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ABSTRACT an oral interview lasting 20-30 minutes with free-form re-

This paper explores the role of machine learning in automagPonses. Administering and grading the OPI requires skille
ing the scoring for one kind of spoken language test: eticite Personnel, is fairly costly and time-consuming, and isééyg
imitation (EI). After sketching the background and ratiena holistic and somewhat subjective in nature. To obtain an
for El testing, we give a brief overview of El test resultsttha accurate holistic score, oral proficiency testing mustitelic
we have collected. To date, the administration and scoringufficient data which results in longer tests and a sparsity o
of these tests have been done sequentially and the scoring [glevant features.

tency has not been critically important; our goal now is to ~ Consequently, alternative oral testing methods have been
automate the test. We show how this implies the need foproposed and developed. One of these involves elicited im-
an adaptive capability at run time, and motivate the need fdfation [1, 2]. A student being tested is given sentences of
machine learning in the creation of this kind of test. We dis-varying complexity one by one, and she must repeat them as
cuss our sizable store of data from prior El test administra€xactly as possible. The response is recorded and latezdyrad
tions. Then we show various experiments that illustrate hoPne commonly accepted grading scheme allocates a perfect
this prior information is useful in predicting student meef ~ Score of 4 to a correctly repeated sentence; this scorelis-dec
mance. We present simulations designed to foreshadow hoiented by 1 for each error, down to a score of 0 (which means
well the system will be able to adapt on-the-fly to student rethere were more than 4 errors). Errors are usually scored at

sponses. Finally, we draw conclusions and mention possibf@e syllable level; if a syllable is missing or incorrectaunts
future work. as 1 error. Part of the attraction of El testing is that it can b

administered by computer.
The theory behind El testing is that a detectable threshold
exists for the student’s linguistic abilities; if senteaeee too

Acquiring a second language is a challenging task for th&omplex linguistically, the student will not be able to rape
learner. Assessment of a learner's proficiency in a seconf@ck the sentence [3]. To be sure, the sentences must be care-
language is also difficult, particularly where oral (i.e.osp fully engineeredforlength to ensure that the student igusot

ken) language is concerned. Several oral proficiency @Stinparrotmg the stimulus. When test sentences are carefudly e

techniques have been developed, each with its own merits aiiheered with features contributing to linguistic complgx
issues. In this paper we focus on only one particular techthey can be combined into an El test that correlates well with

nique, elicited imitation (EI). In this section we sketchrou More traditional oral testing methods. Though there areesom
prior work in El testing of English. Our goal is to automate ¢"1tics of the approach, there is also a growing consensis th
the testing procedure we have implemented to date, and thfd does gives linguistic insight into oral language abilitye
requires machine learning techniques, as described below. WI” rjot pursue the debate on the merits of this test or others
in this paper.

Researchers have also investigated how various linguistic
and demographic features influence the performance of stu-
Testing for learners’ oral proficiency involves assessing alents on El test items. In particular, lexical choice, sgtita
myriad of factors. These factors quantify mastery of a rangelements, and naturalness of the stimuli have all receited a
of language skills: pronunciation, prosody, vocabulargrm tention. Many methods of oral proficiency rating also focus
phology, syntax, and semantics, as well as pragmatic skillen the rate of speech [4] or some other type of fluency mea-
such as social interaction, conversational ability, aaltu sure like a quality of pronunciation score [5].
understanding, and so forth. Over time a few standardized Adaptive testing is desirable for tasks that can be entirely
tests have been developed to perform these assessments,datomated, because the questions can be calibrated testhe te
example the Oral Proficiency Interview (OPI). The OPI issubject’s abilities [6, 7, 8].

1. INTRODUCTION

1.1. El testing



1.2. Thedata istered as follows; an item is played for the subject to hear,
. and their response is recorded. Sentences are chosen from a
gpredetermined store of items, either randomly or sequigntia

. arameter chosen by the test designer). This process con-
large-scale corpora [9]. From these items we have devel- P y gner) P

. inues until all questions have been asked. User resporses a
oped several El tests that we have administered to over 12 (? q b

. o ored as sound files but are not scored until after the test is
subjects, all adult learners of English in the U.S. at vagyin completed

levels of proficiency. The Tesu't i.s a datapase archiv_e 9‘ V€ of course, the adaptive system we envision will require

tluti’iosvgL;Zp;;s)eﬁamtgcgeég ;Sess():i?é?r?s Igﬁﬁljtg/llfaeb_ome modification t.0 the current proqessing scenario. Once

level (i.e. well over a million syllables) to assign eachrita _reéspon_ses are received the sy;tem will nged to evaluate them
S immediately in order to be maximally reactive to the stutent

scorSe from ?ttr? 4 a§tdescr|bed aboved b th proficiency level. Ideally this will involve some component
ome ot Ihese llems were scored by more than one Pels ., hine learning. The adaptive test algorithm, thensis a
son, though we have shown that there is a high degree

i °€ Pllows:
agreementbetween scorers, obviating the need for massive r

dundancy in scoring. In addition to hand-scoring thesestem e Administer at randon two of the easiest items.

we have also developed a system that has performed auto-

matic speech recognition (ASR) scoring for these test items ¢ Score the two items using ASR and machine learning.
[10]. Even though the test subjects speak with foreign ac-
cents, the task is very tractable since the target sentence i
knowna priori, so the response needs only undergo a process
called forced alignment to recognize whether all of the wgord
were present. We have achieved, for English, correlation of
greater than 0.9 for ASR-scored items with human-scored El
testitems. We have also described elsewhere our ASR scoring o terate until some threshold is reached.
pipeline and how well it correlates with the OPI [11]. Table 1

shows the distribution of the ASR-scored items. Note thaft least three thresholds are possible:

over half of the responses were scored at '0’.

language resources such as vocabulary lists, treebandts,

e If the subject does poorly (i.e. 4-score of 0 or 1 for
this item), drop down a level if possible. If the subject
does average (i.e. 4-score of 2 for this item), stay at this
level. If the subject does well (i.e. 4-score of 3 or 4 for
this item), increase difficulty a level.

e Some predetermined number of test questions has been

| #items| Score| asked.
68946 | 0 e Some stability is reached by the student at a given level.
11917 | 1
14283 | 2 e The test becomes exhausted because all items at a re-
16685 | 3 quired level have been used.
22921 | 4

Figure 1 sketches the adaptive algorithm.
Table 1. Distribution of ASR-scored items
2. EXPERIMENTS AND RESULTS

. . In this section we describe several experiments meant to ex-
1.3. Adaptivetesting plore and document progress towards automating the testing

We expect to be able to implement the EI test with automati®rocedure.

grading and in an adaptive testing framework.

Our current El test administration can be run standalon&.1. Using collateral features
or over the web, and makes use of a combination of OPEMr e first test we ran was to assess how well the system could
source technologies—Java, Red5, and the Sphinx4 ASR en

) . o : _guess the score of an individual El test item based on the rel-
gine. The system begins by registering the subject andgski Lo . :
. . evant features for that item: personal information on thie st
pertinent questions about her language background [14. Th

subiect is then oresented with a diagnostics page to ensudgnt who provided the response, and linguistic features for
) ) P . A9 page 1o {fe sentence itself. Predictions were made using TiMBL,[13]
their audio equipment can interact with the online appiacat

correctly. After verifying their equipment works the aai a k-nn (i.e. nearest r_le|ghb0r) system with the_ Overlap metri

: . ; .used for the calculations. The system was trained on alleof th

tion then proceeds to give them a sample test item to famil: X

o : : . . items and then tested under the leare out paradigm.

iarize them with the testing procedures. The test is admin- ) .
Table 2 shows the results for the baseline condition,

LSome students haven taken several different El tests. guessing the exact 4-score, and guessing within 1 point of




Feature type | Subtype |

Select next items Syntax ditransitive, copula, SIM, COM
until threshold Test scores final, speaking
Syllable count| manually determined
> Syntax DES, SQS

Retrieveitems Syllable count| automatically determined

from database Test score listening
Syntax NFC, SUB

Record item responses Deliveritems Syntax overall metric

andsend to server to test-taker Test scores grammar
Syntax VIN
Test score reading
Morphology | overall metric
— Semantics overall metric
Begin test Administeritems Deliveroverall Syntax TRN
score Studentinfo | gender, L1, birth country
birth year, nationality
Vocabulary overall metric
Fig. 1. Adaptive system for El testing. ;esttscores :'Dséﬁ_n'ng’ grammar, reading
yntax
| Test : | Operation | Result| Table 3. Contribution of features for guessing El item score.
Baseline | Guess 0 0.51
Exact Guess exact 4-score valued.62

Within-1 | Guess 4-score value 1 0.80

The simulations were run on a 512-node, 6144-core Intel
Table 2. Predicting item score based on features. Westmere supercomputer with 12,288 GB of memory. Not all
800-plus students for whom we have data were simulated; we
selected 124 students at random for this computation. Again

o o the predictions were made using TiMBL.
the target 4-score. Within-1 scoring is usually allowed whe Figure 2 shows the results for the El testing administra-

humans grade items; as long as their assigned rating iswithijon simulations. The vertical axis indicates the accuraicy

one point of the other grader’s, they are deemed in agreemenf, o, guess, and the horizontal axis shows the number of items
The contribution of the various features for this evaluai®  {agted. Not surprisingly, the first guess fares poorly, bons
noteworthy; see Table 3 for a summary of the features’ sigg,e values jitter around the mid-80% range. By about 20 items
nificance. the system is able to predict with almost 90% accuracy on av-

erage the score for any item for any student. Interestingly,
2.2. Simulating the test after about 60 items the curve starts falling slightly; tisis

due to data sparseness since only a few students have been
In the second machine learning experiment, we ran simuested on more than 60 items. Note also that this simulation
lated test administrations. This involved choosing a storecomputed accuracy on an exact match with the actual 4-score;
item at random and, based on the item’s features that are—ttie system would exhibit even higher accuracy scores ifusin
course—knowra priori, guessing the exact 4-score for how within-1 scoring.
well the student would perform on that item. Training data In scoring the responses this test used all available
consulted for this guess include all scored items in thaenti information—several hundred thousand previously scored
El history database, excluding those for this particular st items and dozens of features for each. This would not be
dent. Then that item is added to the training data, another gfractical in an adaptive testing environment, where respon
the student’s test items is selected at random, and a guesdasency must be minimized and where local computing power
made to predict the score for that item based on its featureg more modest.
That item is also added to the training data, another item is
drawn at random and predicted, and so on. At each stage tl}%
guess is thus predicated on the various student information
features, the linguistic features for the sentence, anduthe Another requirement for adaptive testing is to choose the se
database archive of scored El items for all the other stgdentquence of items more intelligently. The next set of experi-
plus the previously predicted items for that student. ments is designed to explore how effectively this can be per-

. Automatically sequencing test items
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account one feature, a scoring metric; presumably usiray all
some of the other features would help improve the score, but
at the risk of increasing response time.

va
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Fig. 2. Predictions for sentence items: accuracy scores aver-
aged across 124 randomly chosen students tested.

30

formed. We performed an item response theory analysis [14] e e
on all of the English El items to determine their relative-dif Fig. 3. Incremental accuracy of adaptive system with ASR
ficulty. Then the items were categorized into 5 groups: th@rading.

bottom 20% are the easiest, the top 20% are the hardest, and

so on. Based on the algorithm discussed above in subsec-

tion 1.3, several experiments were run with various scoring

algorithms, with up to 60 items adaptively selected for pre-

sentation per test. 2.4. Incremental ASR accuracy

[ Algorithm | Human-scored ASR_| The last results we present assesses how well the adaptive al
avg. scores 95.7% 77.0% gorithm performs over time. Figure 3 plots the accuracy (i.e
avg. IRT level | 99.4% 79.6% percent of correct guesses overall) as the number of iteeas pr
avg. (IRT+scores)/3 99.7% 89.1% sented grows. Scoring is entirely with ASR values. The accu-

Table 4. Accuracy of simulated adaptive test using various 2 of the guesses increases steeply and jitters untit@ou

algorithms (809 subjects, up to 60 questions, within-1agpr quegtions, at which point a high rate_of accuracy is achieved
Again, adding more features should improve these results.

Table 4 shows results for various simulated adaptive test
administrations using different algorithms. Line 1 simply
erages the result scores across each subject’'s answess to th
guestions selected at run time. Line 2 averages the IRT level
of items selected and presented to the subject. Line 3 is the
average of the IRT level and scores across all presented.itemWe have described in this paper groundwork for gauging the
All three of these procedures are grossly oversimplified—feasibility of an adaptive test for ASR-scored EIl response
even crude, but are useful for illustrative purposes. Rresu items. Using machine learning we have assessed the relative
ably it would be possible to compute a regression or somanportance of various features that characterize El items.
other finer-grained scoring regime to get even better scores We were also able to perform large-scale simulations of test

When onlya posteriori human scores were taken into sessions based on data collected from prior administi&tion
consideration, scoring accuracy is very high for all thiedi+  This showed that—given essentially unlimited resourcee—w
mentary algorithms. Note, though, that we are benefittingould effectively leverage the store of all previously stbr
here from hindsight; in a truly adaptive system the test subitems, along with the features of the test item, to prediet ho
ject’s results will not be available for comparison. well a given student would perform on that item. We then

The last column of the table shows how the adaptive alimplemented an algorithm to enact adaptive testing based on
gorithm fares when only ASR scoring is done on the itemspairs of El items chosen randomly from within a target range
This is a more natural assumption since it does not depend drased on the student’s performance on recent items. We
human-generated scores. When the adaptive test items’ IRlemonstrated how the algorithm performs against human-
scores and ASR scores are averaged together, performarsmored and ASR-scored items, and illustrated incremental
achieves a respectable 89.1%. Again, this is only taking intbehavior of the prototype system.

3. CONCLUSIONS
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