optimality condition gives

N
1
}: w——A=0 = :75 L, 23
aﬂk i—1 v o A ‘ )
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A unigram model

N N
ZBV:Z§ZHV:W,:1:>)\:ZZ]LV:W,:N (24)

veVv veVv i=1 veV i=1

N
Bk = Bl = 2N e (25)
Yvev izt b=w, N3
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Solving the Lagrangian

Find X = argmin,[f(x) 4+ Ah(x)] for any A.

For example, one approach to finding X is to solve
Vi[f(x)+ Ah(x)] =0

Find X such that Ah(X) = 0.

The pair X and \ gives a feasible and optimal solution (if they exist).

(26)
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Why solving the Lagrangian works

® Suppose X = argmin,[f(x) + Ah(x)] and x* = argmin,.,<o f(X).
f(R) + Ah(R) < F(x*) + Mf(x*) < f(x¥) (27)
® If Ah(X) =0, then X is an optimial solution.

e |f X is an optimial solution, then Ah(X) = 0.
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Complementary slackness

® There are two cases where Ah(x) can be 0.
1. Oneis that A =0 and h(x) < 0.

In this case, the optimal solution is within the constraint set.
2. The other is that A > 0 and h(x) = 0.

In this case, the optimal solution is on the boundary of the constraint set.

® The condition Ah(x) = 0 is so important that it has a name called complementary
slackness.
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Complementary slackness
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