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ABSTRACT

This paper explores the role of machine learning in automat-
ing the scoring for one kind of spoken language test: elicited
imitation (EI). After sketching the background and rationale
for EI testing, we give a brief overview of EI test results that
we have collected. To date, the administration and scoring
of these tests have been done sequentially and the scoring la-
tency has not been critically important; our goal now is to
automate the test. We show how this implies the need for
an adaptive capability at run time, and motivate the need for
machine learning in the creation of this kind of test. We dis-
cuss our sizable store of data from prior EI test administra-
tions. Then we show various experiments that illustrate how
this prior information is useful in predicting student perfor-
mance. We present simulations designed to foreshadow how
well the system will be able to adapt on-the-fly to student re-
sponses. Finally, we draw conclusions and mention possible
future work.

1. INTRODUCTION

Acquiring a second language is a challenging task for the
learner. Assessment of a learner’s proficiency in a second
language is also difficult, particularly where oral (i.e. spo-
ken) language is concerned. Several oral proficiency testing
techniques have been developed, each with its own merits and
issues. In this paper we focus on only one particular tech-
nique, elicited imitation (EI). In this section we sketch our
prior work in EI testing of English. Our goal is to automate
the testing procedure we have implemented to date, and this
requires machine learning techniques, as described below.

1.1. EI testing

Testing for learners’ oral proficiency involves assessing a
myriad of factors. These factors quantify mastery of a range
of language skills: pronunciation, prosody, vocabulary, mor-
phology, syntax, and semantics, as well as pragmatic skills
such as social interaction, conversational ability, cultural
understanding, and so forth. Over time a few standardized
tests have been developed to perform these assessments, for
example the Oral Proficiency Interview (OPI). The OPI is

an oral interview lasting 20-30 minutes with free-form re-
sponses. Administering and grading the OPI requires skilled
personnel, is fairly costly and time-consuming, and is largely
holistic and somewhat subjective in nature. To obtain an
accurate holistic score, oral proficiency testing must elicit
sufficient data which results in longer tests and a sparsity of
relevant features.

Consequently, alternative oral testing methods have been
proposed and developed. One of these involves elicited im-
itation [1, 2]. A student being tested is given sentences of
varying complexity one by one, and she must repeat them as
exactly as possible. The response is recorded and later graded.
One commonly accepted grading scheme allocates a perfect
score of 4 to a correctly repeated sentence; this score is decre-
mented by 1 for each error, down to a score of 0 (which means
there were more than 4 errors). Errors are usually scored at
the syllable level; if a syllable is missing or incorrect, itcounts
as 1 error. Part of the attraction of EI testing is that it can be
administered by computer.

The theory behind EI testing is that a detectable threshold
exists for the student’s linguistic abilities; if sentences are too
complex linguistically, the student will not be able to repeat
back the sentence [3]. To be sure, the sentences must be care-
fully engineered for length to ensure that the student is notjust
parroting the stimulus. When test sentences are carefully en-
gineered with features contributing to linguistic complexity,
they can be combined into an EI test that correlates well with
more traditional oral testing methods. Though there are some
critics of the approach, there is also a growing consensus that
EI does gives linguistic insight into oral language ability. We
will not pursue the debate on the merits of this test or others
in this paper.

Researchers have also investigated how various linguistic
and demographic features influence the performance of stu-
dents on EI test items. In particular, lexical choice, syntactic
elements, and naturalness of the stimuli have all received at-
tention. Many methods of oral proficiency rating also focus
on the rate of speech [4] or some other type of fluency mea-
sure like a quality of pronunciation score [5].

Adaptive testing is desirable for tasks that can be entirely
automated, because the questions can be calibrated to the test
subject’s abilities [6, 7, 8].



1.2. The data

We have developed over 300 EI items for English using
language resources such as vocabulary lists, treebanks, and
large-scale corpora [9]. From these items we have devel-
oped several EI tests that we have administered to over 1200
subjects, all adult learners of English in the U.S. at varying
levels of proficiency. The result is a database archive of over
175,000 EI responses with their associated linguistic fea-
tures1. We have also hand-scored these items at the syllable
level (i.e. well over a million syllables) to assign each item a
score from 0 to 4 as described above.

Some of these items were scored by more than one per-
son, though we have shown that there is a high degree of
agreement between scorers, obviating the need for massive re-
dundancy in scoring. In addition to hand-scoring these items,
we have also developed a system that has performed auto-
matic speech recognition (ASR) scoring for these test items
[10]. Even though the test subjects speak with foreign ac-
cents, the task is very tractable since the target sentence is
knowna priori, so the response needs only undergo a process
called forced alignment to recognize whether all of the words
were present. We have achieved, for English, correlation of
greater than 0.9 for ASR-scored items with human-scored EI
test items. We have also described elsewhere our ASR scoring
pipeline and how well it correlates with the OPI [11]. Table 1
shows the distribution of the ASR-scored items. Note that
over half of the responses were scored at ’0’.

# items Score

68946 0
11917 1
14283 2
16685 3
22921 4

Table 1. Distribution of ASR-scored items

1.3. Adaptive testing

We expect to be able to implement the EI test with automatic
grading and in an adaptive testing framework.

Our current EI test administration can be run standalone
or over the web, and makes use of a combination of open-
source technologies—Java, Red5, and the Sphinx4 ASR en-
gine. The system begins by registering the subject and asking
pertinent questions about her language background [12]. The
subject is then presented with a diagnostics page to ensure
their audio equipment can interact with the online application
correctly. After verifying their equipment works the applica-
tion then proceeds to give them a sample test item to famil-
iarize them with the testing procedures. The test is admin-

1Some students haven taken several different EI tests.

istered as follows; an item is played for the subject to hear,
and their response is recorded. Sentences are chosen from a
predetermined store of items, either randomly or sequentially
(a parameter chosen by the test designer). This process con-
tinues until all questions have been asked. User responses are
stored as sound files but are not scored until after the test is
completed.

Of course, the adaptive system we envision will require
some modification to the current processing scenario. Once
responses are received the system will need to evaluate them
immediately in order to be maximally reactive to the student’s
proficiency level. Ideally this will involve some component
of machine learning. The adaptive test algorithm, then, is as
follows:

• Administer at randon two of the easiest items.

• Score the two items using ASR and machine learning.

• If the subject does poorly (i.e. 4-score of 0 or 1 for
this item), drop down a level if possible. If the subject
does average (i.e. 4-score of 2 for this item), stay at this
level. If the subject does well (i.e. 4-score of 3 or 4 for
this item), increase difficulty a level.

• Iterate until some threshold is reached.

At least three thresholds are possible:

• Some predetermined number of test questions has been
asked.

• Some stability is reached by the student at a given level.

• The test becomes exhausted because all items at a re-
quired level have been used.

Figure 1 sketches the adaptive algorithm.

2. EXPERIMENTS AND RESULTS

In this section we describe several experiments meant to ex-
plore and document progress towards automating the testing
procedure.

2.1. Using collateral features

The first test we ran was to assess how well the system could
guess the score of an individual EI test item based on the rel-
evant features for that item: personal information on the stu-
dent who provided the response, and linguistic features for
the sentence itself. Predictions were made using TiMBL [13],
a k-nn (i.e. nearest neighbor) system with the Overlap metric
used for the calculations. The system was trained on all of the
items and then tested under the leaveoneout paradigm.

Table 2 shows the results for the baseline condition,
guessing the exact 4-score, and guessing within 1 point of



Fig. 1. Adaptive system for EI testing.

Test Operation Result

Baseline Guess 0 0.51
Exact Guess exact 4-score value0.62
Within-1 Guess 4-score value± 1 0.80

Table 2. Predicting item score based on features.

the target 4-score. Within-1 scoring is usually allowed when
humans grade items; as long as their assigned rating is within
one point of the other grader’s, they are deemed in agreement.
The contribution of the various features for this evaluation is
noteworthy; see Table 3 for a summary of the features’ sig-
nificance.

2.2. Simulating the test

In the second machine learning experiment, we ran simu-
lated test administrations. This involved choosing a scored
item at random and, based on the item’s features that are—of
course—knowna priori, guessing the exact 4-score for how
well the student would perform on that item. Training data
consulted for this guess include all scored items in the entire
EI history database, excluding those for this particular stu-
dent. Then that item is added to the training data, another of
the student’s test items is selected at random, and a guess is
made to predict the score for that item based on its features.
That item is also added to the training data, another item is
drawn at random and predicted, and so on. At each stage the
guess is thus predicated on the various student information
features, the linguistic features for the sentence, and thefull
database archive of scored EI items for all the other students,
plus the previously predicted items for that student.

Feature type Subtype

Syntax ditransitive, copula, SIM, COM
Test scores final, speaking
Syllable count manually determined
Syntax DES, SQS
Syllable count automatically determined
Test score listening
Syntax NFC, SUB
Syntax overall metric
Test scores grammar
Syntax VIN
Test score reading
Morphology overall metric
Semantics overall metric
Syntax TRN
Student info gender, L1, birth country

birth year, nationality
Vocabulary overall metric
Test scores listening, grammar, reading
Syntax PPT

Table 3. Contribution of features for guessing EI item score.

The simulations were run on a 512-node, 6144-core Intel
Westmere supercomputer with 12,288 GB of memory. Not all
800-plus students for whom we have data were simulated; we
selected 124 students at random for this computation. Again,
the predictions were made using TiMBL.

Figure 2 shows the results for the EI testing administra-
tion simulations. The vertical axis indicates the accuracyof
each guess, and the horizontal axis shows the number of items
tested. Not surprisingly, the first guess fares poorly, but soon
the values jitter around the mid-80% range. By about 20 items
the system is able to predict with almost 90% accuracy on av-
erage the score for any item for any student. Interestingly,
after about 60 items the curve starts falling slightly; thisis
due to data sparseness since only a few students have been
tested on more than 60 items. Note also that this simulation
computed accuracy on an exact match with the actual 4-score;
the system would exhibit even higher accuracy scores if using
within-1 scoring.

In scoring the responses this test used all available
information—several hundred thousand previously scored
items and dozens of features for each. This would not be
practical in an adaptive testing environment, where response
latency must be minimized and where local computing power
is more modest.

2.3. Automatically sequencing test items

Another requirement for adaptive testing is to choose the se-
quence of items more intelligently. The next set of experi-
ments is designed to explore how effectively this can be per-
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Fig. 2. Predictions for sentence items: accuracy scores aver-
aged across 124 randomly chosen students tested.

formed. We performed an item response theory analysis [14]
on all of the English EI items to determine their relative dif-
ficulty. Then the items were categorized into 5 groups: the
bottom 20% are the easiest, the top 20% are the hardest, and
so on. Based on the algorithm discussed above in subsec-
tion 1.3, several experiments were run with various scoring
algorithms, with up to 60 items adaptively selected for pre-
sentation per test.

Algorithm Human-scored ASR

avg. scores 95.7% 77.0%
avg. IRT level 99.4% 79.6%
avg. (IRT+scores)/2 99.7% 89.1%

Table 4. Accuracy of simulated adaptive test using various
algorithms (809 subjects, up to 60 questions, within-1 scores).

Table 4 shows results for various simulated adaptive test
administrations using different algorithms. Line 1 simplyav-
erages the result scores across each subject’s answers to the
questions selected at run time. Line 2 averages the IRT level
of items selected and presented to the subject. Line 3 is the
average of the IRT level and scores across all presented items.
All three of these procedures are grossly oversimplified—
even crude, but are useful for illustrative purposes. Presum-
ably it would be possible to compute a regression or some
other finer-grained scoring regime to get even better scores.

When only a posteriori human scores were taken into
consideration, scoring accuracy is very high for all three rudi-
mentary algorithms. Note, though, that we are benefitting
here from hindsight; in a truly adaptive system the test sub-
ject’s results will not be available for comparison.

The last column of the table shows how the adaptive al-
gorithm fares when only ASR scoring is done on the items.
This is a more natural assumption since it does not depend on
human-generated scores. When the adaptive test items’ IRT
scores and ASR scores are averaged together, performance
achieves a respectable 89.1%. Again, this is only taking into

account one feature, a scoring metric; presumably using allor
some of the other features would help improve the score, but
at the risk of increasing response time.
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Fig. 3. Incremental accuracy of adaptive system with ASR
grading.

2.4. Incremental ASR accuracy

The last results we present assesses how well the adaptive al-
gorithm performs over time. Figure 3 plots the accuracy (i.e.
percent of correct guesses overall) as the number of items pre-
sented grows. Scoring is entirely with ASR values. The accu-
racy of the guesses increases steeply and jitters until about 20
questions, at which point a high rate of accuracy is achieved.
Again, adding more features should improve these results.

3. CONCLUSIONS

We have described in this paper groundwork for gauging the
feasibility of an adaptive test for ASR-scored EI response
items. Using machine learning we have assessed the relative
importance of various features that characterize EI items.
We were also able to perform large-scale simulations of test
sessions based on data collected from prior administrations.
This showed that—given essentially unlimited resources—we
could effectively leverage the store of all previously scored
items, along with the features of the test item, to predict how
well a given student would perform on that item. We then
implemented an algorithm to enact adaptive testing based on
pairs of EI items chosen randomly from within a target range
based on the student’s performance on recent items. We
demonstrated how the algorithm performs against human-
scored and ASR-scored items, and illustrated incremental
behavior of the prototype system.
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