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Questions you should be able to answer after this week

• What is Support Vector Machine (SVM)?

• Training (optimisation problem) of linear SVM?
What is maximum margin

• How to solve the optimisation problem?

• What are the support vectors?

• What is soft-margin SVM (SVM with slack variables)?

• How to make non-linear SVM?

• What is kernel and what is kernel trick?

• What are pros and cons with SVM?

• What applications are SVM successful for?
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History of machine learning

18c Naive Bayes classifier

1940s Threshold logic - Warren McCulloch and Walter Pitts
Logistic regression - Joseph Berkson

1951 k-NN - Evelyn Fix and Joseph Hodges
1957 Perceptron - Frank Rosenblatt
1959 Decision tree - William Belson (?)

1986 ANN with EBP - D.Rumelhart, G.Hinton, and R.Williams

1993-97 Support Vector Machine - Vladimir Vapnik
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Recap – Logistic Regression

• P(Y =1|x) = 1

1 + exp (−(wTx + w0))

x = [x1 . . . xd ]
T ,

w = [w1 . . . wd ]
T , Y ∈ {−1,+1}
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• Training on a data set {(x1, y1), . . . , (xN , yN)} based on maximum likelihood
estimation (MLE):

max
w ,w0

N∏
i=1

P(Y =yi |xi )
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Decision boundary and decision regions

P(Y =1|x) = 1

1 + exp (−(wTx + w0))
→ decision boundary: wTx + w0 = 0

/w

T

/w
/w

2

1 2

2

2

1

w

1

0

w

T

=(   ,   )
1

w

C0

w x=0

−w
−w

2x

x10

w

C

slope =

slope =

5 / 30



Decision boundary and decision regions (cont.)

P(Y =1|x) = 1

1 + exp (−(wTx + w0))

Dimension Decision boundary

2 line w1x1 + w2x2 + w0 = 0
3 plane w1x1 + w2x2 + w3x3 + w0 = 0
...

d hyperplane
(∑d

i=1 wixi

)
+ w0 = 0

X 1

X 2

X 3

T

1 32
w=(w , w , w )
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Large margin classifiers

ŷ(x) = f (x) = wTx + w0

(a) (c)(b)

wTxi + w0 = 0 wTxi + w0 = +1

wTxi + w0 = −1

NB: x=(x1, . . . , xd)
T ,w =(w1, . . . ,wd)

T , y ∈{−1, 1}
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Large margin classifiers (cont.)

Proposed by several people, e.g. Vladimir Vapnik (1963, 1992)

(c)

• Training: maximise the margin with these
constraints:

wTxi + w0 ≥ +1 ∀i s.t. yi =+1

wTxi + w0 ≤ −1 ∀i s.t. yi =−1

• Classification based on

f (x) = wTx + w0
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Margin
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Support Vector Machine (SVM)

Training max
w

1

∥w∥

s.t. wTxi + w0 ≥ +1 for all i with yi =+1
wTxi + w0 ≤ −1 for all i with yi =−1

Equivalent to

min
w

1

2
∥w∥2 NB: wTw = ∥w∥2

s.t. yi
(
wTxi + w0

)
≥ 1 for all i

NB: constrained, quadratic and convex optimisation problem → no local-minima problem!

Solution: w =
N∑
i=1

αiyixi , αi ≥ 0 · · · most of αi are zeros normally

Those {xi} whose αi > 0 are called support vectors.
w0: to be discussed later

Classification

g(x) = sgn(wTx + w0) = sgn

(
N∑
i=1

αi yi xT
i x + w0

)
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Why +1 instead of +ε ?

Assuming ε > 0,

min
w ,w0

1

2
∥w∥2

s.t. yi
(
wTxi + w0

)
≥ ε for all i

⇒
min
w ,wo

1

2
∥w∥2

s.t. yi

(
wT

ε xi + w0
ε

)
≥ 1 for all i

Letting ẇ = w
ε and ẇ0 =

w0
ε ,

min
w ,w0

ε2

2
∥ẇ∥2

s.t. yi
(
ẇTxi + ẇ0

)
≥ 1 for all i
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Optimisation problems in SVM

min
w ,w0

1

2
wTw

s.t. yi
(
wTxi + w0

)
≥ 1 for all i

Using the Lagrange multipliers αi ≥ 0, the Lagrangian is given as:

L(α, ẇ) =
1

2
wTw −

N∑
i=1

αi

(
yi (wTxi + w0)− 1

)
where α = [α1 . . . αn] and ẇ = [w w0].
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Optimisation problems in SVM (cont.)

L(α, ẇ) =
1

2
wTw −

N∑
i=1

αi

(
yi (wTxi + w0)− 1

)
∂L(α, ẇ)

∂w
= w −

N∑
i=1

αi yi xi = 0,

∂L(α, ẇ)

∂w0
= −

N∑
i=1

αi yi = 0.

w =
N∑
i=1

αi yi xi

0 =
N∑
i=1

αi yi
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Optimisation problems in SVM (cont.)

Putting the results to the Lagrangian yields:

L(α, ẇ) =
1

2
wTw −

N∑
i=1

αi

(
yi (wTxi + w0)− 1

)
=

1

2

N∑
i,j=1

yi yj αi αj x
T
i xj −

N∑
i,j=1

yi yj αi αj x
T
i xj +

N∑
i=1

αi

= −1

2

N∑
i,j=1

yi yj αi αj x
T
i xj +

N∑
i=1

αi

The necessary and sufficient conditions for w∗ to be an optimum are:

∂L(α∗, ẇ∗)

∂w
= 0,

∂L(α∗, ẇ∗)

∂w0
= 0, α∗

i ≥ 0, yi (wTxi + w0)− 1 ≥ 0,

α∗
i

(
yi (wTxi + w0)− 1

)
= 0, for all i · · · Karush-Kuhn-Tuckert (KKT) conditions

which means that either α∗
i = 0 or yi (wTxi + w0)− 1 = 0.
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Optimisation problems in SVM (cont.)

α∗
i = 0 or yi (wTxi + w0)− 1 = 0.

What does yi (wTxi + w0)− 1 = 0 mean?

xi with α∗
i ̸= 0 should satisfy:

wTxi + w0 = +1 if yi = +1

wTxi + w0 = −1 if yi = −1

See “complementary slackness” in the

last lecture
T

T

0

0

+1

-1w x+w =

w x+w =
1

2

2
||w||

x

x
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Optimisation problems in SVM (cont.)
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How to find w0?

Support vectors satisfy :

yi (w⊤xi + w0) = 1 (1)

yi

 N∑
j=1

αjyjx⊤
j xi + w0

 = 1 (2)

So,

w0 = yi − w⊤xi (3)

= yi −
N∑
j=1

αjyjx⊤
j xi (4)

What if you get different w0 for different support vectors?
See MML 12.3.1
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Example 1

1 0 1 2 3 4 5 6 7
x1

1

0

1

2

3

4

5
x 2
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Example 1

1 0 1 2 3 4 5 6 7
x1

1

0

1

2

3

4

5
x 2

0

1

2

3

α0 = 0.0
α1 = 0.125
α2 = 0.0
α3 = 0.125

w = [0.5 0.0]

∥w∥ = 0.5

→ r = 2
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Example 2

1 0 1 2 3 4 5 6 7
x1

1

0

1
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3
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x 2
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Example 2

1 0 1 2 3 4 5 6 7
x1

1

0

1

2

3

4

5

6
x 2

0

1

2

3

α0 = 0.0625
α1 = 0.0625
α2 = 0.0
α3 = 0.125

w = [0.5 0.0]

∥w∥ = 0.5

→ r = 2
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Example 3

• What if a dataset is linearly non-separable?

• In that case, does the optimisation problem have a solution?
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SVM with slack variables – soft margin SVM

Hard margin SVM

min
w

1

2
wTw

s.t. yi (wTxi + w0) ≥ 1 for all i

T

T

0

0

-1

+1w x+w =

w x+w =

||w||
x1

x2

2

Soft margin SVM

min
w ,w0

wTw + C

(
N∑
i=1

ξi

)
, where C > 0,

s.t. yi (wTxi + w0) ≥ 1− ξi for all i , ξi ≥ 0
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T

0
T

0 -1

+1w x+w =

w x+w =

i

jξ

ξ

||w||
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Loss function in soft-margin SVM

min
w ,w0

wTw + C

(
N∑
i=1

ξi

)
, where C > 0,

s.t. yi (wTxi + w0) ≥ 1− ξi for all i , ξi ≥ 0

The hinge loss:

ℓ(t) = max(0, 1−t)

=

{
0, if t ≥ 1,
1− t, otherwise,

where t = y(wTx + w0). 2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0 0-1 loss
hinge loss
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Optimisation problem of soft-margin SVM

min
w ,w0

1

2
wTw + C

(
N∑
i=1

ξi

)
, where C > 0,

s.t. yi (wTxi + w0) ≥ 1−ξi for all i , ξi ≥ 0

L(α,β,w,w0, ξ) =
1

2
wTw + C

N∑
i=1

ξi −
N∑
i=1

αi

(
yi (wTxi + w0)− (1−ξi )

)
−

N∑
i=1

βiξi

22 / 30



Optimisation problem of soft-margin SVM

min
w ,w0

1

2
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L(α,β,w,w0, ξ) =
1

2
wTw + C

N∑
i=1

ξi −
N∑
i=1

αi

(
yi (wTxi + w0)− (1−ξi )

)
−

N∑
i=1

βiξi

=
1

2
wTw − wT

N∑
i=1

αi yi xi − w0

N∑
i=1

αi yi +
N∑
i=1

αi +
N∑
i=1

(C − αi − βi )ξi
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Optimisation problem of soft-margin SVM (cont.)

L(α,β,w,w0, ξ) =
1

2
wTw−wT

N∑
i=1

αi yi xi−w0

N∑
i=1

αi yi+
N∑
i=1

αi +
N∑
i=1

(C − αi − βi )ξi

∂L(α,β,w,w0, ξ)

∂w
= w −

N∑
i=1

αi yi xi = 0, (5)

∂L(α,β,w,w0, ξ)

∂w0
= −

N∑
i=1

αi yi = 0 , (6)

∂L(α,β,w,w0, ξ)

∂ξi
= C − αi − βi = 0 . (7)

→

w =
N∑
i=1

αi yi xi ,
N∑
i=1

αi yi = 0, C − αi − βi = 0 ∀i = 1, . . . ,N (8)
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Optimisation problem of soft-margin SVM (cont.)

L(α,β,w,w0, ξ) =
1

2
wTw − wT

N∑
i=1

αi yi xi − w0

N∑
i=1

αi yi +
N∑
i=1

αi +
N∑
i=1

(C − αi − βi )ξi

= −1

2

N∑
i,j=1

yi yj αi αj x
T
i xj +

N∑
i=1

αi (9)

Dual problem:

max
α

−1

2

N∑
i,j=1

yi yj αi αj x
T
i xj +

N∑
i

αi

s.t.
N∑
i

yi αi = 0 and 0 ≤ αi ≤ C ∀i = 1, . . . ,N

NB: αi ≤ C , because C − αi − βi = 0 and αi ≥ 0, βi ≥ 0.

{βi} do not appear!
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Optimisation problem of soft-margin SVM (cont.)

The complementary slackness in the KKT conditions:

α∗
i

(
yi (wTxi + w0)− (1−ξ∗i )

)
= 0 and β∗

i ξ
∗
i = 0 for all i = 1, . . . ,N

This means:
α∗
i = 0 or yi (wTxi + w0)− (1− ξ∗i ) = 0 and 0 < α∗

i ≤ C

If α∗
i = C, then β∗

i = 0, as C − α∗
i − β∗

i = 0.

and
β∗
i = 0 if ξ∗i > 0 or ξ∗i = 0 and 0 < β∗

i ≤ C.

So,

α∗
i = 0 : ξ∗i = 0, xi is not a support vector

0 < α∗
i < C : ξ∗i = 0, xi is a support vector on the corresponding hyperplane

α∗
i = C : ξ∗i > 0, xi is a support vector not on the corresponding hyperplane
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Soft-margin SVM – Example when C = 1

2 1 0 1 2 3 4 5 6
x1

1

2

3

4

5

6

7

x 2
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Soft-margin SVM – Example when C = 1

2 1 0 1 2 3 4 5 6
x1

1

2

3

4

5

6

7

x 2

0

1

2

3

4

5

6

7

linear kernel, C=1,  Error = 2 / 8

α0 = 0.0
α1 = 0.0
α2 = 0.625
α3 = 1.0
α4 = 0.0
α5 = 0.0
α6 = 0.625
α7 = 1.0

w = [0.5 0.0], w0 = −1

∥w∥ = 0.5

→ r = 2
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Generalisation error of SVM (NE)

Assuming the class F of real-valued functions on the ball of radius R in Rn as

F = {x 7→ w · x : ∥w∥ ≤ 1, ∥x∥ ≤ R} .

If a classifier sgn(f ) ∈ sgn(F) has margin at least γ on all the training examples, with
probability at least 1− δ over n random examples, f has error no more than

LD(f ) ≤ k

N
+

√
c

N

(
R2

γ2
log2 n + log

(
1

δ

))
where k is the number of labelled training examples with margin less than γ, c is a
constant,

VC-dim(f ) ≤ min(
R2

γ2
, n) + 1
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Experiments on US Postal Service Database

C. Cortes and V. Vapnik, “Support-Vector Networks”, Machine Learning 20, 273–297
(1995). https://doi.org/10.1007/BF00994018

US Postal Service Database (handwritten digits):

Training samples 7300
Test samples 2000
Image resolution 16× 16 pixels

Classifier Err. [%]

Human performance 2.5
Decision tree, CART 17.0
Decision tree, V4.5 16.0
Best 2 layer NN 6.6
LeNet1 (5 layers) 5.1

d
Err. Support Dimensionality of
[%] vectors feature space

1 12.0 200 256
2 4.7 127 ∼ 33000
3 4.4 148 ∼ 1× 106

4 4.3 165 ∼ 1× 109

5 4.3 175 ∼ 1× 1012

6 4.2 185 ∼ 1× 1014

7 4.3 190 ∼ 1× 1016

d : degree of polynomial kernel
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https://doi.org/10.1007/BF00994018


Some notes on SVMs

• How to choose the regulariser C? · · · use a validation set
• How to solve the constrained quadratic optimisation problem in SVM practically?
It requires a kernel matrix of N-by-N.

◦ Gradient, sub-gradient, coordinate ascent/descent
◦ Sequential Minimal Optimisation (SMO) [John Platt, 1998]
◦ LIBSVM [Chih-Chung Chang and Chih-Jen Lin]: an SVM software tool with SMO

• How to apply SVMs to multi-class classification problems?
• Performance deterioration (NB: not very specific to SVMs)

◦ Heavily-overlapped data sets
◦ Imbalanced data sets
◦ (Too many support vectors)
◦ (Large data sets)

• Output interpretability
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https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/tr-98-14.pdf
https://www.csie.ntu.edu.tw/~cjlin/libsvm/


Quizzes

Consider an SVM on the following data set.

x1 x2 y
2.0 4.0 1
4.0 2.0 1
4.0 4.0 1
0.0 2.0 2
2.0 -1.0 2
0.0 0.0 2

4 2 0 2 4 6 8
x1

2

1

0

1

2

3

4

5

x 2

1. Using your intuition, what weight vector do you think will result from training an
SVM on this data set?

2. Plot the data and the decision boundary of the weight vector you have chosen.

3. Which are the support vectors? What is the margin of this classifier?
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