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Hoeffding’s Inequality

z1, . . . , zn i.i.d., P(zi ∈ [0,R]) = 1, then

P (|E [z ]− 〈z〉|) ≥ ε) ≤ 2e−
2ε2n
R2

for 〈z〉 ≡ 1
n

∑
zi and E [z ] ≡

∫
zp(z)dz

Probably Approximately Correct (PAC) Learning

Hypothesis Space: h : X → Y has cardinality N(H)

Loss Function: f (h(xi ), yi ) ∈ [0,R] w/probability one

Confidence:
δ ≡ P (maxh∈H |E [f (h(x), y)]− 〈f (h(x), y)〉| ≥ ε)

The Basic PAC Bound:

ε ≤ R

√
ln 2N(H)− ln δ

2n
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Continuous Hypothesis Spaces: Covering Number

N(H) =size of the ε-covering set for empirical and stochastic
averages of f (H), i.e., the smallest possible discrete set
{h1, . . . , hN(H)} such that

max
h

(
min

1≤j≤N(H)
|E [f (hj(x), y)]− E [f (h(x), y)]|

)
≤ ε

max
h

(
min

1≤j≤N(H)
|〈f (hj(x), y)〉 − 〈f (h(x), y)〉|

)
≤ ε

Continuous Hypothesis Spaces: Revised PAC Bound

δ ≡ P

(
max
h∈H

|E [f (h(x), y)]− 〈f (h(x), y)〉| ≥ 3ε

)

ε ≤ R

√
ln 2N(H)− ln δ

2n
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Kernel Estimators of Conditional Risk

Define fX (h(ξ), y) to be the kernel projection of h(ξ) onto x ,

fx(h(ξ), y) ≡ f (h(ξ), y)K (x , ξ)

for some symmetric positive-definite kernel, K (x , ξ) ∈ [0, 1].

Conditional Covering Number

Define N(H|x) to be size of a set hj which is big enough to explain
all of the losses incurred only by the data points that are “near” x ,
where the word “near” is defined by the kernel. Specifically,

max
h

(
min

1≤j≤N(H|x)
|Eξ,y [fx(hj(ξ), y)]− Eξ,y [fx(h(ξ), y)]|

)
≤ ε

max
h

(
min

1≤j≤N(H|x)
|〈fx(hj(ξ), y)〉 − 〈fx(h(ξ), y)〉|

)
≤ ε

Usually, N(H|x) � N(H).
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Covering Number: Example

X = [0, 1]2, Y = [0, 1]

f (h(x), y) = h(x)− y

N(H) ∼
(

1

ε

)3

Conditional Covering Number

Let’s use a 2ε-width rectangular kernel:

fx(h(ξ), y) =

{
h(ξ)− y |x − ξ| < ε
0 else

so

N(H|x) ∼
(

1

ε

)
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Confidence of the Conditional Risk Estimate

δ(x) ≡ P

(
max

h∈H(x)
|E [fx(h(ξ), y)]− 〈fx(h(ξ), y)〉| ≥ 3ε

)
A Semi-Supervised PAC Bound

Suppose (1) p(x) is known, e.g., because we have lots and lots of
unlabeled data, (2) we don’t really care about δ(x), but only about

ln δ ≡ Ex [ln δ(x)]

If we’re willing to redefine “confidence” in this way, then it is
possible to bound ε much more tightly in the semi-supervised case
than in the supervised case, for two reasons.

Range: 〈fx(h, y)〉 ≡ 〈f (h, y)K (x , ξ)〉 tends to be much
smaller than 〈f (h, y)〉. We compensate by rescaling R.

VC Dimension: lnN(H|x) is less than N(H). The reduced
VC dimension creates a better bound.
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PAC Bound for Semi-Supervised Learning

ε ≤ R̄

√
Ex [ln 2N(H|x)]− ln δ

2n

Range: fx(h, y) has a much smaller range than f (h, y). the
root-harmonic-mean-squared radius, R̄ � R, compensates for
the difference in range.

R̄ = R

Ex

(1

n

∑
i

K 2(x , xi )

)−1
−1/2

VC Dimension: In addition to the much smaller range,
fx(h, y) also typically has a much smaller covering number
than f (h, y). The VC dimension, Ex [lnN(H|x)], may
therefore be much smaller than the VC dimension, lnN(H),
that can be achieved without the unlabeled data.
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Maximum Mutual Information (MMI)

MMI is defined by the hypothesis and loss function

~h(x) =

 ln p̂(Y = 1|x)
...

ln p̂(Y = c |x)

 , f (~h, y) = ~hT~δy = − ln p̂(Y = y |x)

MMI training chooses ~h ∈ H to minimize

〈f (~h, y)〉 ≡ −1

n

n∑
i=1

ln p̂(Y = yi |xi )

PAC bound on the resulting risk is

E [f (~h, y)] ≤ 〈f (~h, y)〉+ R

√
ln 2N(H)− ln δ

2n
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Covering Number for the MMI Loss

f (~h, y) = − ln p̂(Y = y |x) has infinite covering number. Finite
covering number is possible for an exponentiated average:

max
h

(
min

1≤j≤N(H|x)

∣∣∣e〈fx (hj (ξ),y)〉 − e〈fx (h(ξ),y)〉
∣∣∣) ≤ ε

For example, suppose we choose some arbitrary entropy threshold
Emax , and limit the hypothesis space to:

H(x) =

h : −
∑
y∈Y

p̂(y |x) ln p̂(y |x) ≤ Emax


then the covering number is

N(H|x) ∼ eEmax
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Semi-Supervised MMI

Estimate the VC dimension using unlabeled data,
DU = {xn+1, . . . , xn+u}:

Ex [lnN(H|x)] ≈ −1

u

n+u∑
i=n+1

∑
y∈Y

p̂(xi , yi ) ln p̂(yi |xi )

Choose h(x) as

h = arg min−1

n

n∑
i=1

ln p̂(yi |xi ), s.t. Ex [lnN(H|x)] ≤ Emax

whose corresponding Lagrangian is

F(~h) = −1

n

n∑
i=1

ln p̂(yi |xi )−
α

u

n+u∑
i=n+1

∑
y∈Y

p̂(xi , y) ln p̂(y |xi )
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Discriminative Training Criteria

Supervised: Maximum Mutual Information Minimum probability of
error = maximum probability of the correct class =
maximum mutual information (MMI) between
observations and labels

F (DL)
MMI (

~h) =
1

n

n∑
i=1

ln p̂(yi |xi )

Unsupervised: Negative Conditional Entropy Encourage the model
to have the greatest possible certainty about its
labeling decisions

F (DU)
NCE (ĥ) =

1

u

l+u∑
i=n+1

∑
y

p̂(xi , y) ln p̂(y |xi )
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Experiments: Phone Classification

On TIMIT corpus
Training: 462 speakers, 3696 utterances, 140225 segments
Development: 50 speakers, 400 utterances, 15057 segments
Test: 118 speakers, 944 utterances, segments, 35697 segments

48 phone classes

To create a semi-supervised setting: Labels of s% of the
training set are kept ((100-s)% are unlabeled)
Segmental features [Halberstadt ’98]: a fixed length vector is
calculated from the frame-based spectral features (12PLP
coefficients plus energy)

Divide the frames for each phone segment into three regions
with 3-4-3 proportion
Plus the 30 ms regions beyond the start and end time of the
segment
Log duration

Each phone is modeled by a GMM with two full-covariance
Gaussian components
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Results: Phone Recognition Accuracy
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Pronunciation Modeling

What does it mean for similar tokens to have similar labels?

d(phone string 1, phone string 2) =
alignment-edit-distance(corresponding gestural scores)

Gesture deletions, insertions, substitutions impossible (infinite
distance)

Gesture edge swaps (temporal re-alignment) possible with
finite cost per swap
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A Mapping Between Gestures and Phones

Each phone corresponds to a canonical “gestural pattern
vector” (GPV)
There are more GPVs than phones; most GPVs correspond to
non-English phones, allophones, or pseudo-phones
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Proximity of Gestural Scores: “The”
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Experimental Test: Recognition of Synthetic Speech

Isolated word recognition: ŵ = arg max p(O|Q)p(Q|w)

O = [~o1, . . . , ~oT ]=Articulograph observations

Q = [q1, . . . , qT ]=GPV sequence

Observation PDF p(O|Q) = ANN-GMM-HMM, trained on
277 words, tested on 139 words

Pronunciation model p(Q|w)

Initialized using dictionary
Expanded to include up to NQ alternate pronunciations with
similar gestural scores, NQ fixed in advance
No learning yet!! Similar gestural scores are assumed, a priori,
to be members of the same class (same word)
(Future work: learning goes here?)
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Accuracy, Synthetic Speech

Recognizer Word Recognition Accuracy

GPV Bigram 85%
(models local GPV sequence
statistics, not global)

GPV-FST, NQ = 1 pronunciation/word 88%

GPV-FST, NQ = 50 pronunciations/word 90%

GPV-FST, NQ = 200 pronunciations/word 90.7%
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Conclusions

Conditional Learning: The hypothesis space for a given x is much
smaller than the global hypothesis space
(N(H|x) � N(H)).

Semi-Supervised Learning: The expected log risk, over x , is
bounded by the expected log covering number,
Ex [lnN(H|x)]. Prior knowledge of p(x) allows us to
calculate and explicitly minimize this number, rather
than the looser bound, lnN(H).

MMI+NCE: For the MMI loss function, the log covering number
is the conditional class entropy. MMI+NCE therefore
reduces phone classification error.

Pronunciation Modeling: Articulatory phonology specifies a
similarity metric over phone sequences—a kind of
label-sequence marginal, p(y). Preliminary results
suggest it may help ASR.
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