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® | assume you have taken DMP (INFR08031).

® |n this session, we will

— quickly review the basic concepts (i.e., the language of probability)
— cover the Gaussian distribution
— introduce maximum likelihood estimation
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Warm up: Rolling a dice

® What the probability to get an even number when we roll a (fair) dice?
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Warm up: Rolling a dice

® What the probability to get an even number when we roll a (fair) dice?
® Before we talk about the answer, here's how we describe the probability
P[X € {2,4,6}] (1)
where X is a random variable where the outcome is the face of a dice.

® Think of this as the syntax of probability.
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Warm up: Rolling a dice

® We know it's a fair dice, so the probability mass function p(x) of rolling a dice is

x |1 2 3 4 5 6
p(x) | 1/6 1/6 1/6 1/6 1/6 1/6

® Using the general fact that

PIX € 5] =Y p(x). 2)

xES

we now have

P[X € {2,4,6}] = p(2) + p(4) + p(6) = 1/2. 3)
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Probability measures

The usual mathematical development of probability theory is to define random
variables, probability measures, and then probability mass functions (or probability
density functions in the continuous case).

A probability measure is a function P : Q — R that satisfies
- 0<P[X]<1forany X CQ
- P[Q=1
- ]P)[Al U A2] - ]P)[Al] + P[AQ] If Al N A2 - @

A probability mass function for a discrete random variable is defined as
p(x) = P[X = x].

A probability density function for a continuous random variable is defined as
p(x) = LP[X < x].

X
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Probability distributions

® |nstead of separating probability mass functions and probability density functions
for discrete and continuous cases, we will just call them probability distributions.

® |n other words, when we say that
p(x) is a distribution
we mean that

p(x) >0 and Zp(x) =1 (4)

® |n machine learning, we mostly work with probability distributions, and less with
probability measures.
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Parameterizing probability measures

Consider learning a probability measure.

In principle, we plan directly parameterize a probability measure, but it is a lot
easier to parameterize its distribution.

The probability measure is parameterized once the distribution is, because
PIX € 5] = 3 p(x) )
xeS

This might not make much sense right now, and we will come back to this in later
sessions.
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Expectation
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Expectation

® The expectation of a random variable x is defined as
Elx] = 3 xp(x). (6)

® Note that the expectation E[x] is not a function of x.

® The equation
E[f(x)] = > f(x)p(x) (7)

is known as the law of unconscious statistician (LOTUS).
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Mean and covariance
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Mean and covariance

® The mean of a distribution is defined as

4= E[x]. (8)
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Mean and covariance

® The mean of a distribution is defined as

1 =E[x]. (8)

® |n the 1D case, the variance is defined as

0? = El(x - )] (9)
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Mean and covariance

The mean of a distribution is defined as

4= E[x]. (8)

In the 1D case, the variance is defined as

o? = E[(x — n)?]. (9)
When x is a vector, the covariance matrix of a distribution is defined as
T = El(x — u)(x— ). (10)

In particular, the diagonal entries of the covariance matrix X is called the variance.
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1D Gaussian

® A variable x € R is said to follow a Gaussian distribution if

L) = s o0 (- 5ralx - ). (1)

where 1 € R is the mean and ¢? € R is the variance.
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Sampling notation

® We say that a is drawn from a Gaussian if
ar~ N(p,a%).

It simply means

pla) = s (—5p(a 0.

® This notation also commonly appears in expectations, such as in

EXNP(X)[f(X)]7

to make explicit what variables are being integrated.

(12)

(13)

(14)

® In particular E[f(x)], Ex[f(x)], Ep[f(x)], and E,_p0[f(x)], all mean the same

thing.
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Joint, marginal, and conditional distribution

® The distribution p(x, y) is referred to as the joint distribution of x and y.

® Given p(x,y), the distribution p(x) = >_, p(x,y) and is referred to as the
marginal distribution. The act of computing the sum is known as marginalization.

® The conditional distribution p(y|x) is defined as %.
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Bayes rule
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Bayes rule

® The equation

p(x|y)p(y)

p(x) (1%)

plylx) =
is known as the Bayes rule.

® |t is commonly used to invert conditional probabilities, i.e., from p(y|x) to p(x]y).
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Bayes rule

® The equation

p(x|y)p(y)

p(x) (1%)

plylx) =
is known as the Bayes rule.
® |t is commonly used to invert conditional probabilities, i.e., from p(y|x) to p(x]y).

® The equation

o) — p(x|y)p(y)
PUL) = 5= oy p(r) (16)

is actually more useful in practice, because we can compute p(y|x) as long as we
have p(x|y) and p(y) defined.
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Statistical independence
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Statistical independence

® We say that x and y are statistically independent if

p(x,y) = p(x)p(y). (17)
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Statistical independence

® We say that x and y are statistically independent if

p(x,y) = p(x)p(y). (17)

® |n other words,

p(yIx) = p(y) (18)

if x and y are independent.

® To put this in words, x and y are statistically independent if knowing x does not
tell us anything more about y.
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Independent and identically distributed variables

® The samples x1, x2, ..., X, are called independent and identically distributed
(i.i.d.) samples if x1, x2, . .., X, are mutually independent and are drawn from the
same distribution.

® |n particular,

p(x1,x2,...,%xn) = p(x1)p(x2) - - - p(xn) = H p(xi). (19)
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Distributions on vectors
® \We will work with vectors a lot in this course.

e A distribution on a d-dimensional vector is simply a joint distribution on d
random variables.

® In other words, instead of writing

p(x1,x2, ..., Xq) (20)

we will just write

WhereX:[xl X2 ... Xd
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Multivariate Gaussian

e A variable x € R is said to follow a Gaussian distribution if

P = g (300 ). (@

where 1 € R is the mean, ¥ € R9*9 s the covariance matrix, and |X| is the
determinant of the matrix X.
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2D Gaussian
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Estimation
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X1

Estimation
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Estimation

® When given a data set, we often want to know how the data is generated.
® Guessing the underlying distribution for a data set is often called estimation.

® This question is often solved by first assuming a distribution and estimating the
parameters of the distribution.
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Maximum likelihood

® Maximum likelihood is a way to estimate parameters.
® A likelihood is a function of the parameter, not the data.

® A maximum likelihood estimator is the parameter that maximizes the likelihood.
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Maximum likelihood estimation of a Gaussian mean

What is the maximum likelihood estimate of the Gaussian mean y given ni.i.d. 1D
Gaussian samples xq,...,x,?
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Maximum likelihood estimation of a Gaussian mean

After going through all the definitions, we can finally understand what the
question means.

The value p(xi, x2, ..., xp) is called the likelihood, and it's a function fo the
parameter, in this case, the mean pu.

Due to the i.i.d. property, the likelihood can be written as

p(x1, X2, ..., Xn) = H p(x;) (23)
i=1

To actually solve it requires doing some calculus, and we will come back to this in
later sessions.
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Further reading

Statistics 110: Probability
https://www.youtube.com/playlist?list=
PL2S0U6wwxBOuwwH80KTQ6ht66KWxbzTIo

Blitzstein and Hwang, “Introduction to Probability,” CRC Press, 2019
Capinski et al., "Measure, Integral and Probability,” Springer, 2004

Stigler, “The epic story of maximum likelihood,” Statistical Science, 2007
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