INFR10086 Machine Learning (MLG) Semester 2, 2025/6

Tutorial 2: Digit Classification

In this tutorial, we will study linear classifiers for digit classification and a few practical con-
siderations when implementing them.

1 Setting things up

We will need python for this tutorial, in particular, the two python packages, numpy and matplotlib.
There are a few optional bash commands. These should all be installed if you are on Linux, or any
DICE machine.

Action. Download the tarball for this tutorial and untar it.
https://homepages.inf.ed.ac.uk/htang2/mlg2025/tutorial-2.tar.gz

If you are on Linux, you can run the following commands in a terminal.

$ wget https://homepages.inf.ed.ac.uk/htang2/mlg2025/tutorial-2.tar.gz

$ tar xf tutorial-2.tar.gz
$ cd tutorial-2

2 The MNIST data set

MNIST is a data set that comes with hand-written digits in the form of 28 x 28 matrices and their
respective labels, i.e., 0,1,...,9.

Action. Visualize a few digits in the data set by running the following commands.

$ mkdir expO

$ cd exp0

$../src/plot-digit.py O
$../src/plot-digit.py 1
$../src/plot-digit.py 2

Discussion.
e What are the numbers printed out when we run the above commands?

e The above commands also save 3 images, digit-1.png, digit-2.png, and
digit-3.png. What are in the images?

https://homepages.inf.ed.ac.uk/htang2/mlg2025/tutorial-2.tar.gz

We will do what is called standardization on the data set. We perform

x—p
1
T . (1)

for every data point x, where y is the global mean and o2 is the global variance.

Action. Visualize the mean of all digits in the data set by running the following command.

$ cd exp0O
$../src/plot-mean.py

Discussion. The above command saves an image, global-mean.png. What does the global
mean look like and what does it tell us?

3 The implementation of a linear digit classifier

In this section, we will study how to implement stochastic gradient descent for training a linear
classifier for digit classification. In particular, we will look at the simplest case where the size of
mini-batch is 1. In other words, we use a single sample to estimate the gradient.

Recall that stochastic gradient descent iteratively updates the parameter vector 6 using the
equation

9t+1 = 915 — mVL(Gt) (2)

We need an initial parameter vector 6y to start the process.

Action. The following command produces a random weight matrix weight-0.npy and a
random bias vector bias-0.npy.

$ mkdir expl
$ cd expl
$../src/init-weight-bias.py weight-0.npy bias-0.npy

We haven’t really trained anything, but the weight matrix and the bias vector should constitute
a valid classifier. Since we have classes from 0, 1, ..., 9, this is a multiclass classification. As a
reminder, a multiclass linear classifier can be written as

argmax w;x + by, (3)
y=1,...K

where w,, is the weight vector, b, is the bias term for the class y, and K is the number of classes
(in this case, 10). It is more convenient to stack the weight vectors and bias terms, computing all

the values in one go

wlT b1
T
x4+

w} br

We can then rewrite the multiclass linear classifier as

argmax sy (5)
y=1,...,.K
where s = Wz +b, W = [wl wy - wK]T, and b = [bl by - bK]T. Sometimes the vector

s is called a score vector, and s, i.e., the y-th coordinate, is the score of the class y.

Action. Evaluate the random classifier by running the following command.
$../src/eval.py weight-0.npy bias-0.npy

We can see that the script eval.py prints the misclassification error rate and the averaged
log loss of our random classifier.

Discussion. Now open ../src/eval.py. Which line in eval.py computes Wz + b and
makes a prediction?

Action. Launch python and run the following commands.

>>> import numpy

>>> W = numpy.load('weight-0.npy')
>>> W.shape

>>> b = numpy.load('bias-0.npy')
>>> b.shape

Discussion. What are the shapes of weight matrix W and the bias vector b? Why are they
in these shapes? In particular, why 784, why 10, and why 784 x 107

We are going to use stochastic gradient descent to minimize log loss. Recall that the log loss,

defined on a single sample (x,y), for multiclass classification is

K
(= —(w;/rx +by) + log Z exp (w;m + by/> :
y'=1

Again, this can be more conveniently written as

K
{ = —sy +log Z exp(sy),
y'=1

(6)

where s = Wz + b.

Discussion. In ../src/eval.py, we can see that the following block of code computes the
log loss.

def log_loss(W, b, x, y):
s =x0W+bD
m = numpy.max(s)
logZ = m + numpy.log(numpy.sum(numpy.exp(s - m)))
return -sly] + logZ

What term does logZ corresponds to in equation @? What is the purpose of computing m?

Discussion. In eval.py, we see that the loss is averaged using the following block of code

loss = log_loss(weight, bias, img, label)
avg_loss = (1.0 / (count + 1.0) * loss + count / (count + 1.0) * avg_loss)
count += 1

Explain how the above block computes the average log loss on the entire data set.

The script train.py implements stochastic gradient descent with mini-batch of size 1. The
parameters include the weight matrix W and the bias vector b. In other words, the gradient
updates are

Wigr = Wy — V(Wi 4, i) (8)
bey1 = by — 0Vl (be; 24, 1) 9)

In particular, the gradient with respect to s; for some class ¢ can be derived as

exp(s;) (10)

Vszé = _]ly:i +)74 .
> =1 €xXp(sy)

Discussion. In ../src/train.py, the following block of code computes the gradient.

def grad_log_loss(W, b, x, y):
s = score(W, b, x)
m = numpy.max(s)
logZ = m + numpy.log(numpy.sum(numpy.exp(s - m)))
prob = numpy.exp(s - logZ)
prob[y]l -= 1.0
return (numpy.outer(x, prob), prob)

Explain how the above code computes the gradient V¢ and V.

4 Training a linear digit classifier

We are finally ready to experience the training of a multiclass linear classifier. Recall that an
optimization algorithm reaches a satisfactory result when
L(B:) — L(6") < e, (11)

where t is the number of gradient updates and e is the desired error.

Action. Run the following commands to train the classifier for 3 epochs.
$../src/train.py weight-0.npy bias-0.npy 1
$../src/train.py weight-1.npy bias-1.npy 2
$../src/train.py weight-2.npy bias-2.npy 3
If you are more skilled in bash, you can run the following in bash to train a total 20 epochs.
for i in {1..20}; do
../src/train.py weight-$((i-1)) .npy bias-$((i-1)) .npy $i;

done

Discussion. In ../src/train.py, where is the step size (or learning rate) specified?
Discussion. How many updates do we have in an epoch?
Discussion. How do we know if we need more epochs?

Discussion. In train.py, which line shuffles the order of the data set? Why shuffling?

After training, we can evaluate our trained classifiers using eval.py.

Action. Run the following commands to evaluate the classifiers we get from the first 3
epochs.

../src/eval.py weight-0.npy bias-0.npy
../src/eval.py weight-1.npy bias-1.npy
../src/eval.py weight-2.npy bias-2.npy
../src/eval.py weight-3.npy bias-3.npy

& H H &H

If you are more skilled in bash, you can run the following in bash to evaluate all 20 epochs.

for i in {0..20}; do
../src/eval.py weight-$i.npy bias-$i.npy;
done

Discussion. The script eval.py prints both the misclassification error rate and the

averaged log loss. Which one should we look at during training?

Discussion. Based on the 20 epochs of results, does stochastic gradient descent always
reduce the log loss after every epoch?

Recall that we standardize the data before training.

Discussion. Which line in eval.py standardizes the data?

From eval.py, we see that the data is standardized before making a prediction. If there is a
good linear classifier W and b on the standardized data set, the linear classifier W and b on the
original data set can be derived as

W(x_'u>+b:Wa:+b—VV'u:V~Vm+l~7 (12)
o o

g

where W = W/o and b=b— Wp/o.

Discussion. Given the above argument, we can find W and b directly on the original data
set. If finding W and b on the original data set is equivalent to finding W and b on the
standardized data set, what is the point of standardization?

	Setting things up
	The MNIST data set
	The implementation of a linear digit classifier
	Training a linear digit classifier

