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ABSTRACT

Implementations of two performance monitoring approaches
to feature channel integration in robust automatic speech
recognition are presented. These approaches combine multi-
ple feature channels, where the first one uses a feed-forward
entropy-based criterion and the second one, motivated by psy-
chophysical evidence in human speech perception, employs
a closed loop criterion relating to the overall performance
of the system. The multiple feature channels correspond
to an ensemble of reconstructed spectrograms generated by
applying multiresolution discrete wavelet transform analysis-
synthesis filter-banks to corrupted speech spectrograms. The
spectrograms associated with these feature channels differ
in the degree to which information has been suppressed in
multiple scales and frequency bands. The performance of
these approaches is evaluated in the Aurora 3 speech in noise
task domain.
Index Terms: spectrographic mask, wavelet-based de-
noising, spectrogram reconstruction

1. INTRODUCTION

There are many examples of very low signal-to-noise ratio
environments and communications channels that render au-
tomatic speech recognition (ASR) systems nearly inoperable
when applied to speech utterances taken from these domains.
The family of imputation based missing feature (MF) tech-
niques attempts to reduce the impact of these environments
by characterizing the interaction between speech and acous-
tic background spectral components. This information is then
used to reconstruct the underlying uncorrupted spectral infor-
mation in the speech utterance. The information concerning
this interaction is acquired from separately estimated spectro-
temporal masks which provide either discrete thresholds or
continuous probabilities to indicate the presence of speech in
time-frequency spectral bins.

The interest in this work is to generalize these techniques
to generate multiple parallel reconstructed speech spectro-
grams where each spectrogram corresponds to one of an
ensemble of thresholding schemes. The parallel channels as-
sociated with these speech spectrograms are combined to gen-
erate ASR features through an entropy-based feed-forward
and a feed-back “performance monitoring” approach to com-

bining multiple channels. The feed-back performance moni-
toring approach is particularly motivated by psychophysical
evidence in human perception [2]. The evidence supporting
this performance monitoring approach in human perception
suggests that listeners may be able to suppress information
from unreliable perceptual channels and select reliable chan-
nels based on their assessment of whether a message has been
reliably received [2].

The reconstructed spectrograms which form the parallel
channels in this performance monitoring approach are ob-
tained using a multi-resolution discrete wavelet transforma-
tion (DWT) approach to spectrogram reconstruction [3]. This
is a missing feature based approach that was motivated by
theory arising from wavelet-based de-noising [4]. Noise cor-
rupted spectrograms from a speech utterance are presented to
a pyramidal wavelet-based analysis-synthesis filter-bank. In
the wavelet domain, the wavelet coefficients are “de-noised”
according to a given thresholding strategy. A brief description
of the approach is provided in Section 2.

The premise of the work described in this paper is that
an ensemble of thresholding strategies can be posed for
suppressing wavelet coefficients, each providing different
detection characteristics at different filter-bank scales and
frequency bands. This ensemble of thresholding strategies
results in an ensemble of reconstructed spectrograms, each
differing in the degree to which information has been sup-
pressed in scale and frequency. It is this ensemble of spec-
trograms that form the parallel processing channels in the
feed-back and feed-forward approaches described in Figure 1
and Figure 2 and presented in Section 3.

The overall approach presented here consists of three ma-
jor steps . The first step is the extraction of parallel feature
channels, SSS = {S1, . . . , SM}, from the corrupted speech.
These channels correspond to the reconstructed spectrograms
associated with the threshold settings ΩΩΩ = {Ω1, . . . ,ΩM} de-
scribed above. The second step is to assess the quality of each
feature channel, so that each channel is associated with a qual-
ity measure Φm,m = 1, . . . ,M . As we see in Section 3, this
step can be performed at frame level or at utterance level. Fi-
nally, the last step is to come up with a fusion strategy to either
select or generate the spectrogram with the highest quality.



2. WAVELET-BASED SPECTROGRAM
RECONSTRUCTION

A multi-resolution DWT approach to spectrogram reconstruc-
tion for robust ASR was originally presented in [3]. Sec-
tion 2.1 briefly introduces this approach as a means for mask-
ing wavelet coefficients by exploiting speech presence prob-
ability (SPP) estimates obtained from spectrographic masks.
Section 2.2 describes how the wavelet-domain mask is used
for selective wavelet reconstruction.

2.1. Generating wavelet-domain masks

The spectrogram reconstruction approach in [3] is moti-
vated by the theoretical arguments for wavelet based signal
de-noising originally presented by Donoho in [4]. These
methods have been shown to achieve near optimal estimates
of the original signal from noisy observations when wavelet
coefficients are thresholded using an “oracle” thresholding
scheme [4]. This thresholding scheme identifies and pre-
serves wavelet coefficients representing the original signal
and suppresses coefficients generated from additive corrupt-
ing noise. In a missing data framework, this process can
be rephrased as identifying the “reliable” and “unreliable”
wavelet coefficients of the noise corrupted speech frame and
performing the wavelet-based masking, accordingly.

In DWT-based spectrogram reconstruction, the noisy
speech spectrogram is presented to the DWT filter-bank and
thresholds are estimated for wavelet coefficients at all filter-
bank scales [3]. At each analysis frame, a D-dimensional
vector of log energy coefficients, yyy = [y1, . . . , yD], is ex-
tracted form noise corrupted speech. A speech presence
probability (SPP) vector θθθ = [θ1, . . . , θD] is estimated from a
spectrographic mask. Each θd represents the probability that
underlying speech spectral energy has not been masked by
noise. The next step is to obtain the mask values at each filter-
bank scale from θθθ by propagating θθθ through the DWT filter
bank [3]. The mask propagation begins at the first wavelet
scale where the mask vector, ΘΘΘ1 = [Θ1,1, ...,Θ1,K1

], for the
first scale is thresholded and applied to the wavelet coeffi-
cients [Y1,1, ..., Y1,K1 ] in which K1 is the number of wavelet
coefficients at the first scale. A similar approach is taken
to create a wavelet-domain mask vector at the first scale for
approximation coefficients of yyy, [A1,1, ..., A1,K1

], resulting
in mask components ∆∆∆1 = [∆1,1, . . . ,∆1,K1

] for the approx-
imation coefficients. This process can be repeated so that the
mask vectors at the jth scale, ΘΘΘj and ∆∆∆j , are propagated to
the mask vectors at the j + 1st scale, ΘΘΘj+1 and ∆∆∆j+1, up to
the J th scale in the DWT filter-bank.

2.2. Selective wavelet reconstruction

The last step in the wavelet de-noising process is to generate
a binary mask to be applied to wavelet coefficients, YYY j =
[Yj,1, ..., Yj,Kj

], at each of j = 1, . . . , J scales. The binary

mask, Θ̂j,k, for wavelet coefficient, Yj,k, is obtained from the
continuous mask value, Θj,k by applying a threshold Λj :

Θ̂j,k =

{
1 Θj,k ≥ Λj ;

0 Θj,k < Λj .
(1)

A similar approach is performed to map the continuous-
valued elements of ∆∆∆j to binary-valued components of ∆̂j∆̂j∆̂j

using the threshold values Γ1, . . . ,ΓJ . Hence, a set of 2J
threshold values Ω = {Λ1, . . . ,ΛJ ,Γ1, . . . ,ΓJ} are needed
to specify the de-noising strategy. Having determined the
binary wavelet domain masks at each of J scales, they are
used to mask the wavelet coefficients:

Ŷ hardj,k =

{
Yj,k Θ̂j,k = 1;

0 otherwise.
(2)

Since the approximation coefficients are the outputs of the
low-pass filters in the DWT pyramidal filter-bank, corrupting
noise has the effect of introducing slowly varying compo-
nents into these coefficients. To deal with this type of corrup-
tion, “unreliable” approximation coefficients are smoothed
with the adjacent “reliable” coefficients. Having masked
the wavelet coefficients and the performed smoothing on the
approximation coefficients, the inverse discrete wavelet trans-
form is applied to reconstruct the log mel-spectral features, ŷyy.

3. CHANNEL FUSION

In this section, we take a closer look at the “channel fusion”
block of the proposed systems depicted in Figure 1 and Fig-
ure 2. Specifically, we try to evaluate the “quality” of the
reconstructed channels, S1, . . . , SM . In Section 3.1, we show
how we assess the quality of the feature channels at the frame
level and exploit a feed-forward system to fuse the frames
and to come up with the “best” enhanced spectrogram. Sec-
tion 3.2 presents the utterance-level fusion scheme using a
closed-loop system where the long-term quality of each utter-
ance is measured and fed back to the fusion block to automat-
ically select or generate the “best” enhanced spectrogram.

3.1. Feed-forward fusion
The DWT-based spectrogram reconstruction method pro-
cesses a noisy utterance frame by frame. Thus, for a given
noisy utterance with N frames and the DWT-based imputa-
tion system with M pre-defined thresholding settings, there
exist

(
N×M
N

)
different ways to “re-assemble” the enhanced

spectrogram. As depicted in Figure 1, we are exploiting an
entropy-based measure to select the “best” enhanced frame
out of M enhanced feature channels for each one of the N
time frames and as a result, come up with the “best” spec-
trogram out of the

(
N×M
N

)
combinations. This is performed

by estimating the entropy for each frame and exploiting that
in a feed-forward system to automatically update the frames’
fusion scheme.



Fig. 1: Block diagram of the open-loop fusion system.

To evaluate the entropy of the enhanced frames for each
channel we first need to estimate the posterior probability of
“sub-word” units using a single hidden layer multi-layer per-
ceptron neural network (NN). This NN is trained from clean
speech utterances to generate vectors of posterior probabili-
ties,PPPm, m = 1, . . . ,M . A set of L = 12 sub-word units are
defined by clustering the states of the hidden Markov mod-
els (HMM) representing the eleven words in the Aurora digit
recognition task described in Section 4. The output activa-
tions of the neural network at frame n are estimates of the
posterior probabilities for the L sub-word classes and the in-
puts are vectors of spectrogram components for that frame.
A vector consisting of the posterior probabilities at the out-
put of the neural network is formed for each channel, PPPm =
[p1, . . . , pL], m = 1, . . . ,M , for a frame at a time. An en-
tropy measure is assigned to each channel by:

Φm = −
L∑
i=1

pi ln(pi), m = 1, . . . ,M. (3)

It is believed that for a NN trained on clean speech, the
entropy at the output of that NN increases in case of noisy
speech [7]. Therefore, among the enhanced channels, the one
with the minimum entropy is more likely to have the “highest”
quality. With this criterion, the fusion scheme for the frame-
level scenario becomes: mopt = argmin{Φ1, . . . ,ΦM}, and
ŷyyn = Smopt , in which ŷyyn is the “best” enhanced feature chan-
nel for frame n. By concatenating the ŷyyn’s for all time frames
n = 1, . . . , N , the reconstructed spectrogram is obtained.

3.2. Feed-back fusion
This section describes the “channel fusion” portion of the sys-
tem depicted in Figure 2. The optimum combination of fea-
ture channels is obtained by generating observation sequences
from the combined feature channels and evaluating the simi-
larity of these sequences with respect to sequences generated
under uncorrupted conditions.

The observation vectors in Figure 2 correspond to poste-
rior probabilities of observing sub-word units pl, l = 1, . . . , L
given the fusion of the input channels, fα(SSS). Hence, com-
ponent l of the observation vector ~rn for frame n in an N
frame utterance is given as rαn [l] = P (pl|fα(SSS)). For the spe-
cial case where α corresponds to a binary selection of input

channels, this component of the observation vector is written
as rαm

n [l] = P (pl|Sαm
[n]) where Sαm

[n] is the vector of re-
constructed spectrogram components for the nth frame of the
mth channel.

To assess the quality of feature channel Sαm for an N
frame utterance, the first step is to estimate the sequence of
posterior probability vectors RCαm

= [~rαm
1 , . . . , ~rαm

N ]. The
long-term statistics of this sequence are described by the auto-
correlation matrix

CCαm
=

N∑
n=1

~rαm
n (~rαm

n )T . (4)

The accumulation of the N × N matrix, CCαm
, can be in-

terpreted as an unsupervised means for characterizing inter-
symbol confusions between decoded sub-word symbol se-
quences. The magnitude of the diagonal elements of CCαm

is proportional to the level of confidence for the NN in indi-
vidual sub-word units and the magnitude of the off-diagonal
elements is proportional to the uncertainty associated with
pairs of sub-word units. It should be expected then that this
matrix should be more diagonally dominant when the RCαm

are obtained from uncorrupted utterances.
An autocorrelation matrix, CU , is computed from approx-

imately 150,000 frames of the uncorrupted training speech
data to serve as a reference in the closed loop system. A simi-
larity measure is defined for measuring the degree to which
CCαm

deviates from the uncorrupted speech autocorrelation
matrix, CU . For corrupted utterances, the feature channels
generating observations whereCCαm

is more similar to the ref-
erence matrix, CU , are potentially the channels with the least
deviation from uncorrupted conditions. The similarity mea-
sure used for evaluating this deviation is given by

Φm =
∑
i

∑
j

[CCαm
]i,j [C

U ]i,j , (5)

which provides a point-wise 2-dimensional correlation mea-
sure. Feature channels with higher values of Φm correspond
to reconstructed spectrograms that are more similar to those
extracted from uncorrupted features.

The similarity measures Φ1, . . . ,ΦM are fed back to the
fusion block to determine the fusion parameters, α. In our
implementations, we select the channel with the maximum
Φ value, Φmax if there is a significant difference between
Φmax and the next highest Φ. Otherwise, the optimum re-
constructed spectrogram is computed from the weighted sum
of the three channels with the highest Φ values. While this is
one of many possible approaches to channel fusion, ongoing
research is being directed towards developing more powerful
and efficient channel fusion strategies.

4. EXPERIMENTAL STUDY

This section describes the experimental study conducted to
evaluate the performance of the performance monitoring ap-
proach presented in Sections 2 and 3 for Aurora 3 noisy



Fig. 2: Block diagram of the closed-loop performance monitoring approach to chan-
nel fusion.

speech task domain. The study will compare the performance
of the multi-channel feed-back and feed-forward approaches.
Moreover, the performance of the multi-channel systems is
compared with an implementation of a missing feature based
minimum mean squared error (MMSE) approach for spectro-
gram reconstruction [5, 6].

4.1. Task domain and implementation

All approaches were evaluated on Aurora 3 (Spanish dataset)
speech in noise connected digit task domain. The Spanish Au-
rora 3 corpus was collected in a car environment under mul-
tiple driving conditions using both close-talking and far-field
microphones. The high mismatch condition [8] was used in
the experiments described in Section 4.2. ASR feature analy-
sis was performed by extracting mel log spectral features us-
ing a 25 ms Hamming window, updated every 10 ms. A 512-
point FFT was applied to evaluate the spectral values, and a
mel-scale filter-bank with D=23 filters was used to generate
the log mel-spectral features over a 4000 Hz bandwidth.

The DWT based spectrogram reconstruction method dis-
cussed in Section 2 is implemented using a symlet 4 wavelet
basis which has previously been used in a speech de-noising
application [9]. A J = 4 level filter-bank structure was
found to provide sufficient resolution when evaluating the
filter-bank for the single-channel spectrogram reconstruction
techniques presented in [3] and is also used for the multi-
channel systems in this work.

A long term goal of this work is to develop a formalism
for determining a set of feature channels that are sufficient
for preserving underlying speech information in the presence
of interfering distortions. However, in this work, an intuitive
strategy is used for specifying a set of M = 8 channels of re-
constructed spectrograms where the mth channel is specified
by the threshold values, Ωm = {Λm1 , . . . ,Λm4 ,Γm1 , . . . ,Γm4 },
described in Section 2. Hence, the 8 values for each of 8
sets of Ωm thresholds must be determined to specify the de-
noising strategies for the set of 8 channels. Each threshold
value can take on either a “high” or “low” level where the
actual levels are determined from development utterances by
observing the approximate distributions of the wavelet coef-

ficient masks, Θj,k, and the approximation coefficient masks,
∆j,k. For a given channel that performs the DWT based
analysis-synthesis at scale j, 1 ≤ j ≤ 4, all the thresh-
old values {Λm1 , . . . ,Λmj ,Γm1 , . . . ,Γmj } are either “high” or
“low” and the remaining threshold values which correspond
to higher scales, {Λmj+1, . . . ,Λ

m
4 ,Γ

m
j+1, . . . ,Γ

m
4 }, are set to

zero. This strategy limits the number of channels.

4.2. ASR performance

Table 1 displays ASR WACs for the high-mismatch condi-
tion on the Spanish subset of the Aurora 3 corpus. The first
column displays the baseline WAC, the second column dis-
plays the WAC for MMSE-based missing feature system, and
the third and forth columns show the WAC obtained for the
wavelet-based multi-channel fusion, with the feed-forward
and feed-back systems, respectively. The table shows an
increase in WAC for the multi-channel systems of around
45 percent relative to the baseline and a 2 and 2.5 percent
absolute increase in WAC with respect to a MMSE based
system for the feed-forward and feed-back systems, respec-
tively. This result is particularly important since it is obtained
from speech collected in an actual noisy car environment.
The other interesting observation is that the feed-back system
outperforms the feed-forward approach. This observation
implies the importance of considering the long-term statistics
of the channels (as implemented in the feed-back system) in
channel fusion.

5. SUMMARY AND CONCLUSIONS

Implementations of a feed-forward and a feed-back perfor-
mance monitoring approach to combining multiple feature
channels for robust ASR have been presented. A 2.5 percent
absolute increase in WAC was obtained for the feed-back sys-
tem with respect to a MMSE based missing feature approach
to robust ASR on the same task. The feed-forward system
also resulted in an increase in WAC with respect to the MMSE
approach, but was outperformed by the feed-back system.

The feed-back system provides a mechanism for deter-
mining when the long-term statistical behavior of the system
departs from the statistics of the uncorrupted system. The
feed-forward system, on the other hand, measures the qual-
ity of the short-term statistics of the system. This advantage
of the feed-back systems explains the higher WAC obtained
for the closed-loop system compared to the feed-forward ap-
proach.

Table 1: ASR WAC for DWT-based imputation on Aurora3,
Spanish, high mismatched subset.

Method Baseline MMSE Feed-forward Feed-back
WAC(%) 48.72 68.54 70.50 71.01
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