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Abstract
We introduce HARPERVALLEYBANK, a free, public domain
spoken dialog corpus. The data simulate simple consumer
banking interactions, containing about 23 hours of audio from
1,446 human-human conversations between 59 unique speak-
ers. We selected intents and utterance templates to allow realis-
tic variation while controlling overall task complexity and limit-
ing vocabulary size to about 700 unique words. We provide au-
dio data along with transcripts and annotations for speaker iden-
tity, caller intent, dialog actions, and emotional valence. The
data size and domain specificity makes for quick transcription
experiments with modern end-to-end neural approaches. Fur-
ther, we provide baselines for representation learning, adapting
recent work to embed waveforms for downstream prediction
tasks. Our experiments show that tasks using our annotations
are sensitive to both the model choice and corpus size.

1. Introduction
Recent innovations in deep learning approaches substantially
improved spoken dialog systems in both academic research and
industry applications. Speech recognition systems now regu-
larly leverage neural network models to achieve near human
performance [1, 2, 3, 4]. Modern systems increasingly use ar-
chitecture themes including attention and end-to-end recurrent
neural networks to encode few assumptions and rapidly adapt
to new data [5, 6, 7, 8, 9, 10]. In parallel, approaches to spo-
ken and text-based dialog systems increasingly leverage neu-
ral networks for dialog management and state representation
[11, 12, 13].

We developed the HARPERVALLEYBANK corpus for
homeworks and projects in Stanford’s Spoken Language Pro-
cessing course1, as well as for research on speech recognition
combined with other spoken language tasks. The goals of the
corpus are to provide:

• Freely available data for education, research, or commer-
cial development. We release the data using a Creative
Commons license (CC-BY)2.

• Sufficient size and variability to meaningfully evaluate
end-to-end neural approaches for speech transcription.

• Manageable overall size and complexity to enable stu-
dents to quickly iterate on experiments without requiring
expensive compute hardware for training.

• Annotations for dialog-relevant tasks aside from speech
transcription (e.g. intent, dialog action) to enable multi-
task training and representation transfer.

• Realistic domain-specific, goal-oriented conversations to
evaluate representation transfer approaches across do-
mains in spoken dialog systems.

1cs224s.stanford.edu
2creativecommons.org/licenses/by/4.0

There is significant recent work in representation learn-
ing for domain and task transfer via embedding models [14,
15, 16, 17], which can be trained without any supervision and
reused for many downstream tasks like predicting speaker iden-
tity [18, 19] and commands [20, 21]. Representation transfer is
important to warm start deep learning based dialog systems on
new task domains. Part of our motivation in designing this cor-
pus is providing a realistic test case for representation learning
approaches to adapt to speech tasks. See [22] for a review of
availaable dialog datasets. We recorded two-sided phone con-
versations to simulate customer call center interactions in a fi-
nancial services domain. The dataset is representative of hu-
man to human goal-oriented dialogs for consumer banking with
a narrowly scoped set of intents.

In the next sections, we provide more details on the cor-
pus and its collection, followed by experiments showcasing its
applications to automatic speech recognition and unsupervised
representation learning. In Sec. 2, we discuss basic corpus
statistics, caller intents, and the data generation and annota-
tion process. In Sec. 3, we explore end-to-end neural mod-
els with multi-task objective functions to simultaneously per-
form speech-to-text transcription and caller intent prediction. In
Sec. 4, we explore using caller intents and sentiments as down-
stream objectives to evaluate representation transfer, and report
unsupervised baselines. The full dataset with a PyTorch im-
plementation reproducing the speech recognition and transfer
experiments is publically available3.

2. The HARPERVALLEYBANK Corpus
We compile a dataset of recorded audio conversations between
an agent and a customer of a bank. Conversations are goal-
oriented, such as ordering a new checkbook or checking the bal-
ance of an account. Fig. 1 shows an example conversation from
the dataset. We collected data using the Gridspace Mixer plat-
form, where crowd workers are randomly paired for short tele-
phone conversations. Mixer membership includes hundreds of
past and current professional call center agents who are trained
to perform assorted Mixer tasks in domains including health-
care, telecommunications, and commerce.

2.1. Data Collection Procedure

Using the Mixer web platform, a person is randomly assigned
the role of agent or customer and provided a script for the inter-
action along with a telephone number to call to start the conver-
sation. Roles are randomly assigned for each call, so the same
worker can appear as both customer and agent in different con-
versations. We created a set of conversation goals and scripts
for each interaction using templates intended to capture vari-
ety in each intent while keeping workers’ word choices and the

3https://github.com/cricketclub/gridspace-stanford-harper-valley



overall interactions fairly simple with limited vocabulary. We
do not control the noise environment or microphones used by
each worker, and there is natural variation across different types
of phones and environments.

When a person calls in, they are paired with the next avail-
able conversation partner. The groups are large enough that
many unique pairings occur over the course of one session.
Once the Mixer task is live for the caller, the web application
will change state, informing the caller whether they are acting
in the role of the agent or caller. The instructions, data, and
user interface adapt to the role and provide a rough script. The
customer role initiates a call task by expressing an intent, and
the agent role has an interactive web interface to simulate com-
pleting a task. We encouraged callers to use mobile phones
or headsets to encourage a microphone transfer function that is
acoustically representative of a real call center.

During each call, participants have the script for their side
of the conversation in front of them in a web browser. The
worker playing the customer role is given a single intent for
the conversation, along with specific values for relevant slots
(e.g. the amount of money to transfer and the source/target ac-
counts). When playing the agent role, a worker is shown some
simple buttons and menus they must click to perform the re-
quested operation (e.g. ”check account balance”).

A conversation is deemed successful and considered for the
dataset if the agent correctly executes the task provided to the
customer caller. Names and slot values for different transac-
tions are randomly generated, and we limit the number of pos-
sible names and proper nouns to reduce overall corpus vocab-
ulary size. The Gridspace Mixer platform handles generating
random templates from a high level specification, all associated
telephony operations to pair callers, and recording audio along
with metadata for each interaction.

AGENT: hello this is harper valley national bank my
name is jay how can I help you today

CALLER: hi my name is mary davis
CALLER: [noise]
CALLER: i would like to schedule an appointment
AGENT: yeah sure what day what time
CALLER: thursday one thirty p m
AGENT: that’s done anything else
CALLER: that’s it
AGENT: have a good one.

Figure 1: Example conversation from corpus.

2.2. Data Labelling

Gridspace Mixer trains a subset of its community to perform a
wide range of annotations. For this corpus, Mixers performed
three primary labeling tasks: text transcript, audio quality, and
script adherence ratings. Gridspace has provided the Mixer
community with a highly specialized speech labeling tool called
Scriber. Scriber is designed for rapid human transcription and
data labeling. The tool also provides a wide array of conve-
nience and ergonomic functions, designed to enable efficient la-
beling of large spoken language datasets. Every person trained
to use Scriber must go through several training sessions, which
requires them to watch training videos and perform well on a
quiz. For dialog actions and emotional valence, labels were in-
stead produced using a Gridspace API rather than human anno-
tation. As a result, there may be some noise or bias, but our
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Figure 2: (a) The empirical distribution over the number of ut-
terances in a conversation transcript. (b) The number of unique
words spoken as a function of the conversation count.

experiments indicate they are reasonable for a benchmark task.
The HARPERVALLEYBANK corpus was collected over

three separate Mixer sessions and then filtered post-annotation,
informed by the script adherence labels and audio quality labels,
to ensure the data was simple and low variance. This filtering
ensures the corpus provides conversational and task-oriented
speech data while regulating for simplicity. The primary tar-
get of the cleaning were conversations where calls dropped or
there were other technical issues which derailed the conversa-
tion. Specifically we removed conversations with script ad-
herence ratings less than 4 and audio quality ratings less than
3. Furthermore we filtered out conversations which contained
some words such as ’frozen’, ’website’, and ’refresh’, which
indicated conversation about technical issues with the task in-
terface. In total we removed 375 conversations.

2.3. Corpus Statistics

HARPERVALLEYBANK Statistics
Hours of audio 23.7
# of conversations/transcripts 1,446
# of utterances 25,730
# of unique words 735
Mean # of lines per conversation 17.8
Median # of lines per conversation 16
Mean # of words per utterance 4.1
Median # of words per utterance 4.5
# of unique speakers 59
# of task classes 8
# of dialog action classes 16
# of sentiment classes 3

Table 1: Basic corpus statistics .

Table 1 shows basic statistics of the HARPERVALLEY-
BANK corpus. The corpus contains about 23 hours of audio in
total, across 1,446 conversations. Conversations range from 2
to 60 utterances, with an average of 18. Each utterance roughly
corresponds to a single turn in the conversation. Due to auto-
matic segmentation of utterances, there can be multiple utter-
ances in a row from a single speaker’s turn. Notably, the cor-
pus has a small vocabulary of approximately 700 unique words.
Many of the most common words in the vocabulary are domain-
specific to customer service e.g. “help”, “thank”, or “please”.
Fig. 2b depicts how vocabulary size scales with dataset size.

The Gridspace platform records each side of the conversa-
tion separately, and we release the audio in speaker-separated



files encoded as 8kHz per the original telephony data. We tran-
scribed the utterances via crowd workers with basic speech tran-
scription training again using the Gridspace Mixer platform.
Workers are not instructed to carefully transcribe word frag-
ments or non-speech noises. Leveraging crowd workers and
transcribing without precise fragments and non-speech tags has
been shown to be a viable approach for training speech recog-
nition systems [23]. In addition to human transcriptions of each
conversation, we include four additional labels:

Intent. Each conversation has a single intent representing the
customer’s goal in the conversation. An intent can be one of
eight categories: order checks, check balance, replace card, re-
set password, get branch hours, pay bill, schedule appointment,
transfer money. Fig. 3a shows the distribution of intents to be
roughly balanced. Conversation intents are derived automati-
cally from the tasks assigned to callers during collection.

Emotional Valence. Utterances are automatically labeled with
three sentiment categories, negative, neutral, and positive.
There is a probability estimate label for each category, gener-
ated by the Gridspace Speech API that is trained on a large cor-
pus of proprietary data from multiple domains. Fig. 3b shows
the distribution of each sentiments across utterances.

Speaker ID. Utterances have a unique ID out of 59 speak-
ers. The number of utterances per speaker are imbalanced, with
most speakers responsible for less than 50 utterances.

Dialog Action. Every utterance is accompanies by one or more
labels representing a ”conversational mode”. The distribution
over actions is imbalanced with “greeting” being the most fre-
quent and many infrequent actions combined into the “other”
category. The 16 possible actions are: “yes” response, greeting,
response, data confirmation, procedure explanation, data ques-
tion, closing, data communication, “bear with me” response,
acknowledgement, data response, filler disfluency, thanks, open
question, problem description, and other. Fig. 3d shows the
distribution of dialog actions for utterances.

3. Spoken Language Understanding
Using the HARPERVALLEYBANK corpus, we evaluate three
common approaches for automatic speech recognition: connec-
tionist temporal classification or CTC [24], Listen-Attend-Spell
or LAS [6], and finally, a “multi-task” objective combining the
two previous losses [25], MTL.

In addition to optimizing the speech recognition objective,
denoted Lasr, we fit four linear layers mapping the encoding of
the audio signal to a prediction of the intent, dialog action, and
sentiment labels. These three auxiliary objectives are optimized
jointly with the speech recognition objective:

βLasr + (1− β) (Ltask + Laction + Lsent)

where Ltask, and Lsent are cross entropy losses, whereas Laction

comprises a sum of 16 binary cross entropy losses. The scalar
β ∈ [0, 1] weights the recognition and auxiliary objectives.

3.1. Training Details

Audio is preprocessed to 128 Mel-frequency spectrogram fea-
tures with a sampling rate of 8kHz, a hop length of 128, and
a window size of 256. For CTC, we encode log-Mel features
using a bi-directional LSTM with two layers and 128 hidden
dimensions. CTC decoding is done greedily with no language
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Figure 3: Distribution over auxiliary labels. Subfigures (a) &
(c) show the counts for intent and dialog action. Subfigure (d)
show boxplots for each of the three sentiments.

model. In LAS, the listener network is composed of three
stacked pyramid bi-directional LSTMs with 128 hidden dimen-
sions whereas the speller network is an uni-directional LSTM
with 256 hidden dimensions and a single-headed attention layer.
For MTL, we use the same encoder as LAS but include both the
speller and CTC decoder. In MTL, we can interpret CTC as a
secondary objective whose main role is to regularize the LAS
encoder to respect CTC alignments:

β(αLctc + (1− α)Llas) + (1− β) (Ltask + Laction + Lsent)

where α is chosen to be 0.7 by grid search. The LAS and MTL
objectives are optimized with teacher forcing with probability
0.5. We train each model for 200 epochs with Adam [26] using
a learning rate of 1e-3, batch size 128, and gradient clipping.

3.2. Results and Analysis

Table 2 shows the performance of CTC, LAS, and MTL on a
speaker split test set. We report CER to measure transcription
quality, accuracy for sentiment and intent prediction, and F1 for
dialog action prediction (due to class imbalance). The highest
performing model in each metric is bolded.

Model CER Action (F1) Sentiment Intent
CTC 14.43 0.3864 84.46 45.47
LAS 47.45 0.2931 72.09 34.96
MTL 38.59 0.3222 76.12 42.28

Table 2: Speech recognition and auxiliary task performance us-
ing three modern end-to-end neural approaches.



Interestingly, we find that CTC outperforms LAS and MTL.
We attribute this to the small size of the HARPERVALLEY-
BANK corpus that encourages expressive autoregressive mod-
els to heavily overfit. In this case, the structure of the CTC loss
is beneficial compared with a model that learns attention. We
see further evidence of this by MTL outperforming LAS, where
CTC acts as a regularizer. LAS can improve a bit by tuning the
probability of teacher forcing (see Fig 4).
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Figure 4: Subfigure (a) and (b) show the effect of increased
weight on the test CER error for CTC and LAS models. Sub-
figure (c) shows the effect of teacher forcing in training LAS.

4. Unsupervised Speech Representations
Unsupervised representation learning seeks to derive useful rep-
resentations of speech waveforms without any human annota-
tions. The learned representations are reused for downstream
tasks, such as predicting caller intent or dialog action. As
HARPERVALLEYBANK is a small dataset, it is a suitable can-
didate to measure the effectiveness of speech representations.
In our experiments, we pretrain representations on the 100 hour
split or 960 hour split of LibriSpeech [18].

Ou baselines use recent ideas from contrastive learning
[27, 28, 29, 30, 31, 32, 33, 34] where representations are learned
by discriminating between specific instances in a dataset. In
particular, we adapt four algorithms from computer vision to
speech: Instance Discrimination or IR [27], Local Aggregation
or LA [28], Momentum Contrast or MoCo [31], and SimCLR
[32]. One of our contributions is to establish comparable base-
lines for audio representation learning. As a close relative, we
also evaluate representations learned using Wav2Vec-1.0 [16]
and Wav2Vec-2.0 [17].

4.1. Training Details

Given a waveform, we truncate to 150k frames, and compute the
log-Mel spectrogram. Spectrograms are z-scored using train-
ing statistics, which we found to be important for generaliza-
tion. By default, we augment waveforms by selecting contigu-
ous crops with a minimum and maximum ratio of 0.08 to 1.0,
along with Gaussian noise with a scale of 1.0. We separately
explore first computing the spectrogram, then applying a time
and frequency mask as augmentation, denoted by the (∗) super-
script in Table 3. Regardless, we fit a ResNet50 [35] to map the
spectrogram to a 2048 dimensional embedding.

After representation learning, we measure the quality of an
embedding by linear evaluation [27, 28, 31, 32]. The HARPER-
VALLEYBANK corpus is split into train (80%) and test (20%)
sets by class to ensure both sets have instances of each class.
Thus, each transfer task has its own train test split. Refer to the
public repository for training hyperparameters.

Model Spk. Intent Action Sent.
Wav2Vec 1.0 (960hr) 18.2 17.1 0.0 53.7
Wav2Vec 2.0 (100hr) 22.3 19.7 0.0 54.3
Wav2Vec 2.0 (960hr) 27.3 20.5 0.0 55.5

IR (100hr) 99.5 99.1 0.0 51.3
LA (100hr) 99.5 98.8 0.0 50.5

MoCo (100hr) 99.6 98.9 0.0 53.2
SimCLR (100hr) 99.8 99.3 0.0 53.9

IR∗ (100hr) 99.5 84.5 0.0 51.4
LA∗ (100hr) 97.5 75.8 1.4 55.1

MoCo∗ (100hr) 99.1 82.6 0.0 54.0
SimCLR∗ (100hr) 99.2 81.4 0.0 54.6

IR (960hr) 99.9 99.9 17.4 66.3
LA (960hr) 99.9 99.9 18.4 64.6

MoCo (960hr) 99.9 99.9 17.3 65.5
SimCLR (960hr) 99.9 99.9 17.4 65.9

IR∗ (960hr) 99.9 86.7 17.6 64.8
LA∗ (960hr) 99.9 79.8 18.0 64.6

MoCo∗ (960hr) 99.5 86.1 16.2 64.3
SimCLR∗ (960hr) 98.6 82.6 16.1 65.6

Table 3: Performance on speaker identity, intent, dialog action,
and emotional valence. We report F1 score for performance on
predicting dialog action. The superscript (∗) represents using
spectral augmentations rather than wavform augmentations.

4.2. Results and Analysis

Table 3 compares the different unsupervised models: IR, LA,
MoCo, and SimCLR surpass supervised methods (e.g. CTC,
LAS, and MTL) in intent prediction, falling short in dialog ac-
tion and sentiment prediction. In particular, dialog action pre-
diction is a surprisingly difficult task for our unsupervised rep-
resentations. Whereas supervised methods achieve upwards of
0.3 F1, the best models in Table 3 achieve only half the score,
despite seeing 960 hours of speech. That being said, adding
860 hours of speech improved the representations, as shown by
overall better performance. Finally, compared to Wav2Vec, the
contrastive objectives find large gains of up to 70%.

5. Conclusion

We introduced HARPERVALLEYBANK, a new speech corpus
of transcribed conversations between employees and customers
in a bank transcaction. The corpus includes additional labels,
including speaker identity, caller intent, dialog actions, and sen-
timent. In our experiments, we established baseline models
that showed this corpus to be an interesting challenge for fu-
ture algorithms, and a useful educational tool for modern deep
learning approaches to spoken dialog. Our experiments ana-
lyzed utterances independently, future work can explore using
the HARPERVALLEYBANK corpus in conversation modelling
and its related downstream optimization.
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