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Abstract
Automatic speech recognition (ASR), powered by deep neural
networks, has made large strides in the recent past. This has
largely been aided by increased access to compute power as
well as data. However, this abundance of data is skewed towards
only a few languages. Even within the languages, one sees a
bias towards particular accents or other demographic artefacts.
This invariably leads to trained models that are biased towards
such skews in the datasets. In this paper, we propose two train-
ing curricula that take advantage of redundancy in the training
data and encourage learning representations that are more ro-
bust to varying accents. We show significant improvements on
a Marathi ASR task consisting of speakers from different demo-
graphics and accents.
Index Terms: accented speech recognition, curriculum,
Marathi ASR

1. Introduction
Recent state-of-the-art ASR systems employ end-to-end archi-
tectures [1] such as encoder-decoder models [2], CTC and
RNN-Transducer alignment-based models [3, 4], Transformer-
based models [5] or a hybrid combination of attention and CTC-
based models [6]. In datasets containing speech samples from
speakers with different accents, these models do not explicitly
exploit redundancies in text when different speakers are speak-
ing the same words or sentences. This is our main question of
interest: Are there any training modifications we can adopt that
exploit redundancies in text across speakers to (hopefully) learn
more accent-invariant representations and improve recognition
performance on speakers from all the training accents?

In this work, we focus on a specific setting where we as-
sume that the training data consists of speech samples from
multiple accents or demographics corresponding to the same
underlying text. We propose two simple training tricks, context
shuffling and lexicographic sorting, that help learn representa-
tions that are most robust to varying speaker characteristics such
as accents.

2. Related Work
There has been a lot of prior work on accented speech recogni-
tion. In early work [7], synthetic data was generated by mod-
ifying the pronunciation models to include various pronuncia-
tions of vowels. In [8], a combination of speaker adaptation
techniques (like maximum likelihood linear regression, MLLR)
was used to improve performance across accents. [9] used i-
vectors [10] and an accent-dependent layer while keeping rest
of the network same. In [11], a different top layer for different
accents was explored. Model interpolation methods were ex-
plored in [12]. [13] showed adaptive acoustic models that are
conditioned on the fly using dialect representations.

Multi-task architectures have also been explored for ac-
cented ASR. In [14], two parallel acoustic models for different
accents are trained which share a common feature extractor. In
[15], an Accent Identification (AID) task is used as an auxiliary
loss in a multi-task architecture. [16] explored the use of a mix-
ture of feature extractors (Mixture of Experts, MoE) to generate
acoustic models where each individual extractor focuses on a
particular phone or accent class. In [17], a hierarchical multi-
task approach is used where a phoneme CTC loss is used in the
lower layers along with a grapheme CTC at the top layer. As a
variant of multi-task, [18] uses an adversarial training method
to extract features which aid in transcription but do not encode
information to predict accents.

[19] demonstrated how large error rate reductions can
be obtained by fine-tuning only the initial encoder layers.
[20] showed that a multi-task architecture with accent la-
bels/embeddings fed back into the decoder layer also provide
improvement in accented speech recognition. In [21], a teacher-
student method was explored where a multi-accent teacher
model is distilled into individual single-accent models. In [22],
accented speech recognition is modelled as a Model Agnostic
Meta Learning (MAML) problem where each accent is treated
as a different task. In [23], AID task was explored not only
to augment the feature vector, but also as an output in the same
task. It was observed that delaying AID to the end of an ut-
terance was better than attempting to incorporate it within the
feature representation.

3. Methodology
3.1. Coupled Loss

We use a hybrid CTC-attention based model as our base ASR
end-to-end model [6]. The hybrid model optimizes a linear
combination of an attention-based loss (Latt) and a CTC-based
loss (Lctc):

Lhyb = βLatt + (1− β)Lctc (1)

where β ∈ [0, 1] is a scaling hyperparameter. Consider
an encoder network within the hybrid model that transforms
the input x into a sequence of hidden representations h =
{h1, . . . , hK}. The attention-based loss, Latt, is defined using
an attention distribution {αi1, . . . , αiK} that linearly interpo-
lates {h1, . . . , hK} to form a context vector ci at the ithdecoder
time-step:

ci =

K∑
j=1

αijhj

Latt is also defined using decoder states that are estimated by
conditioning on the context vectors, along with the decoder
states and predictions at the previous time-step.



To define the coupled loss [24], we assume we have pairs
of utterances x and x′ that map to the same output word se-
quence y. Let the context vectors corresponding to x and x′

at each decoder time-step i be ci and c′i, respectively. Since
the underlying text corresponding to x and x′ are identical, we
hypothesize that the context vectors at each decoder time-step
should be close to one another via a regularization loss,

Lcoup =
1

K

∑
i

dist(ci − c′i) (2)

which we refer to as a coupled loss (Lcoup). We define dist to be
1−cosine(ci, c

′
i) where cosine is the cosine similarity between

the two vectors. This can be added as an additional (scaled) loss
term to Latt in Eqn.(1) with a scaling parameter λ.

3.2. Context Shuffling

In context shuffling, instead of imposing a distance metric on
the context vectors as in coupled loss, we delegate the task of
making the context vectors more accent invariant to the network
itself. We achieve this by merely swapping context vectors at a
decoder time-step between two utterances that map to the same
output sequence.

Similar to the setup for coupled loss, we consider training
batches consisting of pairs of inputs x and x′ which map to the
same output y (similar to the setup for coupled loss). The con-
text vectors generated by the attention layer for these inputs are
denoted by c = {c1, c2, . . . , cN} and c′ = {c′1, c′2, . . . , c′N},
respectively. (Note that the lengths of c and c′ are the same
since they correspond to the same underlying text.) With a
swapping probability set as a hyperparameter, we swap ci with
c′i within the two context vector sequences.

That is, the context vectors before swapping would look
like:

c = {c1, c2, ...cN}
c′ = {c′1, c′2, ...c′N}

After shuffling the context vectors with a swapping probability
of 1− η, the context vectors might look like:

cCSF = {c1, c′2, c3, c4, c′5...cN}
c′CSF = {c′1, c2, c′3, c′4, c5...c′N}

Such a swapping would have the effect of bringing ci and c′i
closer together and potentially strengthening the decoder to be
robust enough to such variations in the context vectors. An il-
lustration of the architecture is shown in Fig 1.

3.3. Lexicographic Curriculum with Context Shuffling

Rather than use context shuffling with pairs of inputs, we ex-
tend the idea further by creating batches that contain utterances
with a high degree of overlapping text and shuffle context vec-
tors across utterances within a batch. We first lexicographically
sort the transcriptions and select random batches of contiguous
samples from the sorted list.

Extending the above idea further, we create batches such
that each batch contains as many inputs as possible mapping
to the same output. This is done in our dataset by lexico-
graphically sorting our outputs and selecting random batches
of contiguous samples from the same. We consider context
vectors corresponding to overlapping Ngrams within the text.
We also set a left context a and a right context b such that
a + b = N − 1. Let cji be the ith context vector of the j th
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Figure 1: Context Shuffling in a hybrid CTC/LAS model for
paired inputs.

sample in a batch that maps to an output label denoted by yji .
We define a function f(cji ) = w that maps cji to an N -gram
w containing yji , along with an additional a labels to the left
and b labels to the right. To illustrate, if we have an output
y = {y1, . . . , yk} with context vectors c = {c1, . . . , ck}, then
f(ci) = {yj−a, . . . , yj−1, yj , yj+1, . . . , yj+b}.

For every N -gram in our batch, we maintain a list of the
context vectors mapping to the same N -gram across all the ex-
amples in the batch. Since our batches are sorted lexicograph-
ically, and given the redundancy in our dataset with respect to
the output text, we always have more than one context vector
mapping to the same N -gram. With a fixed probability 1 − η,
we overwrite the original context vector cji with one of the con-
text vectors in the list that matches in the underlying N -gram.

To illustrate, assume that a batch has four utterances where
the first three map to the same underlying text. Let us denote
the text strings as:

y1 = {p, q, c, d, e, f}
y2 = {p, q, c, d, e, f}
y3 = {p, q, c, d, e, f}
y4 = {c, d, z, p, q}

where the symbols p, q, etc. correspond to N -grams. Let the
corresponding context vectors be:

c1 = {c11, c12, c13, c14, c15, c16}
c2 = {c21, c22, c23, c24, c25, c26}
c3 = {c31, c32, c33, c34, c35, c36}
c4 = {c41, c42, c43, c44, c45}

where ck denotes the context vectors for utterance k. Let a = 1
and b = 0, which means that we are considering bigrams. Al-
though the first 3 sentences are dissimilar from the 4th sentence,
the 1st bigram of the first three sentences map to the 4th bigram
of the 4th sentence based on anN -gram similarity. Similarly, the
3rd bigram of the first three utterances maps with the 1st bigram
of the 4th sentence. Thus, after context shuffling, the resulting
context vectors could become:

c1CSF = {c21, c32, c33, c42, c15, c36}
c2CSF = {c31, c12, c23, c34, c15, c26}
c3CSF = {c31, c22, c13, c42, c35, c16}
c4CSF = {c41, c42, c43, c44, c12}



Data-Split #utts #sent. #spks Duration(hrs)
College-Train 20587 2497 7 22.89
College-Dev 88 86 1 0.255
College-Test 290 284 1 0.098
Urban-Train 26394 2497 10 34.34
Urban-Dev 71 59 1 0.060
Urban-Test 330 283 1 0.382
Rural-Train 18029 2497 8 25.253
Rural-Dev 87 85 1 0.286
Rural-Test 291 284 1 0.130

Table 1: Statistics of the Marathi datasets.

In the above example, as the first 3 utterances map to the same
sentence, there is a higher probability their context vectors will
shuffle amongst themselves for a particular time step. Such
shuffling operations directly inform the decoder about different
context vectors that map to the same output labels.

4. Experiments
4.1. Datasets

All our experiments are performed on a Marathi dataset [25]
consisting of labeled speech utterances in Marathi from speak-
ers in three different demographics: Urban-Poor, Rural-Poor
and College. We create two kinds of training datasets using
these utterances.

• UCR: Combine data from all the three demographics.

• UC: Combine data from Urban-poor and College.

Table 1 lists the dataset details, along with the train, develope-
ment and test set splits, for both UCR and UC. (The UC dataset
allows us to evaluate performance on Rural-Test without having
any access to training data from speakers in the Rural-Poor cat-
egory.)

4.2. Implementation details

All the ASR models were implemented using the ESPNet
toolkit [26]. Our base model is a hybrid attention-CTC model
with a mixing coefficient of β = 0.4. Our encoder has 2 VGG-
ish convolution layers followed by 3 Bi-LSTM layers with 1024
units each. The last two layers of the encoder are pyramidal in
nature skipping every other input. For the CTC part of the hy-
brid loss, the final layer of the encoder is fully connected to an
output layer, followed by a softmax distribution over the output
tokens. For the attention-based part of the hybrid loss, the en-
coder outputs feed into a location based attention (1024 units)
which feeds into a 2 layer LSTM Decoder of 1024 units each.
We use an ADADELTA [27] optimizer with starting learn-
ing rate of 1. We regularize using a dropout rate of 0.5 and
perform scheduled-sampling during training with a probability
of 0.3. Our vocabulary consists of 150 sub-words. For con-
text shuffling with lexicographic curriculum, we use 4-grams
(a = 3, b = 1).

5. Results
5.1. Urban College Rural

Table 2 shows results by training on the UCR dataset and test-
ing on Rural-Test (denoted by TestR) and a combination of
Urban-Test and College-Test (denoted by TestUC). We show

Model TestR(CER/WER) TestUC(CER/WER)
BASELINE 0.1666/0.2896 0.1752/0.3065
BASELINEcur 0.1781/0.3056 0.1763/0.3098
BASELINESG 0.1610/0.2790 0.1681/0.2920
COU (λ = 0.0001) 0.1459/0.2572 0.1527/0.2762
COU (λ = 0.00001) 0.1450/0.2649 0.1491/0.2771
SHUF (η = 0.3) 0.1343/0.2606 0.1436/0.2722
SHUF (η = 0.5) 0.1352/0.2601 0.1444/0.2743
SORT 0.1382/0.2461 0.1413/0.2675
SORT (η = 0.3) 0.1331/0.2509 0.1309/0.2626
SORT (η = 0.35) 0.1324/0.2601 0.1315/0.2643
SORT (η = 0.4) 0.1230/0.2403 0.1332/0.2612
SORT (η = 0.45) 0.1340/0.2630 0.1391/0.2731
SORT (η = 0.5) 0.1314/0.2524 0.1386/0.2699

Table 2: Experiments on UCR dataset. We compare three base-
line methods against coupled loss, context shuffling and lexico-
graphic sorting.

results for both context shuffling and the lexicographic curricu-
lum, along with comparisons against three baseline systems in-
cluding 1) BASELINE, a standard hybrid model 2) BASELINEcur,
a curriculum learning baseline hybrid model where batches are
fed in the order of increasing input length, and 3) BASELINESG,
a SortaGrad baseline where we perform curriculum for only the
first epoch [28]. We show three systems with our proposed tech-
nique: 1) COU (λ = N ) that refers to using the coupled loss
with λ set to different values 2) SHUF (η = N ) that refers to
using context shuffling with paired inputs and different values
of η, and 3) SORT (η = N ) that refers to using lexicographic
sorting followed by context shuffling with different values of
η. Note that the system SORT (without any η) refers to batch-
ing after a lexicographic sort without any context shuffling. Ta-
ble 2 shows that while coupled loss and context shuffling over
paired inputs provide significant gains over the baseline sys-
tems, the SORT system without any changes in context vectors
or loss functions provides a further boost in performance. Con-
text shuffling with SORT provides further improvements with
SORT (η = 0.4) performing the best compared to all other sys-
tems on both the development and test sets. With our proposed
techniques, the test performance on both TestR and TestR im-
prove showing that both types of speech samples benefit from
our training techniques.

Similarly on the UC dataset, as shown in Table 3, we see
significant reductions in WER over the baseline using both con-
text shuffling and lexicographic sorting (with and without con-
text shuffling). We note that adding an additional 25 hours
of Rural-Train data hurt performance on TestUC (comparing
BASELINE numbers in Table 3 and Table 2), thus motivating
the need for techniques such as ours that help make additional

Model TestR(CER/WER) TestUC(CER/WER)
BASELINE 0.1806/0.3027 0.1683/0.3011
SHUF (η = 0.3) 0.1450/0.2654 0.1420/0.2738
SORT 0.1542/0.2886 0.1424/0.2752
SORT (η = 0.3) 0.1450/0.2736 0.1385/0.2736
SORT (η = 0.4) 0.1496/0.2877 0.1368/0.2790
SORT (η = 0.5) 0.1491/0.2848 0.1347/0.2689

Table 3: Experiments on UC dataset. We compare baseline
against context shuffling and lexicographic sorting.



training data in the same language useful even when it comes
from a different demographic or accent.

6. Conclusion
We have proposed two simple but effective training techniques
that take advantage of the redundancy in training transcriptions
to improve the performance of a Marathi ASR system across
different accented speech samples. Future work includes repli-
cating these results across datasets in other languages exhibiting
different levels of redundancy in transcriptions.
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