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What Does a Good Model Look Like?

(test error) ≡ (training error) + (overfit)
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Overfitting: Theory

e.g., Akaike Information Criterion (1973)

−(test LL) ≈ −(train LL) + (# params)

e.g., structural risk minimization (Vapnik, 1974)

(test err) ≤ (train err) + f (VC dimension)

Down with big models!?
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The Big Idea

Maybe overfit doesn’t act like we think it does.
Let’s try to fit overfit empirically.
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What This Talk Is About

An empirical estimate of the overfit in log likelihood of . . .
Exponential language models . . .
That is really simple and works really well.

Why it works.
What you can do with it.
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Outline

1 Introduction

2 Finding an Empirical Law for Overfitting

3 Regularization

4 Why Does the Law Hold?

5 Things You Can Do With It

6 Discussion
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Exponential N-Gram Language Models

Language model: predict next word given previous, say, two
words.

P(y = ate | x = the cat)

Log-linear model: features fi(·); parameters λi .

P(y |x) =
exp(

∑
i λi fi(x , y))

ZΛ(x)

A binary feature fi(·) for each n-gram in training set.
An alternative parameterization of back-off n-gram models.
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Details: Regression

Build hundreds of (regularized!) language models.
Compute actual overfit: log likelihood (LL) per event = log
PP.
Calculate lots of statistics for each model.

F = # parameters; D = # training events.

F
D

;
F log D

D
;

1
D

∑
λi ;

1
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∑
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1
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∑
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4
3 ; . . .

Do linear regression!
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What Doesn’t Work? AIC-like Prediction

(overfit) ≡ LLtest − LLtrain ≈ γ
(# params)
(# train evs)
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What Doesn’t Work? BIC-like Prediction

LLtest − LLtrain ≈ γ
(# params) log (# train evs)

(# train evs)
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What Does Work? (r = 0.9996)

LLtest − LLtrain ≈
γ

(# train evs)

F∑
i=1

|λi |
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γ = 0.938

Holds for many different types of data.
Different domains (e.g., Wall Street Journal, . . . )
Different token types (letters, parts-of-speech, words).
Different vocabulary sizes (27–84,000 words).
Different training set sizes (100–100,000 sentences).
Different n-gram orders (2–7).

Holds for many different types of exponential models.
Word n-gram models; class-based n-gram models;
minimum discrimination information models.
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What About Other Languages?

LLtest − LLtrain ≈
0.938

(# train evs)

F∑
i=1

|λi |
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What About Genetic Data?

LLtest − LLtrain ≈
0.938

(# train evs)

F∑
i=1

|λi |
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3 Regularization

4 Why Does the Law Hold?

5 Things You Can Do With It

6 Discussion

Stanley F. Chen (IBM) Performance Prediction 27 June 2011 15 / 41



IBM

Regularization

Improves test set performance.
`1, `2

2, `1 + `2
2 regularization: choose λi to minimize

(obj fn) ≡ LLtrain + α
F∑

i=1

|λi |+
1

2σ2

F∑
i=1

λ2
i

The problem: γ depends on α, σ!
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Regularization: Two Criteria

Here: pick single α, σ across all models.
Usual way: pick α, σ per model for good performance.

Good performance and good overfit prediction?
performance overfit prediction

`1
√

`2
2

√

`1 + `2
2

√ √

(α = 0.5, σ2 = 6) as good as best n-gram smoothing.
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The Law and `1 + `2
2 Regularization

LLtest − LLtrain ≈
0.938

(# train evs)

F∑
i=1

|λi |
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The Law and `2
2 Regularization

LLtest − LLtrain ≈
0.882

(# train evs)

F∑
i=1

|λi |
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Why Exponential Models Are Special

Do some math (and include normalization features):

LLtest − LLtrain =
1

(# train evs)

F ′∑
i=1

λi × (discount of fi(·))

Compare this to The Law:

LLtest − LLtrain ≈
1

(# train evs)

F∑
i=1

|λi | × 0.938

If only . . .

(discount of fi(·)) ≈ 0.938× sgn λi
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What Are Discounts?

How many times fewer an n-gram occurs in test set . . .
Compared to training set (of equal length).

Studied extensively in language model smoothing.
Let’s look at the data.
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Smoothed Discount Per Feature

(discount of fi(·))
?
≈ 0.938× sgn λi
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Why The Law Holds More Than It Should

Sparse models all act alike.
Dense models don’t overfit much.

LLtest − LLtrain ≈
0.938

(# train evs)

F∑
i=1

|λi |
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Explain Things

Why backoff features help.
Why word class features help.
Why domain adaptation helps.
Why increasing n doesn’t hurt.
Why relative performance differences shrink with more data.
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Make Models Better

(test error) ≈ (training error) + (overfit)

Decrease overfit ⇒ decrease test error.
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Reducing Overfitting

(overfit) ≈ 0.938
(# train evs)

F∑
i=1

|λi |

In practice, the number of features matters not!
More features lead to less overfitting . . .

If sum of parameters decreases!
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A Method for Reducing Overfitting

Before: λ1 = λ2 = 2.

Pbefore(y |x) =
exp(2 · f1(x , y) + 2 · f2(x , y))

ZΛ(x)

After: λ1 = λ2 = 0, λ3 = 2, f3(x , y) = f1(x , y) + f2(x , y).

Pafter(y |x) =
exp(2 · f3(x , y))

ZΛ(x)

=
exp(2 · f1(x , y) + 2 · f2(x , y))

ZΛ(x)
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What’s the Catch? (Part I)

Same test set performance?
Re-regularize model: improves performance more!

(obj fn) ≡ LLtrain + α
F∑

i=1

|λi |+
1

2σ2

F∑
i=1

λ2
i
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What’s the Catch? (Part II)

Select features to sum in hindsight?
When sum features, sums discounts!

LLtest − LLtrain =
1

(# train evs)

F ′∑
i=1

λi × (discount of fi(·))

Need to pick features to sum a priori!
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Heuristic 1: Improving Model Performance

Identify features a priori with similar λi .
Create new feature that is sum of original features.
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Example: N-Gram Models and Backoff

λwj−2wj−1wj , λw ′
j−2wj−1wj tend to be alike ⇒ create λwj−1wj !?

Bigram features reduce overfitting for trigram features.
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Example: N-Gram Models and Word Classes

Group related words into classes, e.g.,
{Monday, Tuesday, . . .}

Add class n-gram features to address sparsity.
Problem: space of word/class n-gram features is large.

cj−2cj−1cj ; wj−2wj−1cj ; wj−1cjwj ; . . .

Apply Heuristic 1 to word n-gram model!
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Goldilocks and the Three Class-Based LM’s

Model S

p(cj | cj−2cj−1)
p(wj | cj)

Model M (Heuristic 1)

p(cj | cj−2cj−1)× p(cj | wj−2wj−1)
p(wj | wj−2wj−1cj)

Model L

p(cj | wj−2cj−2wj−1cj−1)
p(wj | wj−2cj−2wj−1cj−1cj)
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This One Is Just Right!
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Model M

Best class-based model results for speech recognition . . .
Over a wide range of data sets; training set sizes.

Gains up to 3% absolute in error rate over word n-gram.

Stanley F. Chen (IBM) Performance Prediction 27 June 2011 37 / 41



IBM

Outline

1 Introduction

2 Finding an Empirical Law for Overfitting

3 Regularization

4 Why Does the Law Hold?

5 Things You Can Do With It

6 Discussion

Stanley F. Chen (IBM) Performance Prediction 27 June 2011 38 / 41



IBM

Long Live Big Models!

(test error) ≡ (training error) + (overfit)

(overfit) ≈ 0.938
(# train evs)

F∑
i=1

|λi |

Despite theory, models with lots of parameters perform well!
Adding the right parameters can lower overfitting!

Heuristic 1.
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Applicability to Other Domains

Log likelihood vs. error rate.
Log-linear models

LLtest − LLtrain =
1

(# train evs)

F ′∑
i=1

λi × (discount of fi(·))

It’s not the number of parameters . . .
It’s the size of the parameters!

Explain and/or enhance existing practice?
e.g., backoff features; class-based features.
Sometimes the space of feature types is large.
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