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Motivation

• Systems are often evaluated with some quantitative performance metric or
task loss.

• Here we consider consistency in the sense of minimizing task loss. SVMs are
not consistent in this sense.

• Here we show that,unlike hinge loss or log loss, latent-structural probit loss
and ramp loss are both consistent.

•We also give finite-sample generalizations bounds and point to a variety of
supporting empirical work.



Why Surrogate Loss Functions

We consider an arbitrary input space X and a finite label space Y , a source
probability distribution over pairs (x, y), and a task loss L with L(y, ŷ) ∈ [0, 1].

We will use a linear classifier with parameter vector w

ŷw(x) = argmax
y

w>φ(x, y)

We would like
w∗ = argmin

w
Ex,y [L(y, ŷw(x))]

We get

ŵ = argmin
w

(
n∑

i=1

Ls(w, xi, yi)

)
+

λ

2
||w||2

The surrogate loss Ls must be scale-sensitive and hence different form the
task loss L



Standard Surrogate Loss Functions (Binary Case)

y ∈ {−1, 1}

ŷw(x) = sign w>Φ(x)

(
for Φ(x, y) =

1

2
yΦ(x)

)

m = yw>φ(x)

Llog(w, x, y) = ln
(
1 + e−m

)
Lhinge(w, x, y) = max(0, 1−m)

Lramp(w, x, y) = min(1, max(0, 1−m))

Lprobit(w, x, y) = Pε∼N (0,1)[ε ≥ m] (assuming ||Φ(x)|| = 1)



Latent Labels

We now assume a finite set Z of “latent labels”.

ŝw(x) = argmax
(y,z)

w>φ(x, y, z)

w∗ = argmin
w

Ex,y [L(y, ŝw(x))]

L(y, (ŷ, ẑ)) = L(y, ŷ)



Surrogate Loss Functions

Llog(w, x, y) = ln
1

Pw(y|x)
= ln Zw(x)− ln Zw(x, y)

Zw(x) =
∑

y,z exp(w>Φ(x, y, z))

Zw(x, y) =
∑

z exp(w>φ(x, (y, z)))

Lhinge(w, x, y) =
(
max

s
w>φ(x, s) + L(y, s)

)
−
(
max

z
w>Φ(x, (y, z))

)

Lramp(w, x, y) =
(
max

s
w>φ(x, s) + L(y, s)

)
−
(
max

s
w>Φ(x, s)

)

Lprobit(w, x, y) = Eε [L(y, ŝw+ε(x))]
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Tighter Upper Bound on Task Loss

Lemma: Lhinge(w, x, y) ≥ Lramp(w, x, y) ≥ L(w, x, y).

Lhinge(w, x, y) ≥ Lramp(w, x, y) is immediate (see definitions).

Furthermore:

Lramp(w, x, y) =
(
max

s
w>Φ(x, s) + L(y, s)

)
− w>Φ(x, ŝw(x))

≥ w>Φ(x, ŝw(x)) + L(y, ŝw(x))− w>Φ(x, ŝw(x)) = L(y, ŝw(x))



Ramp Loss (or Direct Loss) Perceptron Updates

Optimizing Lramp through subgradient descent yields the following update rule
(here we ignore regularization).

∆w ∝ φ(x, ŝw(x))− φ(x, ŝ+
w(x, y))

ŝ+
w(x, y) = argmax

s
w>φ(x, s) + L(y, s)

under mild conditions on the probability distribution over pairs (x, y) we have
the following [McAllester, Hazan, Keshet, 2010].

∇wL(w) = lim
α→∞

αEx,y

[
φ(x, ŝ+

αw(x, y))− φ(x, ŝαw(x))
]



Empirical Results

Methods closely related to ramp loss updates with early stopping have been
shown to be effective in machine translation.

• P. Liang, A. Bouchard-Ct, D. Klein, and B. Taskar. (COLING/ACL), 2006.

• D. Chiang, K. Knight, and W. Wang. NAACL, 2009

Ramp loss updates regularized with early stopping (direct loss) has been shown
to give improvements over hinge loss in phoneme alignment and phoneme recog-
nition.

•McAllester, Hazan, and Keshet. NIPS 2010.

• Keshet, Cheng, Stoehr, and McAllester, to appear at Interspeech 2011

Probit loss has been show to give an improvement over hings loss for phoneme
recognition.

• Keshet, McAllester, and Hazan, ICASSP, 2011.



Some Notation

L(w) = Ex,y [L(w, x, y)]

L∗ = inf
w

L(w)

L̂n(w) =
1

n

n∑
i=1

L(w, xi, yi)



Consistency of Probit Loss

We consider the following learning rule where λn is some given function of n.

ŵn = argmin w L̂n
probit(w) +

λn

2n
||w||2

If

• λn increases without bound

• (λn ln n)/n converges to zero

then
lim

n→∞
Lprobit(ŵn) = L∗



PAC-Bayesian Bounds

[Catoni 07], [Germain, Lacasse, Laviolette, Marchand 09]

For any fixed prior distribution P and fixed λ > 1/2 we have that with prob-
ability at least 1 − δ over the draw of the training data the following holds
simultaneously for all Q.

L(Q) ≤ 1

1− 1
2λ

(
L̂n(Q) + λ

(
KL(Q, P ) + ln 1

δ

n

))

Corollary:

Lprobit(w) ≤ 1

1− 1
2λn

(
L̂n

probit(w) + λn

(
1
2||w||

2 + ln 1
δ

n

))



Consistency of Ramp Loss

Now we consider the following ramp loss training equation.

ŵn = argmin w L̂n
ramp(w) +

γn

2n
||w||2 (1)

If

• γn/(ln2 n) increases without bound

• γn/(n ln n) converges to zero,

then
lim

n→∞
Lprobit((ln n)ŵn) = L∗



Main Lemma

lim
σ→0

Lprobit(w/σ, x, y) ≤ L(w, x, y) ≤ Lramp(w, x, y)

.

Lprobit

(w

σ
, x, y

)
≤ Lramp(w, x, y) + σ + σ

√
8 ln

|S|
σ



Proof of Main Lemma Part I

Lprobit

(w

σ
, x, y

)
≤ σ + max

s: m(s)≤M
L(y, s)

where

m(s) = w>∆φ(s) ∆φ(s) = φ(x, ŝw(x))− φ(x, s) M = σ

√
8 ln

|S|
σ

Proof: for m(s) > M we have the following.

Pε[ŝw+σε(x) = s] ≤ Pε[(w + σε)>∆φ(s) ≤ 0] = Pε

[
−ε>∆φ(s) ≥ m(s)/σ

]
≤ Pε∼N (0,1)

[
ε ≥ M

2σ

]
≤ exp

(
−M 2

8σ2

)
=

σ

|S|

Eε [L(y, ŝw+σε(x))] ≤ Pε [∃s : m(s) > M ŝw+εσ(x) = s] + max
s:m(s)≤M

L(y, s)

≤ σ + max
s:m(s)≤M

L(y, s)



Proof of Main Lemma Part II

Lprobit

(w

σ
, x, y

)
≤ σ + max

s: m(s)≤M
L(y, s)

≤ σ +

(
max

s: m(s)≤M
L(y, s)−m(s)

)
+ M

≤ σ +
(
max

s
L(y, s)−m(s)

)
+ M

= σ + Lramp(w, x, y) + M



Using the Main Lemma

Lprobit

(w

σ

)
≤ 1

1− 1
2λn

L̂n
ramp(w) + σ + σ

√
8 ln

|S|
σ

+ λn

 ||w||2
2σ2 + ln 1

δ

n



Now take
σn = 1/ ln n

λn = γn/(ln2 n)



A Comparison of Convergence Rates

Optimizing σ as a function of λ, ||w|| and n we get (approximately).

σ =
(
λn||w||2/n

)1/3
which gives

Lprobit

(w

σ

)
≤ 1

1− 1
2λn

(
L̂n

ramp(w) +

(
λn||w||2

n

)1/3
(

3

2
+

√
8 ln

|S|
σ

)
+

λn ln 1
δ

n

)

which should be contrasted with

Lprobit(w) ≤ 1

1− 1
2λn

(
L̂n

probit(w) + λn

(
1
2||w||

2 + ln 1
δ

n

))



Summary

•Well known Surrogate loss functions have natural generalizations to the la-
tent structural setting.

• Convex loss functions are not consistent.

• Probit and Ramp loss are consistent but seem significantly different in the
latent structural setting.



Future Work

Early empirical evidence suggests that “direct loss” early stopping (without
other regularization) works significantly better than L2 regularization for ramp
loss.

The direct loss theorem holds for the “toward better” variant of ramp loss. This
variant works better in practice.

This provides both empirical and theoretical evidence that the analysis pre-
sented here is too weak.


