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Questions you should be able to answer after this week

What is Support Vector Machine (SVM)?

Training (optimisation problem) of linear SVM?
What is maximum margin

How to solve the optimisation problem?

What are the support vectors?

What is soft-margin SVM (SVM with slack variables)?
How to make non-linear SVM?

What is kernel and what is kernel trick?

What are pros and cons with SVM?

What applications are SVM successful for?
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18c
1940s
1951

1957
1959

History of machine learning

Naive Bayes classifier

Threshold logic - Warren McCulloch and Walter Pitts
Logistic regression - Joseph Berkson

k-NN - Evelyn Fix and Joseph Hodges

Perceptron - Frank Rosenblatt

Decision tree - William Belson (?)
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Recap — Logistic Regression

1
e P(Y=1|x)= '
( x) 1+exp(—(w'x+ wp)) Sos
X = [Xl . Xd]T, %:j
w = [W1 e Wd]T, Y € {—1,+1} N
® Training on a data set {(x1,y1),...,(xn,yn)} based on maximum likelihood

estimation (MLE):
N
max [[ P(Y =yi|x;)

w,wo i1
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Decision boundary and decision regions
1
P(Y=1|x) = —  decision boundary: w'x + wy = 0
( x) 1+exp(—(wx+ wp)) Y 0
X2

wix =0 C1

slope = w,/w,

Xy
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Decision boundary and decision regions (cont.)
1

P(Y=1|x) =
( x) 1+exp(—(w'x+ wp))
Dimension Decision boundary
2 line wixi + woxo + wp =0
3 plane wix1 + Woxo + waxz + wg =0
d hyperplane (27:1 W,'X,') +wy =0
X

w=(w, wy, w,)"
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Large margin classifiers
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(@) X X
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X

M/7-)(;<+- wp =20
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Large margin classifiers (cont)

Proposed by several people, e.g. Vladimir Vapnik (1963, 1992)

® Training: maximise the margin with these
constraints:

WTX,' +wy>+1 Vist yi=+1
wixi+wy < -1 Vist yj=—1
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Large margin classifiers (cont)

Proposed by several people, e.g. Vladimir Vapnik (1963, 1992)

® Training: maximise the margin with these
constraints:

WTX,' +wy>+1 Vist yi=+1
wixi+wy < -1 Vist yj=—1

® (Classification based on

f(x)=w’x+ wp
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X2
\\R ZW
Do T
\\‘\ \/}}":L
vl
f X
wXxX+w, =+1
wx+w, =-1

Margin

[P1 — p2fl = [lIP1l| — [Ip2]l|
| —wo + 1 —wy— 1
[[wl [[wll
2
= —— =2r
[|wll
where

1= pr1 + wy
= [wll[|p1/[ cos(8)l6—0 + wo
= [wlll|lp1l| + wo
—wo+1

= el = —wl
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Support Vector Machine (SVM)

1
Training max ——
wo [l

st. w!x+w > +1 forall i with y;=+1
wTx; +wp < —1 for all i with y;=—1
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Support Vector Machine (SVM)

1
Training max —
wo [lwl]

w'x;+wy > +1 for all i with y;=+1

s.t.
w'x; +wy < —1 for all i with y;=—1
Equivalent to
. 1
min *HWHZ NB: w’w = |jwl|®
w 2

sty (wa; + Wo) >1 forall i
NB: constrained, quadratic and convex optimisation problem — no local-minima problem!
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Support Vector Machine (SVM)

1
Training max W
w w
st. wlxj+wy > +1 for all i with y;=+1
wTx; +wp < —1 for all i with y;=—1

Equivalent to
min 1HWH2 NB: w’w = ||w]|?
w 2

sty (wa; + Wo) >1 forall i
NB: constrained, quadratic and convex optimisation problem — no local-minima problem!

N
Solution: w = Za,-y,-x,-, «; > 0 .- most of a; are zeros normally
i=1
Those {x;} whose «; > 0 are called support vectors.

wp: to be discussed later
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Support Vector Machine (SVM)

1

Training max —
wo|wl

st. w!x+w > +1 forall i with y;=+1
wTx; +wp < —1 for all i with y;=—1

Equivalent to
min 1HWH2 NB: w’w = ||w]|?
w

sty (wa; + Wo) >1 forall i
NB: constrained, quadratic and convex optimisation problem — no local-minima problem!

N
Solution: w = Za,-y,-x,-, «; > 0 .- most of a; are zeros normally
i=1
Those {x;} whose «; > 0 are called support vectors.

. . wp: to be discussed later
Classification

N
g(x) = sgn(w’ x + wp) = sgn <Z iy x x + w0>

i=1
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Assuming € > 0,

Letting w = g and Wy =

Why +1 instead of +c ?

min
w,wo

s.t.

min
w, W,

s.t.

min
w,wo

s.t.

w2

yi (wTxi+wp) >¢ foralli
1 2

wl

yi (%x+ ) =1 forall i
2

€ .

=l

i (wTxj+ o) > 1 forall i
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Optimisation problems in SVM

) 1
min *WTW
w,wp

s.t. (wa,- + wo) >1 forall i

Using the Lagrange multipliers a; > 0, the Lagrangian is given as:

. 1 N
Lla,w) = 5wTW - a; (y,-(wa,- + wp) — 1)

i=1

where oo = [ ... ap] and w = [w wy].
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Optimisation problems in SVM (cont)

1 N
L{a,w) = EWTW > (}/i(WTXi + wo) — 1)
i=1

OL(a,w N
(8w) :W_;aiyixi =0,
OL(a, w) N
T\ v = 0.
wo ;O‘l}//
N
w:Za,-y,-x,-
i=1
N
0=> aiy
i=1
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Optimisation problems in SVM (cont)

Putting the results to the Lagrangian yields:

1 N
L{a,w) = 5wTw — Zai ()/i(WTXi + wo) — 1)

- Zy,yja,ajx, Xj — Zy,yja aj X; xj+Zoz,

Ij]. ij=1 i=1
ija 0T+ 0
111 i=1

The necessary and sufficient conditions for w* to be an optimum are:

L™ . w* Llo*. w*
WZO’ a(g,W):Ov of >0, yi(wlxi+w)—1>0,

wo
o (y,-(wa,- + wo) — 1) =0, forall i --- Karush-Kuhn-Tuckert (KKT) conditions

which means that either af =0 or y;(w' x; + wp) — 1 =0.
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Optimisation problems in SVM (cont)

ar=0 or yi(w'x;+w)—1=0.
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Optimisation problems in SVM (cont)

ar=0 or yi(w'x;+w)—1=0.

What does y;(w'x; + wp) — 1 = 0 mean?
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Optimisation problems in SVM (cont)

aj =0 or yilwTx; +wp) —1=0.
What does y;(w'x; + wp) — 1 = 0 mean? x
x; with o # 0 should satisfy:

WTX,'—i-WO:—i-l Ify,:—l-l
wa,- +wy=-1 ify,=-1

See ‘“complementary slackness’ in the
last lecture
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How to find w,?

Support vectors satisfy :

y;(WTX,' + Wo) =1 (1)
N
Vi Z OzjijJ-TX,' +wy | =1 (2)
j=1
So,
wo =Yy — WTX,' (3)
N
= yi— > ayx' X (4)
j=1

What if you get different wy for different support vectors?
See MML 12.3.1
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Example 1

17/30



Example 1

=)
To) To) o
3\l N 0
=9+ W o o
o o oo =N Il
oy < -
o = N ™M
sSscgs =17
m
|||||||| Vg |||||||||®|||||:
C
< ~ - o

X1
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X2

Example 2
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Example 2

oo = 0.0625
a1 = 0.0625

w = [0.5 0.0]
|lw|| = 0.5
— r=2

ar = 0.0
a3z = 0.125

X1
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Example 3

® What if a dataset is linearly non-separable?
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Example 3

® What if a dataset is linearly non-separable?

® |n that case, does the optimisation problem have a solution?
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SVM with slack variables — soft margin SVM

Hard margin SVM

o1
min —w'w
w 2

st yi(w'x; +w)>1 forall i

Soft margin SVM

w,wo

N
min w'w+C (Z{;) ,  where C >0,
i=1
1—

st yi(wTxi+w)>1-¢ foralli, & >0

!
\ wx+w, =+1
wx+w, =-1
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Loss function in soft-margin SVM

w,wo

N
min w'w+C (Z{;) ,  where C >0,
i=1

st yi(wTxi+wp)>1-¢ foralli, & >0

The hinge loss: 50

—+= 0-1loss
—— hinge loss

£(t) = max(0,1—t)

[, ift>1,
| 1—t, otherwise,

where t = y(w’ x + wyp).
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Optimisation problem of soft-margin SVM

1 N
min 5WTW+ C (; f;), where C > 0,

w,wp

st yi(wTxi+w) >1-¢& forall i, &>0

L, B.w, wo. €) = Jw w+cz§, > i (yi(w x4 wo) — (1)) Zﬁ,ﬁ,

i=1

22/30



(e

Optimisation problem of soft-margin SVM

1 N
min 5WTW+ C (; f;), where C > 0,

w,wp

st yi(wTxi+w) >1-¢& forall i, &>0

,B,w,wp, &) = W W+CZ§: iai <}’i(WTXi+W0) (1- 51) Zﬂ:&

i=1

2

1 N N N N
=-wiw—w'Y aiyixi—wd aiyi+> i+ (C—ai— B
i=1 i=1 i=1 i=1
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Optimisation problem of soft-margin SVM (cont)

1 N N N N
(e, B,w, wo, &) = EWTW*WTZ Qi yixi—wo»_ aiyi+> ai+> (C—aj— B
i=1 i=1 i=1 i=1

L N
0 (aa/@é“":’v W07€) —w— Zaiyi X; = 07 (5)
8La7IB7W7W7€ N
B8 S aryi=0, )
i=1
L
8(a’ﬂa’gv,wo’£)zc_al_,8/:0 (7)
%
N N
w=> ojyixi, » ajyi=0 C—-a;—==0 Vi=1,...,N (8)
i=1 i=1
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Optimisation problem of soft-margin SVM (cont)

N

( ﬁ,W wo, 5) W w — WTZaInyI_WOZaIyI+ZaI+Z _ai_ﬁi)fi

1

N
Z Vi yj @i & X; xJ"‘ZOé: (9)
J=1 i=1

l\)

Dual problem:

max  — Zy,yja,ozjx, xJ+Za,

Ijl
s.t. Zy,-a,-:O and 0<o;<C Vi=1,...,N
NB: «; < C, because C —a;j— p;=0and a; >0, 5; > 0.

{Bi} do not appear!
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Optimisation problem of soft-margin SVM (cont)

The complementary slackness in the KKT conditions:
o (y,-(wa,- + wp) — (1—57)) —0 and BE =0 foralli=1,...,N

This means:

afr=0 or y(wlxi+w)—(1—-¢)=0and 0<af<C

If of =C, then 37 =0, as C —af — 37 =0.

and

Br=0if & >0 or & =0 and 0< B <C.
So,

a; =0 £ =0, x;isnota support vector
0<a;j<C : & =0, xisasupport vector on the corresponding hyperplane
is a support vector not on the corresponding hyperplane

af =C D& >0, X
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Soft-margin SVM — Example when C =1

e X
® X ® X
@ X
2 -1 0 1 2 3 4 5 6
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Soft-margin SVM — Example when C =1

linear kernel, C=1, Error=2/8

7
! 1
! 1
6 ! :
! 1
| :
| @ &
! 1
| 1
o 1
< ¢, &, @, X,
’ |
3 ?0 ):<4
1 1
! 1
2 ! !
! 1
1 1
1 T T T T T
-2 -1 0 1 2 3 4
X1

ag = 0.0
a1 = 0.0
p = 0.625
az =1.0
g = 0.0
a5 — 0.0
ag = 0.625
a7 = 1.0

w=1[05 0.0], wop = —1

lwi| = 0.5

_)

r=2
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Generalisation error of SVM (g

Assuming the class F of real-valued functions on the ball of radius R in R" as
F={x—w-x:|w|]|<1|x|| <R}.

If a classifier sgn(f) € sgn(F) has margin at least «y on all the training examples, with
probability at least 1 — § over n random examples, f has error no more than

k c [ R2 5 1
D < — — | — —
Lo(f) N \/N (72 log™n + log <5>>

where k is the number of labelled training examples with margin less than -y, c is a
constant,

R?
VC-dim(f) < min(—,n) +1
v
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Experiments on US Postal Service Database

C. Cortes and V. Vapnik, “Support-Vector Networks", Machine Learning 20, 273-297
(1995). https://doi.org/10.1007/BF00994018
US Postal Service Database (handwritten digits):

Training samples 7300
Test samples 2000
Image resolution 16 x 16 pixels

Err. Support Dimensionality of

d [%] vectors feature space
Classifier EN.[?H 1 12.0 200 256
Human performance 2.5 2 47 127 ~ 33000
Decision tree, CART 17.0 3 4.4 148 ~ 1 x 10°
Decision tree, V4.5 16.0 4 43 165 ~1x10°
Best 2 layer NN 6.6 5 43 175  ~1x10™2
LeNetl (5 layers) 5.1 6 4.2 185  ~1x 101

7

4.3 190 ~1x 106

d: degree of polynomial kernel
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https://doi.org/10.1007/BF00994018

Some notes on SVMs

How to choose the regulariser C? - -- use a validation set
How to solve the constrained quadratic optimisation problem in SVM practically?
It requires a kernel matrix of N-by-/N.

o Gradient, sub-gradient, coordinate ascent/descent

o Sequential Minimal Optimisation (SMO) [John Platt, 1998]

o LIBSVM [Chih-Chung Chang and Chih-Jen Lin]: an SVM software tool with SMO

How to apply SVMs to multi-class classification problems?

Performance deterioration (NB: not very specific to SVMs)

o Heavily-overlapped data sets
Imbalanced data sets

(Too many support vectors)
(Large data sets)

o O O

Output interpretability

29/30


https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/tr-98-14.pdf
https://www.csie.ntu.edu.tw/~cjlin/libsvm/

Quizzes

Consider an SVM on the following data set.

X1 Xxp Y ]

20 40 1 4 LA 4
40 20 1 >

40 40 1 ¢ ] i ¢
00 20 2

20 -10 2 il
00 00 2

—4 -2 0 2 4 6 8
X1

1. Using your intuition, what weight vector do you think will result from training an
SVM on this data set?

2. Plot the data and the decision boundary of the weight vector you have chosen.
3. Which are the support vectors? What is the margin of this classifier?
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