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• I assume you have taken DMP (INFR08031).

• In this session, we will

– quickly review the basic concepts (i.e., the language of probability)
– cover the Gaussian distribution
– introduce maximum likelihood estimation
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Warm up: Rolling a dice

• What the probability to get an even number when we roll a (fair) dice?

• Before we talk about the answer, here’s how we describe the probability

P[X ∈ {2, 4, 6}] (1)

where X is a random variable where the outcome is the face of a dice.

• Think of this as the syntax of probability.
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Warm up: Rolling a dice

• We know it’s a fair dice, so the probability mass function p(x) of rolling a dice is

x 1 2 3 4 5 6

p(x) 1/6 1/6 1/6 1/6 1/6 1/6

• Using the general fact that

P[X ∈ S ] =
∑
x∈S

p(x), (2)

we now have

P[X ∈ {2, 4, 6}] = p(2) + p(4) + p(6) = 1/2. (3)
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Probability measures

• The usual mathematical development of probability theory is to define random
variables, probability measures, and then probability mass functions (or probability
density functions in the continuous case).

• A probability measure is a function P : Ω → R that satisfies

– 0 ≤ P[X ] ≤ 1 for any X ⊆ Ω
– P[Ω] = 1
– P[A1 ∪ A2] = P[A1] + P[A2] if A1 ∩ A2 = ∅

• A probability mass function for a discrete random variable is defined as
p(x) = P[X = x ].

• A probability density function for a continuous random variable is defined as
p(x) = d

dxP[X ≤ x ].
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Probability distributions

• Instead of separating probability mass functions and probability density functions
for discrete and continuous cases, we will just call them probability distributions.

• In other words, when we say that

p(x) is a distribution

we mean that

p(x) ≥ 0 and
∑
x

p(x) = 1. (4)

• In machine learning, we mostly work with probability distributions, and less with
probability measures.
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Parameterizing probability measures

• Consider learning a probability measure.

• In principle, we plan directly parameterize a probability measure, but it is a lot
easier to parameterize its distribution.

• The probability measure is parameterized once the distribution is, because

P[X ∈ S ] =
∑
x∈S

p(x) (5)

• This might not make much sense right now, and we will come back to this in later
sessions.
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Expectation

• The expectation of a random variable x is defined as

E[x ] =
∑
x

xp(x). (6)

• Note that the expectation E[x ] is not a function of x .

• The equation

E[f (x)] =
∑
x

f (x)p(x) (7)

is known as the law of unconscious statistician (LOTUS).
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Mean and covariance

• The mean of a distribution is defined as

µ = E[x ]. (8)

• In the 1D case, the variance is defined as

σ2 = E[(x − µ)2]. (9)

• When x is a vector, the covariance matrix of a distribution is defined as

Σ = E[(x − µ)(x − µ)⊤]. (10)

• In particular, the diagonal entries of the covariance matrix Σ is called the variance.
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1D Gaussian

• A variable x ∈ R is said to follow a Gaussian distribution if

p(x) =
1√
2πσ2

exp

(
− 1

2σ2
(x − µ)2

)
, (11)

where µ ∈ R is the mean and σ2 ∈ R is the variance.
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Sampling notation

• We say that a is drawn from a Gaussian if

a ∼ N (µ, σ2). (12)

It simply means

p(a) =
1√
2πσ2

exp

(
− 1

2σ2
(a− µ)2

)
. (13)

• This notation also commonly appears in expectations, such as in

Ex∼p(x)[f (x)], (14)

to make explicit what variables are being integrated.

• In particular E[f (x)], Ex [f (x)], Ep[f (x)], and Ex∼p(x)[f (x)], all mean the same
thing.
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Joint, marginal, and conditional distribution

• The distribution p(x , y) is referred to as the joint distribution of x and y .

• Given p(x , y), the distribution p(x) =
∑

y p(x , y) and is referred to as the
marginal distribution. The act of computing the sum is known as marginalization.

• The conditional distribution p(y |x) is defined as p(x ,y)
p(x) .
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Bayes rule

• The equation

p(y |x) = p(x |y)p(y)
p(x)

(15)

is known as the Bayes rule.

• It is commonly used to invert conditional probabilities, i.e., from p(y |x) to p(x |y).

• The equation

p(y |x) = p(x |y)p(y)∑
y ′ p(x |y ′)p(y ′)

(16)

is actually more useful in practice, because we can compute p(y |x) as long as we
have p(x |y) and p(y) defined.
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Statistical independence

• We say that x and y are statistically independent if

p(x , y) = p(x)p(y). (17)

• In other words,

p(y |x) = p(y) (18)

if x and y are independent.

• To put this in words, x and y are statistically independent if knowing x does not
tell us anything more about y .
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Independent and identically distributed variables

• The samples x1, x2, . . . , xn are called independent and identically distributed
(i.i.d.) samples if x1, x2, . . . , xn are mutually independent and are drawn from the
same distribution.

• In particular,

p(x1, x2, . . . , xn) = p(x1)p(x2) · · · p(xn) =
n∏

i=1

p(xi ). (19)
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Distributions on vectors

• We will work with vectors a lot in this course.

• A distribution on a d-dimensional vector is simply a joint distribution on d
random variables.

• In other words, instead of writing

p(x1, x2, . . . , xd) (20)

we will just write

p(x), (21)

where x =
[
x1 x2 . . . xd

]⊤
.
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Multivariate Gaussian

• A variable x ∈ Rd is said to follow a Gaussian distribution if

p(x) =
1

(2π)d/2|Σ|1/2
exp

(
−1

2
(x − µ)⊤Σ−1(x − µ)

)
, (22)

where µ ∈ Rd is the mean, Σ ∈ Rd×d is the covariance matrix, and |Σ| is the
determinant of the matrix Σ.
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2D Gaussian
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Estimation
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Estimation

• When given a data set, we often want to know how the data is generated.

• Guessing the underlying distribution for a data set is often called estimation.

• This question is often solved by first assuming a distribution and estimating the
parameters of the distribution.
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Maximum likelihood

• Maximum likelihood is a way to estimate parameters.

• A likelihood is a function of the parameter, not the data.

• A maximum likelihood estimator is the parameter that maximizes the likelihood.
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Maximum likelihood estimation of a Gaussian mean

What is the maximum likelihood estimate of the Gaussian mean µ given n i.i.d. 1D
Gaussian samples x1, . . . , xn?
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Maximum likelihood estimation of a Gaussian mean

• After going through all the definitions, we can finally understand what the
question means.

• The value p(x1, x2, . . . , xn) is called the likelihood, and it’s a function fo the
parameter, in this case, the mean µ.

• Due to the i.i.d. property, the likelihood can be written as

p(x1, x2, . . . , xn) =
n∏

i=1

p(xi ) (23)

• To actually solve it requires doing some calculus, and we will come back to this in
later sessions.
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Further reading

• Statistics 110: Probability
https://www.youtube.com/playlist?list=

PL2SOU6wwxB0uwwH80KTQ6ht66KWxbzTIo

• Blitzstein and Hwang, “Introduction to Probability,” CRC Press, 2019

• Capinski et al., “Measure, Integral and Probability,” Springer, 2004

• Stigler, “The epic story of maximum likelihood,” Statistical Science, 2007
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