
Efficient Segmental Cascades for Speech Recognition

Hao Tang, Weiran Wang, Kevin Gimpel, Karen Livescu

Toyota Technological Institute at Chicago
{haotang,wwang5,kgimpel,klivescu}@ttic.edu

Abstract
Discriminative segmental models offer a way to incorporate
flexible feature functions into speech recognition. However,
their appeal has been limited by their computational require-
ments, due to the large number of possible segments to consider.
Multi-pass cascades of segmental models introduce features of
increasing complexity in different passes, where in each pass a
segmental model rescores lattices produced by a previous (sim-
pler) segmental model. In this paper, we explore several ways
of making segmental cascades efficient and practical: reducing
the feature set in the first pass, frame subsampling, and various
pruning approaches. In experiments on phonetic recognition,
we find that with a combination of such techniques, it is possi-
ble to maintain competitive performance while greatly reducing
decoding, pruning, and training time.
Index Terms: segmental conditional random fields, discrimi-
native segmental cascades, structure prediction cascades, multi-
pass decoding

1. Introduction
Segmental models have been proposed for automatic speech
recognition (ASR) as a way to enable ASR systems to use infor-
mative features at the segment level, such as duration, trajectory
information, and segment-level classifiers [1, 2]. Discriminative
segmental models such as segmental conditional random fields
(SCRFs) [2] and segmental structured support vector machines
(SSVMs) [3] allow for flexible integration of a variety of such
information sources via feature functions with learned weights.

One of the main impediments to the broad use of segmental
models is their computational requirements. Since, in principle,
each edge in the graph of potential segmentations must be con-
sidered separately, segmental models involve a great deal more
computation than do frame-based models. This challenge has
made it difficult to apply segmental models in first-pass decod-
ing, and most segmental ASR work has been done by rescoring
lattices produced by first-pass frame-based systems [2, 4, 5].
In recent work on phonetic recognition, it has been shown that
it is possible to achieve high-quality first-pass recognition with
segmental models [6, 7, 8], but computation is still a concern.
It is possible to obtain large speed improvements through clev-
erly constrained feature functions [9], but in the general case of
arbitrary segmental feature functions the problem remains.

In recent work we introduced discriminative segmental cas-
cades (DSC) [10], a multi-pass approach in which each pass is a
segmental model. This avoids any reliance on frame-based sys-
tems to produce lattices and allows the use of arbitrary segmen-
tal feature functions, while still producing roughly real-time de-
coding for phonetic recognition. This is achieved by delaying
the more expensive feature functions to later passes, and using
deep network compression to further reduce computational re-
quirements. Discriminative segmental cascades allow us to shift

features between passes, giving us greater flexibility in trading
off performance and speed. In this paper, we further explore
this capability for more efficient segmental cascades.

If we can shift features to later passes, we can reduce prun-
ing time in the first pass. If k segments are pruned in the first
pass, then the time saved for the second pass is O(kd) where d
is the number of features. Even though the second pass uses
many more features than the first pass, the decoding time is
vastly lower due to sparseness of the lattices.

Another expense is feeding forward in neural networks used
to compute the feature functions. For example, in our im-
plementation it takes about 0.33× real-time to feed forward
in a three-layer bidirectional long short-term memory network
(LSTM) [11].

The total recognition time is the sum of the decoding and
feed-forward times. In this paper, we reduce both. By making
the first pass extremely simple and pushing complex features to
later passes, in combination with frame skipping and high-speed
pruning, we are able to obtain several-fold speedups in recog-
nition and training. Ultimately, we obtain a segmental system
that runs in roughly 1/8 real time and takes roughly 3 hours to
train on TIMIT, not counting feeding forward. Feeding forward
alone takes about 1/6 real time, and training LSTMs takes about
30 hours. In sum, our proposed system decodes in about 1/3 real
time and takes 33 hours to train with a single four-core CPU.

2. Segmental cascades
Before defining segmental models, we first set up the following
notation. A segment e is a tuple (s, t, `), where s is the start
time, t is the end time, and ` is its label. Let y be a sequence of
segments ((s1, t1, `1), . . . , (sK , tK , `K)). A sequence of con-
nected segments is also called a path.

Let X be the set of sequences of input acoustic vectors. For
any x ∈ X , let Y(x) be the set of paths that cover x. We call
Y(x) the hypothesis space of x. LetE be the set of all possible
segments. A segmental model is a tuple (θ, φ), where θ ∈ Rd

are the model parameters and φ : X × E → Rd is a vector of
feature functions. For any segmental model, we can use it to
predict (decode) by finding the best-scoring path:

argmax
y∈Y(x)

θ>φ(x, y), (1)

where φ(x, y) =
∑

e∈y φ(x, e) (here we treat the sequence y
as a set and e enumerates over the segments).

For efficient decoding, we will encode a hypothesis space
Y(x) as a finite-state transducer (FST). A finite-state transducer
is a tuple (V,E, I, F, tail, head, i, o, w), where V is a set of ver-
tices, E is a set of edges, I is a set of starting vertices, F is a set
of ending vertices, tail : E → V is a function that maps an edge
to its starting vertex, head : E → V is a function that maps an
edge to its ending vertex, i : E → Σ is a function that maps an

edge to an input symbol in the input symbol set Σ, o : E → Λ
is a function that maps an edge to an output symbol in the out-
put symbol set Λ, and w : E → R is a function that maps an
edge to a weight. We also define adj(v) = {e : tail(e) = v},
the set of edges that start at vertex v. We deliberately reuse E
in this definition since edges in the FST correspond to segments
in the hypothesis space.

A segmental cascade [10] is a multi-pass system, consist-
ing of a sequence of segmental modelsA1, A2, . . . , AM . Given
x ∈ X , we first trainA1 = (θ1, φ1) on Y1 = Y(x), and useA1

to prune Y1 to produce Y2. In general, for any i, we train Ai

on Yi and produce Yi+1. In the end, we use the final segmental
model AM to predict by choosing the best scoring path in YM .
The hypothesis spaces Y2,Y3, . . . are often called lattices.

Based on [12]’s comparison of various losses and costs for
training segmental models, we use hinge loss with overlap cost.
In the next several sections, we introduce several ingredients
that we explore for speeding up decoding and training.

3. Efficiency measure 1: A simple
two-feature first-pass model

The first efficiency measure we explore is a first pass segmental
model that is as simple as possible, in order to prune the initial
hypothesis space as fast as possible. In particular, to use as
few features as possible in the first pass, we propose a two-
feature segmental model that, as the name suggests, uses only
two features: a label posterior feature defined below, and a bias.

We assume the existence of a neural network classifier that
produces a posterior for each possible label for each frame of
acoustic input. For any segment (s, t, `), the label posterior
feature φp is the sum of the log posterior of the label ` (accord-
ing to the frame classifier) over the frames in the segment:

φp(x, (s, t, `)) =

t∑
k=s

log h(x)k,` (2)

where h(x) is the sequence of output vectors of the network
given x, and h(x)k,` is the `-th vector element at time k.

4. Efficiency measure 2: Pruning
One major component in segmental cascades is pruning. Differ-
ent pruning methods produce lattices with different properties.
We consider three pruning methods, described next, and will
experimentally compare the quality of lattices they produce.

4.1. Beam pruning

Beam pruning [13] is a widely used pruning method, and it in-
cludes many variants with different pruning criteria [14]. For
a precise comparison, we describe in detail the beam pruning
algorithm we use here.

The algorithm keeps track of the maximum partial scores
of paths reaching a vertex v, d(v); the vertices it will explore,
B; and the paths explored so far, P . The algorithm starts with
B ← I,P ← ∅, and d(i) = 0 for all i ∈ I . The vertices are
traversed in topological order. Suppose v is traversed, and v ∈
B. We calculate the maximum and minimum score branching
out from v:

smax = d(v) + max
e∈adj(v)

w(e) (3)

smin = d(v) + min
e∈adj(v)

w(e) (4)

After computing the maximum and minimum, we use them to
compute the threshold

t = αbeamsmax + (1− αbeam)smin,

where αbeam controls the proportion of edges to be pruned.
Edges are pruned locally while branching out according to the
threshold. Edges that survived pruning are kept in the set

Sv = {e ∈ adj(v) : d(v) + w(e) > t}.

Paths are expanded as well:

P ←
⋃
p∈P

{pe : e ∈ Sv},

where pe is the concatenation of p and e. The maximum scores
are updated for every e ∈ Sv , and the algorithm keeps the ver-
tices that are not pruned and moves on to the next reachable
vertex:

d(head(e))← max(d(head(e)), d(tail(e)) + w(e))

B ← (B \ {v}) ∪ {head(e) : e ∈ Sv}

Vertices not reachable from B are simply ignored. The set of
paths P comprise the final output lattice.

4.2. Max-marginal edge pruning

The max-marginal [15, 16] of an edge is defined as the maxi-
mum path score among the paths that pass through e:

γ(e) = max
y3e

θ>φ(x, y). (5)

We prune an edge e if its max-marginal γ(e) is below a certain
threshold. We use a threshold of the following form

t = αedge max
e∈E

γ(e) + (1− αedge)
1

|E|
∑
e∈E

γ(e),

where αedge controls the proportion of edges that are pruned.
Max-marginal edge pruning has a guarantee that all paths left
unpruned have higher scores than the threshold, while beam
pruning has none. However, for max-marginal edge pruning,
we need to enumerate the edges at least once, while for beam
pruning, we are able to ignore some of the edges without even
accessing them.

4.3. Max-marginal vertex pruning

The max-marginal of a vertex is defined as

γ(v) = max
y3v

θ>φ(x, y). (6)

In words, it is the maximum path score among the paths that
pass through v. We prune a vertex v if its max-marginal γ(v)
is below a certain threshold. Similarly to edge pruning, we use
the threshold

t = αvertex max
v∈V

γ(v) + (1− αvertex)
1

|V |
∑
v∈V

γ(v),

where αvertex controls the aggressiveness of the pruning.
Because of the way we construct FSTs from hypothesis

spaces, a vertex corresponds to the time of the boundary be-
tween its two neighboring segments. When a vertex is pruned,
it indicates that the corresponding time point is unlikely to be a
true boundary between segments.

5. Efficiency measure 3: Subsampling
In our segmental models, we use deep bidirectional LSTMs
trained separately with log loss to produce frame posteriors
h1, . . . , hT given input vectors x1, . . . , xT and frame label
hypotheses y1, . . . , yT . LSTMs are increasingly popular for
speech recognition and, in recent work, have obtained excellent
performance as feature generators for segmental models [8].
Not surprisingly, feeding forward through the networks con-
tributes a large part of the total computation time. Following
[17, 18], we consider dropping half of the frames for any given
utterance in order to save time on feeding forward. Specifically,
we only use x2, x4, . . . , xT−2, xT to feed forward through the
deep LSTM and generate h2, h4, . . . , hT−2, hT (assuming T
is even, without loss of generality). We then copy each even-
indexed output to its previous frame, i.e., hi−1 = hi for
i = 2, 4, . . . , T − 2, T . During training, the log loss is cal-
culated over all frames and propagated back. Specifically, let
Ei be the log loss at frame i, and E =

∑T
i=1Ei. The gradient

of hi is the sum of the gradients from the current frame and the
copied frame. Dropping even-indexed frames is similar to drop-
ping odd-indexed frames, except the outputs are copied from hi

to hi+1 for i = 1, 3, . . . , T − 1.

6. Experiments
We test our proposed efficiency measures for the task of pho-
netic recognition on the TIMIT dataset. An utterance in TIMIT
is about 3 seconds on average, so absolute wall-clock time cor-
responding to 1 times real-time is 3 seconds per utterance.

For the following experiments, the running time is mea-
sured on a machine with a Core i7-2600 3.4 GHz quad-core
CPU. All pruning and decoding experiments are done with a
single thread, and all neural network feeding forward and back-
propagating are done with four threads.

6.1. LSTM frame classification

Most of our segmental features are computed from the outputs
of an LSTM, so we first explore its performance. We build a
frame classifier by stacking 3 layers of bidirectional LSTM. The
cell and hidden vectors have 256 units. We train the frame clas-
sifier with frame-wise log-loss and optimize with AdaGrad [19]
with mini-batch size of 1 and step size 0.01 for 30 epochs. We
choose the best-performing model on the development set (early
stopping).

We compare training the LSTM with and without dropout.
Following [20], we use dropout on the input vectors of the sec-
ond and third layer. The results are shown in Figure 1. Without
dropout, we observe that the frame error rates on the develop-
ment set slightly increase toward the end, while with dropout,
the frame error rates improve by about 1% absolute.

Next we consider the effect of frame subsampling. When
training LSTMs with subsampling, we alternate between drop-
ping even- and odd-numbered frames every other epoch. Other
training hyper-parameters remain the same. We observe that
with subsampling the model converges more slowly than with-
out, in terms of number of epochs. However, by the end of
epoch 30, there is almost no loss in frame error rates when we
drop half of the frames. Considering the more important mea-
sure of training time rather than number of epochs, the LSTMs
with frame subsampling converge twice as fast as those without
subsampling. For the remaining experiments, we use the log
posteriors at each frame of the subsampled LSTM outputs as
the inputs to the segmental models.

0 5 10 15 20 25 30
epoch

22

24

26

28

30

32

34

fr
a
m

e
 e

rr
o
r

ra
te

 (
%

)

0 1 2 3 4 5 6 7 8
real-time factor

22

24

26

28

30

32

34

fr
a
m

e
 e

rr
o
r

ra
te

 (
%

)

Figure 1: Development set frame error rates vs. number of
epochs (left) and vs. training real-time factor (time spent train-
ing / duration of training set, right). vanilla dropout

subsampling+dropout

0 400 800 1200
lattice density

(edges per gold edge)

0
1
2
3
4
5
6
7

o
ra

cl
e
 P

E
R

 (
%

)

0.06 0.07 0.08 0.09 0.10
real-time factor

0
1
2
3
4
5
6
7

o
ra

cl
e
 P

E
R

 (
%

)

Figure 2: Left: Densities versus oracle error rates of lat-
tices generated by different pruning methods. Right: Time
spent on generating the lattices with different pruning methods.

edge pruning vertex pruning beam pruning

6.2. Segmental cascade experiments

Our baseline system is a discriminative segmental model R
based on [10], which is a first-pass segmental model using the
following segment features: log posterior averages, log poste-
rior samples, log posteriors at the boundaries, segment length
indicators, and bias. See [10] for more complete descriptions
of the features. All features are lexicalized with label unigrams.
The baseline system is trained by optimizing hinge loss with
AdaGrad using mini-batch size 1, step size 0.1, and early stop-
ping for 50 epochs.

Recall that the proposed two-feature first-pass system is a
segmental model A1 with just the label posterior and bias fea-
tures. We use hinge loss optimized with AdaGrad with mini-
batch size 1 and step size 1. None of the features are lexical-
ized. Since we only have two features, learning converges very
quickly, in only three epochs. We take the model from the third
epoch to produce lattices for subsequent passes in the cascade.

GivenA1, we compare lattices generated byA1 with differ-
ent pruning methods. We consider αedge ∈ {0.8, 0.85, 0.9} for
edge pruning, αvertex ∈ {0.925, 0.95, 0.975} for vertex prun-
ing, and αbeam ∈ {0.93, 0.94, 0.95, 0.96} for beam pruning.
The results are shown in Figure 2. We observe that edge prun-
ing generally gives the best density-oracle error rate tradeoff.
Beam search is inferior in terms of speed and lattice quality.

We also measure real-time factors for different pruning
methods, shown in Figure 2. We can see that all pruning meth-
ods can obtain oracle error rates less than 2% within 0.1× real-
time. No single pruning method is significantly faster than the
others. Intuitively, while max-marginal pruning requires more
computation per edge, it makes more informed decisions. The
bottom line is that max-marginal pruning produces less-dense
lattices with the same performance in the same amount of time.

Based on the above experiments, we use lattices produced
by edge pruning with αedge = 0.85 for the remaining experi-
ments, because the lattices are sparse and have only 1.4% ora-
cle error rate. We train a second-pass model A2 with the same

Table 1: Real-time factors for decoding per sample and hours for training the system.

decoding (RT) training (hours)
1st
pass

2nd
pass

3rd
pass

total
decoding

feeding
forward

total
overall

1st
pass

2nd
pass

3rd
pass

total
training

feeding
forward

total
overall

baseline 0.33 0.01 0.34 0.33 0.67 49.5 0.6 50.1 59.4 109.5
proposed 0.11 0.02 0.01 0.14 0.17 0.31 1.0 1.2 0.6 2.8 29.7 32.5

0.0 0.4 0.8 1.2
real-time factor

20

25

30

35

40

P
E
R

 (
%

)

Figure 3: Learning curve of the proposed two-pass system
compared with the baseline system. The time gap between
the first pass and the second pass is the time spent on prun-
ing. baseline 1st pass (R) proposed 1st pass (A1)

proposed 2nd pass (A2)

features as the baseline system R except that we add a “lattice
score” feature corresponding to the segment score given by the
two-feature system A1. Hinge loss is optimized with AdaGrad
with mini-batch size 1, step size 0.1, and early stopping for 20
epochs.

The learning curve comparing R and A1 followed by A2 is
shown in Figure 3. We observe that the learning time per epoch
of the two-feature system A1 is only one-third of the baseline
system R. We also observe that training of A2 converges faster
than training R, despite the fact that they use almost identical
feature functions. The baseline system achieves the best result
at epoch 49. In contrast, the two-pass system is done before the
baseline even finishes the third epoch.

Following [10], given the first-pass baseline, we apply max-
marginal edge pruning to produce lattices for the second-pass
baseline with αedge = 0.8. The second-pass baseline features
are the lattice score from the first-pass baseline, a bigram lan-
guage model score, first-order length indicators, and a bias.
Hinge loss is optimized with AdaGrad with mini batch size
1, step size 0.01, and early stopping for 20 epochs. For the
proposed system, we produce lattices with edge pruning and
αedge = 0.3 for the third-pass system. We use the same set of
features and hyper-parameters as the second-pass baseline for
the third pass.

Phone error rates of all passes are shown in Table 2. First, if
we compare the one-pass baseline with the proposed two-pass
system, our system is on par with the baseline. Second, we
observe a healthy improvement by just adding the bigram lan-
guage model score to the second-pass baseline. The improve-
ment for our third-pass system is small but brings our final per-
formance to within 0.4 of the baseline second pass.

Next we report on the speedups in training and decoding ob-
tained with our proposed approach. Table 1 shows the real-time
factors for decoding with the baseline and proposed systems.
In terms of decoding time alone, we achieve a 2.4 time speedup
compared to the baseline. If the time of feeding forward LSTMs
is included, then our proposed system is two times faster than

Table 2: Phone error rates (%) of proposed and baseline sys-
tems.

1st pass 2nd pass 3rd pass
baseline dev 21.9 21.0

test 24.0 23.0
proposed dev 33.6 21.5 21.3

test 23.7 23.4

the baseline.
Table 1 shows the times needed to train a system to get to

the performance in Table 2. The speedup mostly comes from
the fast convergence of the first pass. In terms of training the
segmental models alone, we achieve an 18.0-fold speedup. If
the time to train the LSTMs is included, then we obtain a 3.4-
fold speedup compared to the baseline.

To summarize some of the above results: With a combina-
tion of the first-pass two-feature system and edge pruning, we
prune 95% of the segments in the first-pass hypothesis space,
leading to significant speedup in both decoding and training.
The feed-forward time for our LSTMs is halved through frame
subsampling. In the end, with a single four-core CPU, we
achieve 0.31 times real-time decoding including feeding for-
ward, which is 2.2 times faster than the baseline, and 32.5
hours in total to obtain our final model including LSTM train-
ing, which is 3.4 times faster than the baseline. Excluding the
LSTMs, the segmental model decoding alone is 2.4 times faster
than the baseline, and training the segmental models alone is 18
times faster than the baseline.

7. Conclusion
We have studied efficiency improvements to segmental speech
recognition structured as a discriminative segmental cascade.
Segmental cascades allow us to push features around between
different passes to optimize speed and performance. We have
taken advantage of this and proposed an extremely simple first-
pass segmental model with just two features, a label posterior
and a bias, which is intuitively like a segmental analogue of
a typical hybrid model. We have also compared pruning ap-
proaches and find that max-marginal edge pruning is the most
effective in terms of time, lattice density, and oracle error rates.
With the combination of these measures and frame subsampling
for our input LSTMs, we obtain large gains in decoding and
training speeds. With decoding and training now being much
faster, future work will explore even richer feature functions
and larger-scale tasks such as word recognition.

8. Acknowledgements
This research was supported by a Google faculty research award
and NSF grant IIS-1433485. The opinions expressed in this
work are those of the authors and do not necessarily reflect the
views of the funding agency. The GPUs used for this research
were donated by NVIDIA.

9. References
[1] J. Glass, “A probabilistic framework for segment-based speech

recognition,” Computer Speech & Language, vol. 17, no. 2, pp.
137–152, 2003.

[2] G. Zweig and P. Nguyen, “A segmental CRF approach to large
vocabulary continuous speech recognition,” in IEEE Workshop on
Automatic Speech Recognition & Understanding, 2009, pp. 152–
157.

[3] S.-X. Zhang, A. Ragni, and M. J. F. Gales, “Structured log linear
models for noise robust speech recognition,” Signal Processing
Letters, IEEE, vol. 17, no. 11, pp. 945–948, 2010.

[4] G. Zweig, P. Nguyen, D. V. Compernolle, K. Demuynck, L. Atlas,
P. Clark, G. Sell, M. Wang, F. Sha, H. Hermansky, D. Karakos,
A. Jansen, S. Thomas, G. Sivaram, S. Bowman, and J. Kao,
“Speech recognition with segmental conditional random fields: A
summary of the JHU CLSP 2010 summer workshop,” in IEEE
International Conference on Acoustics, Speech and Signal Pro-
cessing, 2011, pp. 5044–5047.

[5] M. D. Wachter, M. Matton, K. Demuynck, P. Wambacq, R. Cools,
and D. V. Compernolle, “Template-based continuous speech
recognition,” Audio, Speech, and Language Processing, IEEE
Transactions on, vol. 15, no. 4, pp. 1377–1390, 2007.

[6] O. Abdel-Hamid, L. Deng, D. Yu, and H. Jiang, “Deep segmen-
tal neural networks for speech recognition.” in Proceedings of the
Annual Conference of International Speech Communication As-
sociation, 2013, pp. 1849–1853.

[7] Y. He, “Segmental models with an exploration of acoustic and
lexical grouping in automatic speech recognition,” Ph.D. disserta-
tion, Ohio State University, 2015.

[8] L. Lu, L. Kong, C. Dyer, N. A. Smith, and S. Renals, “Segmen-
tal recurrent neural networks for end-to-end speech recognition,”
arXiv preprint arXiv:1603.00223, 2016.

[9] Y. He and E. Fosler-Lussier, “Efficient segmental conditional ran-
dom fields for phone recognition,” in Proceedings of the Annual
Conference of the International Speech Communication Associa-
tion, 2012, pp. 1898–1901.

[10] H. Tang, W. Wang, K. Gimpel, and K. Livescu, “Discriminative
segmental cascades for feature-rich phone recognition,” in IEEE
Workshop on Automatic Speech Recognition & Understanding,
2015.

[11] S. Hochreiter and J. Schmidhuber, “Long short-term memory,”
Neural computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[12] H. Tang, K. Gimpel, and K. Livescu, “A comparison of training
approaches for discriminative segmental models,” in Proceedings
of the Annual Conference of International Speech Communication
Association, 2014.

[13] V. Steinbiss, B.-H. Tran, and H. Ney, “Improvements in beam
search,” in ICSLP, vol. 94, no. 4, 1994, pp. 2143–2146.

[14] X. L. Aubert, “An overview of decoding techniques for large
vocabulary continuous speech recognition,” Computer Speech &
Language, vol. 16, no. 1, pp. 89–114, 2002.

[15] A. Sixtus and S. Ortmanns, “High quality word graphs using
forward-backward pruning,” in IEEE International Conference on
Acoustics, Speech and Signal Processing, 1999, pp. 593–596.

[16] D. Weiss, B. Sapp, and B. Taskar, “Structured prediction cas-
cades,” 2012, arXiv:1208.3279 [stat.ML].

[17] V. Vanhoucke, M. Devin, and G. Heigold, “Multiframe deep neu-
ral networks for acoustic modeling,” in IEEE International Con-
ference on Acoustics, Speech and Signal Processing (ICASSP).
IEEE, 2013, pp. 7582–7585.

[18] Y. Miao, J. Li, Y. Wang, S. Zhang, and Y. Gong, “Simplifying
long short-term memory acoustic models for fast training and de-
coding,” in IEEE International Conference on Acoustics, Speech
and Signal Processing, 2015.

[19] J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods
for online learning and stochastic optimization,” The Journal of
Machine Learning Research, vol. 12, pp. 2121–2159, 2011.

[20] W. Zaremba, I. Sutskever, and O. Vinyals, “Recurrent neural net-
work regularization,” arXiv preprint arXiv:1409.2329, 2014.

