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ABSTRACT 
 
A new method to deal with an unexpected harmful 
variability (noise) in speech during the operation of 
the system is reviewed. The fundamental idea is to 
derive in the training phase statistics of the system 
output for the data on which the system was trained 
and adaptively modify the system so that statistics 
derived during the operation are similar. Multiple 
processing streams are formed by extracting different 
spectral and temporal modulation components from 
the speech signal.  Information in each stream is used 
to estimate posterior probabilities of speech sounds 
(posteriogram) in each stream, and these estimates are 
fused to derive the final posteriogram. The 
autocorrelation matrix of a modified final 
posteriogram is adopted as the measure that 
summarizes the system performance. Initial setup of 
the fusion module is found by cross-correlating the 
probability estimates with phoneme labels on training 
data. During an operation, the matrix derived on the 
training data serves as the desirable target and the 
fusion module is modified to optimize the system 
performance. Results on phoneme recognition from 
noisy speech indicate the effectiveness of the method. 
 

1. THE PROBLEM 
 
One of critical differences between information 
processing by biological systems and by machines is 
in rapid decline of performance of a machine, exposed 
to unexpected harmful signal variability (noise).  
 
A biological system must make sense of relevant 
information in the environment that surrounds it. The 
environment is typically cluttered by information from 
other irrelevant sources of a harmful variability. The 
organism must be able to focus on the relevant 
information. Understanding how is this done and 
emulating such ability in a machine would greatly 
increase the machine utility in most practical 
information extraction tasks. 
 

2. CURRENT STATE-OF-THE-ART IN 
MACHINE LEARNING 

 
Machine learning approaches build a model of the 
world by optimizing performance on some training 
data. This assumes that the world will not change in 
the future. However, this cannot be guaranteed. As 
many would agree, our world is full of  “unknown 
unknowns” [9], some of them possibly harmful, and 
among them are also signal distortions not seen in the 
training data. 

One approach to addressing the unexpected noise is to 
derive features that are invariant to noise. This seems 
promising but is difficult for many noise types. 
Another approach is to adapt the model so that it better 
fits the new incoming data. The adaptation needs to 
happen reasonably fast, thus acting on relatively 
limited amounts of new data. Supervised adaptation 
requires labeled new data, existing unsupervised 
approaches assume that increasing model likelihood 
on the limited adaptation data ensures reasonable 
recognition performance in new situation. This may 
not apply for truly unexpected noise types. 
 
In spite of significant efforts in those two directions, it 
appears that some more fundamental flaw in machine 
design needs to be corrected to succeed in dealing 
with unexpected sources of the unwanted variability.  
 

3. OUR MOTIVATION 
 
Human auditory cortex contains several millions of 
cortical neurons, each neuron in principle providing 
for a separate stream in processing an incoming 
auditory stimulus. It is very likely that reasonable 
corruptions of the signal (reasonable in the sense that 
some of the information can still be decoded by 
human listener) affect various cortical processing 
streams differently.  
 
As evidenced in results of physiological (e.g. [1]) and 
psychophysical (e.g. [2]) experiments, cognition may 
be able to provide for a metacognitive feedback loop 
from the output of the system. For example, recent  
studies suggest the anterior cingulated cortex may play 
a role in generating the error related signal and 
communicate it to the rest of the cognitive system. 
While [1] shows that components in recorded EEG 
signals may indicate the certainty of the decision made 
by subjects, that correlates with the stimulus 
degradation, [2]  shows the animal can asses the 
certainty of their decision and use it to maximizes the 
expected reward. This metacognitive performance 
monitoring process may be able to adaptively suppress 
the streams that are heavily corrupted and enhance the 
relatively clean streams, until the listener believes that 
the message is being received. 
 
Providing similar mechanism in engineering schemes 
for machine information extraction could be a starting 
point for a new generation of machine learning 
techniques that could alleviate the excessive fragility 
of machine performance in presence of unexpected 
signal corruptions. 



4. PERFORMANCE MONITORING IN 
MACHINE LEARNING 

 
First, we postulate that the classifier performance is 
optimal for the data on which the classifier was 
trained, and any deviation from this ideal condition 
only degrades the performance.  
 
Further, we propose that the classifier performance 
can be characterized by computing statistics at the 
output of the classifier. Such statistics do not require 
making decisions about the classes and only require 
the knowledge about estimated class probabilities, 
thus avoiding the need for knowing the ground truth 
about the underlying unknown classes. This is 
consistent with reality in deriving information from 
sensory inputs: we do not know what the truth is, all 
we know are its estimates.  
 
Thus, comparing statistics derived from the classifier 
output on the “good” training data and the “corrupted” 
data that are available in the operation, may give some 
indication how corrupted the real data are.  
 

5. PERFORMANCE MONITORING FOR 
ADAPTIVE FUSION IN MULTICHANEL 

MACHINE RECOGNITION 
 
In the multistream classifier discussed here, the 
estimates of corruption in the individual streams can 
be used to decide which streams to emphasize or de-
emphasize during the fusion (nonrecursive 
monitoring).  Alternatively, statistics derived at the 
output of the fusion can be used in global optimization 
of the system by attempting to make the statistics 
derived from the “corrupted” real data and the “good” 
training data more similar (recursive monitoring).  
 
5.1. Estimating Output Statistics 
 
Mesgarani and his colleagues [3] suggest to compute 
second order statistics at the output of a neural net 
based classifier that estimates from short segments of 
speech signal a sequence of equally-spaced vectors of 
posterior probabilities of underlying phonetic classes 
(posteriogram).  
 
They estimate the posterior probability of phonemes 
(set of 39 [4]) for each stream using a single hidden 
layer multi-layer perceptron artificial neural network 
(ANN). The accuracy of phoneme posterior 
probability estimation in each individual stream is less 
than that of a baseline system, since each stream 
carries only a part of the available information. One 
way to measure statistics of the posteriogram 
regardless of its duration, is computing  an 
autocorrelation matrix  
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where Rn(t) is the vector of posterior estimates of 
stream n at time t, and F[.] is some monotonic 
compressive function (currently the fifth root). The 

diagonal elements of this autocorrelation matrix reflect 
the occurrence frequency of each phoneme and the 
off-diagonal values corresponding to the co-activation 
of different phoneme posteriors. It does not tell 
anything about whether the posterior estimates were 
correct, it merely reflects the first (diagonal) and 
second order (off-diagonal) statistics of the estimated 
posteriograms.  
 
5.2. Estimating Distortions 
 
The autocorrelation matrix computed from the 
undistorted signal indicates the behavior of the stream 
on such ideal data. Any additional distortion of the 
signal results in the change of the statistics that this 
matrix describes. Thus, computing a measure of 
similarity between the autocorrelation matrixes 
derived from the clean signal and from the signal 
corrupted by any means indicates the degradation of 
the stream due to the distortion. This measure is  

r =
ACcleanACcorrupted

ACclean ACcorrupted    (2) 
where  ACclean  denotes uncorrupted autocorrelation 
matrix (clean model) and ACcorrupted is the matrix after 
the corruption.  
 
 

 
 
Fig. 1 Autocorrelation matrixes estimated for the clean  
(left part of the figure) and distorted (the right part) 
signals in four different processing streams. The 
distortion was mainly affecting the stream #4 
 
The clean estimate, ACclean used all the data available 
for the training. However, during the operation, the 
ACcorrupted may need to be estimated only from a 
limited amount of data. Thus, an important practical 
issue is the duration of posteriogram needed to obtain 
a reliable estimate of ACcorrupted. To test the 
dependence of similarity measure on the duration of 
posteriogram (T in equation 1), [3] calculated 
ACcorrupted of the four streams in ripple additive noise 
while increasing T. The correlation with the matrix 
clean seemed to stabilize after ~4 seconds making it 
suitable in most practical situations, where the noise 
statistics changes are relatively gradual.   
 
As illustrated in Fig. 3 (adopted from [3]), the cross 
correlation predicts well the recognition accuracies in 
the individual streams. (In this example, the most 
corrupted stream was the stream number 4). 



Notice that for evaluating the quality of information in 
the individual processing streams, there is no need of 
knowing what the result of the classification is, all that 
is required to know is how the system works on the 
training data. 
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Fig. 3 Pearson’s correlation (Eq. (2)) between 
correlation matrices derived from clean and noisy 
posterior estimates in four different processing streams 
and the phoneme recognition accuracies in these four 
streams (adopted from [3]). 
 
For the labeled training data, the correlations between 
matrices derived on class labels and the posterior 
probability estimates from the training data can be 
used for estimating relative efficiencies of the 
individual processing streams that can be used for the 
initializing  of  adaptive linear fusion [7]. 
 
5.3. Monitoring Individual Streams  
 
One way towards increasing robustness in the 
multistream system is to indicate corrupted streams 
prior to the fusion and to use this knowledge in the 
fusion. Earlier works applied for this purpose several 
techniques for estimating the classifier confidence 
such as difference among several top posterior 
estimates or noise estimates in the streams [5], or 
entropies of the classifier output [6].  
 

 
 
Fig. 4 Nonrecursive fusion control 
 

Recently, picking up the best performing streams 
based on the criterion (2) has been also applied for 
eliminating the corrupted streams in linear fusion [3]. 
 
5.4. Monitoring The Recognizer Output  
 
In a more global framework, one can monitor the 
performance of the overall output of the system 
instead of the individual processing streams. This 
eliminates the need for performance monitoring on 
each  processing stream  by focusing on the 
contribution of streams to the final output. One 
advantage of such framework is its ability to optimize 
the fusion by taking into account the changes in 
statistics of all streams at once, which can be more 
effective than examining streams independently.  
 

 
 
Fig. 5 Recursive fusion control 
 
 
The proposed feedback loop only requires evaluating 
the final output from the information processing path 
and a single stream communication link used in 
modifying the fusion module without the necessity of 
communication of information between the fusion and 
all processing streams. 
 
Mesgarani et al [3] demonstrated that the technique 
can be used for choosing the best combination of 
processing streams in neural net based fusion. 
However, it requires training of the fusion on each 
possible n!/k!(n-k)!, ∀k=1…n  combination of 
streams, which presents obvious engineering 
difficulties for larger number of processing streams.  
 
More recently Mesgarani et al [7] came with more 
practical linear fusion based technique where the 
fusion is adaptively modified using particle filtering 
techniques. Appropriate initial weights for a weighted 
summation of  individual estimates are found by cross-
correlating the estimates with the phoneme labels on 
the cross-validation (or training) data. The 
autocorrelation matrix of the final weighted 
probability estimates is adopted as the measure that 
summarizes the system performance during the 
operation. The weights in the linear fusion are adapted 
using particle filtering to optimize the system 
performance. In effect, the procedure changes the 
fusion weight of each phoneme in each stream so that 
the statistics of the output, computed using Eq. (1) are 
more similar to the statistics derived on the clean data.  



4. RECOGNITION EXPERIMENT 
 
As reported in [7], this technique was tested on 
phoneme recognition of TIMIT sentences (3000 
utterances from 375 speakers in the training, 696 
utterances from different 87 speakers as the cross-
validation data, and 1344 utterances from 168 
speakers in the test, all sampled at 16 kHz). The 
system was always trained on the original clean 
TIMIT data, the test utterances were corrupted by 
adding various noises from the Noisex database at 
levels that noticeably degraded the recognizer 
performance. As shown in the Table I, the procedure 
described in the paper [7] resulted in noticeable 
improvement of performance in all noise conditions, 
with the average relative improvement of 13.8 %. 
 
 
TABLE I. Phoneme recognition accuracies in 
recognition of noisy speech (noise types indicated next 
to the bars). Adopted from [7]. 
 

 
 
5. CONCLUSIONS 
 
A successful multistream speech recognition system 
requires three basic elements: 
 
(1) Formation of multiple streams of information that 
are selective enough to avoid corruption of all streams 
in noise, and convey enough information for a 
successful decoding the input from only a subsets of 
them  (2) A way to assess the performance of the 
system in different conditions  (3) An adaptive fusion 
that combines the streams in a way that minimizes the 
effect of noisy streams so that the performance of the 
system improves. 
 
In this paper, we provided motivation for the 
multistream approach and  summarized some solutions 
(described in more detail elsewhere [3],[7]) to each of 
the problems mentioned above:  

(1) The use of spectrotemporal processing streams 
based on our knowledge of mammalian  auditory 
cortical processing [8]  (2) The similarity of second 
order statistics of posteriograms from training and 
operational conditions is used to evaluate the quality 
of the system output during the operation (3) This 
similarity measure can then be used by a Particle Filter 
to dynamically adjust the streams fusion, emulating 
the hypothesized process in human decoding of noisy 
signals, briefly sketched in the Introduction. 
 
The proposed solutions have been shown to be 
effective in phoneme recognition of speech that was 
artificially corrupted by several real-world noises. 
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