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Abstract

Recently proposed self-supervised learning approaches have
been successful for pre-training speech representation models.
The utility of these learned representations has been observed
empirically, either as a boost in performance or as a relaxation in
labeling requirements for supervised downstream tasks. How-
ever, not much has been studied about the type or extent of
information encoded in the pre-trained representations them-
selves. Developing such insights can help understand model
capabilities and limits, and thus enable the research community
to more efficiently develop their usage for downstream appli-
cations. In this work, we begin to fill this gap in understand-
ing by examining one recent and successful pre-trained model
(wav2vec 2.0), via its intermediate representation vectors, using
a suite of analysis tools. We use the metrics of canonical corre-
lation, mutual information, and performance on simple down-
stream tasks with non-parametric probes, in order to (i) query
for acoustic and linguistic information content, (ii) characterize
the evolution of information across model layers, and (iii) un-
derstand how fine-tuning the model for automatic speech recog-
nition (ASR) affects these observations. We use these findings
to modify the fine-tuning protocol for ASR, and obtain an im-
proved WER with 10 minutes of training data.
Index Terms: Self-supervised pre-training, representation
analysis, speech representation learning

1. Introduction
Various self-supervised learning techniques have recently been
proposed to learn speech representations (e.g., [1, 2, 3, 4]). Al-
though new and improved approaches are being proposed at a
rapid rate, very little is understood about the pre-trained models
themselves apart from their empirical successes on downstream
tasks, leaving their development and application as a time- and
resource-consuming process of trial and error. We seek to fill
that gap by analyzing pre-trained models to understand how the
representations evolve across layers and how they change when
fine-tuned for a downstream task.

We investigate the layer-wise evolution of representations
in a self-supervised model. We are especially interested in
studying representations directly, rather than training additional
classifiers as probes, to avoid the overhead of training many
classifiers. We study the relationship between representation
layers and a range of linguistic properties including phonetic
content, word identity, and word meaning. We perform all our
analysis on wav2vec 2.0 (W2V2) [4], which has been success-
ful and broadly studied for ASR. Several variants of W2V2 are
publicly available; we study all these variants and their fine-
tuned counterparts.1

1https://github.com/pytorch/fairseq/blob/master/examples/wav2vec

Figure 1: Visualization of the degree to which several properties
are encoded in different transformer layers of pre-trained mod-
els. The curves measure different quantities on different scales;
they are shown together only to compare where major peaks
and valleys occur in each. Section 4 provides more details.

1.1. Summary of findings
We make the following observations from our analyses (i)
the W2V2 transformer layers follow an autoencoder-style be-
haviour, where as we go deeper into the model, the representa-
tion starts deviating from the input speech features followed by
a reverse trend where even deeper layers become more similar
to the input, as if reconstructing the input; (ii) the layer-wise
evolution of the representations follows the linguistic hierarchy
of speech understanding, with the shallowest layers encoding
acoustic features, followed by phonetic, word identity, and word
meaning information, in that order (and then followed by a re-
verse trend as described above) as illustrated in Figure 1; (iii)
fine-tuning the model for ASR breaks the autoencoder-style be-
haviour, especially in the final few layers, which accordingly
also get better at encoding word identity, (iv) the final convolu-
tional layers and initial transformer layers are highly correlated
with mel spectrogram features, suggesting that the model has
learned to extract features similar to human-engineered ones;
(v) the model seems to encode some word meaning informa-
tion, though the extent of the encoded semantics is unclear; (vi)
the last two layers often defy the trends observed for other lay-
ers; and (vii) a modified fine-tuning protocol for ASR, designed
based on these findings, improves the WER, and the layer-wise
trends in WER also correlate with the extent of word identity
information according to our analyses.

2. Related Work
Some very recent work has begun to explore the phonetic con-
tent in pre-trained models using a classifier probe [5] and rela-
tionships between models trained with different training objec-



tives and model architectures [6]. We study a broader range of
linguistic content and focus on lightweight methods that don’t
require training classifiers. Our work also shares much of the
motivation of the 2021 Zero Resource Speech Benchmark [7],
but our approach is dataset-agnostic, includes less implementa-
tion overhead, and performs layer-wise analysis. Our methods
are closest to Voita et al.’s work on analyzing text representa-
tions [8]. We use a similar set of analysis tools based on canon-
ical correlation analysis (CCA) and discrete mutual information
(MI) estimates and perform layer-wise analysis, but apply them
to the continuous domain of speech (as opposed to discrete text
tokens), analyze the relationship between representations and
both discrete and continuous labels, and analyze the relation-
ship between pre-trained and fine-tuned models. To our knowl-
edge, this is the first work to perform layer-wise analyses of
a pre-trained speech representation model to assess a range of
linguistic properties and to also report the effect of ASR fine-
tuning on these trends.

3. Methods
We extract layer-wise representations of LibriSpeech utter-
ances [9] from W2V2 models. We encode each utterance in
its entirety, and then extract local representations at the frame
level, phone level, or word level.

We use projection-weighted CCA [10] to measure sim-
ilarity between the W2V2 layer representations and various
continuous-valued quantities of interest, either (i) from a dif-
ferent layer of the same model, (ii) from a fine-tuned version
of the model, or (iii) from an external representation. For the
third type of analysis we use mel spectrogram features, acous-
tically grounded word embeddings [11] and GloVe word em-
beddings [12] as ways to assess the local acoustic, word-level
acoustic and word meaning information encoded in the W2V2
representations respectively.

While CCA is a natural choice for relating continuous-
valued vectors, we use mutual information (MI) to measure
how learned representations relate to discrete-valued properties,
specifically phone and word identities. Similarly to previous
work using MI to analyze text representations [8], we clus-
ter the continuous-valued representation vectors to obtain dis-
crete cluster IDs. We then estimate MI using the co-occurrence
counts of the cluster IDs and the phone/word labels.

We also measure performance on two downstream tasks,
word-discrimination [13] and semantic word similarity [14], us-
ing non-parametric predictors based on the cosine similarities
between representations. These tasks provide a concrete evalu-
ation measure, and also help corroborate our findings from the
CCA and MI experiments.

Finally, we measure performance on a downstream ASR
task, specifically we train a character-based model on the 10-
minute split of the LibriSpeech corpus, using different layers of
the pre-trained model and different fine-tuning protocols.

4. Results
We report our main findings in Section 1.1. Figure 1 illus-
trates some of the layer-wise analyses, showing the ability of
the W2V2 models to encode certain linguistic properties. For
the purpose of this illustration, we include a subset of our anal-
yses performed on the wav2vec 2.0 Base and Large models,
pre-trained on 960 hrs LibriSpeech and 60k hrs LibriVox re-
spectively. Local acoustic feature content is represented as the
CCA similarity between W2V2 frame representations and mel-
spectrogram features. As a measure of the word meaning con-

tent in each layer, we use the CCA similarity between W2V2
representations and GloVe word embeddings. Phone and word
identity content is measured using the estimated MI between
the representations and the discrete phone and word labels re-
spectively. Note that these measures are not comparable to each
other, so for the purpose of illustration within a single figure,
they have been linearly rescaled and no units are given.

Based on our observation that the top two layers are of-
ten poorer at encoding linguistic information, we re-initialize
the final two layers before fine-tuning the model for ASR. This
protocol improves the WER from 41.5% to 39.2%.

5. Summary
We have presented a suite of analytical tools to assess the layer-
specific information in pre-trained speech representations, ap-
plied to wav2vec 2.0 models. We have found that information
about various linguistic levels tends to be encoded in different
layers of the model, and that our analytical measures correlate
well with performance on certain downstream tasks. Some of
these findings have motivated a modification to the fine-tuning
protocol for wav2vec 2.0, which leads to improved downstream
ASR performance.

The analytical tools presented here can be easily applied to
other pre-trained speech models. The insights from these anal-
yses can help direct the research community toward additional
useful modifications and also help understand the limitations of
these models trained without any external supervision.
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