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Introduction

e Modern ASR systems (still) use HMMs with state-dependent Gaussian mixture
models for the acoustic feature vectors

e What has changed over the years is the estimation, transformation, adaptation
of the Gaussian parameters

e Allocation of Gaussians to states based on heuristics (e.g. fifth root of the
number of frames aligned to a state)

e Models can be easily overtrained especially with discriminative training
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Shared representations

Reduce the number of parameters by sharing common structures

e Tied Gaussian mixture models: shared means and covariances,
state-dependent mixture coefficients

e Subspace precision and mean (SPAM) models [Axelrod’02]: subspace
constraint on precision matrices

e Subspace GMMs [Povey’10]. shared covariances, subspace constraint on
component means
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Parsimonious representations

Find good approximations to rich representations that use few parameters

e Diagonal covariance GMMs: ¥ = diag(o3,...,0%)

e Semi-tied covariance transforms [Gales'98]: ¥ = AAAT, A = diag(A1,..., D)

e Extended maximum likelihood linear transforms [Olsen’02]: ¥ = AAAT,
A =diag(Ay, ..., k), D<K < D(D+1)/2

e Factor-analyzed HMMs [Gopinath'98]: ¥ = A + ®®7, A diagonal, ® € R”**
IS a “tall” factor loading matrix

e SPAM models: ¥~ = 3" . \;B;, B; € R”*? are basis matrices
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Bayesian estimation

e Rely on priors to prevent overfitting
e Regularized models perform better on noisy or mismatched test data

e Provides distribution estimates or “error bars” of latent variables instead of
point estimates which can be unreliable

e Applications in speaker/noise adaptation: MAP, MAPLR, FMAPLR

e Little traction in acoustic modeling
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Qutline

e Model specification
e Some properties
e Parameter estimation

e Large scale ASR experiments
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Model specification

Feature vectors x; € R” are generated from a state-dependent additive model

X = P;w; + € (1)

where ®; = [¢;q,...,®;n|, @y, € R”, is the basis (or dictionary) for state i and
w; = [wy, ..., win]|t is a time-dependent weight vector. Assumptions:

o Et‘St =1 NN(O,Rz_l), l.e.

. 1
p(x¢| Wy, 8¢ = 1) \Ri|1/2 exp [_i(Xt — ®;w) Ri(xy — (I)Z'Wt)] (2)

o Wt‘st =1~ N(O,Az_l), l.e.

: 1
p(We|se = 1) oc |A;] Y2 exp [—ithAiwt] (3)
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Graphical model for Bayesian sensing HMMs
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Marginal state likelihood

p(xXy|5y = i) = / ploadwe, s = dp(wils, = )dw, o
R

1 1
/ N [Rif /2 exp [_§(Xt — ®;wy)" Ri(xy — (I’th)] A2 exp [_iwt A; Wt] dw,
R

1
o | Ri|V2 A Y2352 exp —§Xf(Ri - Ri@iEi@fRi)xt]

- )
= [Ril 2| Al 2|8 exp | =2 () Rixy — mp 3 1mti)]

(4)

y. 2 (I R;®; + A;)~ 1, my; = ¥, ®1 R;x; are the covariance matrix and the mean
vector of the posterior distribution p(w|x;, s¢ = 7).
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Gaussians with factor analyzed covariances

e \Woodbury matrix inversion lemma

(A+vUcVyt=At— A"y Cct+vAa )y tvat (5)

where A, U, C' and V denote matrices of compatible dimensions.

e Setting A=R;,U = R;®;, V =®!'R; and C = —%;, we get

11>

R;' = R7'R®;((—%) "' + ®T R, R @) "I R, R (6)
= R+ 0,470

e d;A;'?isa D x N factor loading matrix
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Determinant equality

For (4) to be a Gaussian likelihood, the following has to hold

|R; — R;i®:%:®] Ri| = |Rul| Al | (7)
This can be shown by applying the determinant identity for a partitioned matrix

B B — -
| 11 12 — |BQQHBll _ B123221B21| — |311HB22 — B213111312‘ (8)

By DBao

to the extended matrix of size (D + N) x (D + N)

Dx (Riq)i)DxN
)

( i)

10
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Intuition behind the model

11
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ML type Il parameter estimation

e EM auxiliary function

QAN Zp SIX, A\*N1log p(X, S|\) = ZZ% )log p(x¢|sy = 1) +

where v,(i) = p(s; = i| X, A(¥)) is the posterior probability of being in state i at
time ¢ given observation sequence X = {x;} and current parameters
AR) = 1@k gh) Rk

e M step
AFHD — argmax Q(AAR)
A
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Parameter updates

T

—1
. A§k+1) _ [ z Zt%( )mtzmm]

Zt')/t( )

—1
o D _ [Z% xtmm] [Z% )(Z; +mmm'£)]

o R = [cbizicpf L 2 7 (e —

d;my;)(x: — (I)q;mtq;)T] -
Zt 'Yt(i)
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Discriminative training

e MMI objective function (X observation sequence, W" reference word
sequence)

B p(X, WT|X)
PN = e P
= logp(X|W",\) —log > p(X|W,\)Pr(W) (9)
_ :Fnum()\) . Fden()\) W
e Auxiliary function
QAN = Qmum(AAP)) — @4 (AAF)) 4+ Q7™ (AP (10)
QO =321 [ A log i (1)

where D, is a state-dependent smoothing constant
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Example of feature and model space DT results
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Automatic relevance determination

e Consider A; = diag(ay1, - - -, QiN)

o If a;; — oo then w; — 0 because of the dimension-specific prior (0, oz;jl)
implying an irrelevant basis ¢, ; for the Bayesian representation

e This is known as automatic relevance determination (ARD) [Tipping’01]

o Effect of a;; on the factor analyzed covariance .S; from (6)

Oéij

N
_ 1
Si=R; "+ E ¢7;j¢£ (12)
J=1

e Model compression by discarding the ¢,;'s corresponding to large a;;'s
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Improvements for ASR |: mixture models

e Parameter initialization:

— Train a GMM for each state and cluster the resulting means using k-means

— Bases @;; initialized to the partitioned means
— Precisions R;; and A;; assumed diagonal and initialized to identity

e Word error rates for an English broadcast news system trained on 50 hours:

mix/state 1 2 4 8 16
A;;, R;; training 29.8% | 27.1% | 25.7% | 25.2% | 24.8%
Aij, Rij, ®;5 training | 29.4% | 26.8% | 25.3% | 24.4% | 24.4%
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Improvements for ASR |I: non-zero means

Word error rates for an Arabic broadcast news system trained on 1800 hours:

Means Adaptation | DEVO7 | DEV0O8 | DEV09
Zero none 14.3% | 16.7% | 19.7%
non-zero | none 14.2% | 16.4% | 19.6%
non-zero | MLLR 13.6% | 16.0% | 18.9%
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Experimental setup

e 1800 hours of Arabic broadcast news training data

e VTL-warped PLP cepstra with LDA and STC

e Speaker adaptation with VTLN, FMLLR and multiple MLLR

e Feature and model space discriminative training with boosted MMI [Povey’08]

e Acoustic models have 5000 states and

— 800K Gaussians for the baseline
— 417K Gaussians for the BSHMMs (initialized from 2.8M Gaussians)

e Recognition vocabulary: 795K words

e Language model: 4-gram with 884M n-grams

19
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ML type Il training results

e Training regime: 5 iterations with fixed state alignments followed by one Viterbi
iteration

e \Word error rates:

System DEVO7 | DEV0O8 | DEV09
baseline 800K | 13.8% | 16.4% | 19.6%
baseline 2.8M | 14.1% | 16.2% | 19.3%
BSHMM 417K | 13.6% | 16.0% | 18.9%

e Number of free parameters:

System Nb. parameters
baseline 800K 64.8M
baseline 2.8M 226.8M
BSHMM 417K 148.5M
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Histogram of sensing weight precisions
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Model compression using ARD

e Acoustic models built with discriminative feature-space transforms [Povey’'05]

e Discard 50% of basis vectors corresponding to the largest precision values

after training

e Results before and after discriminative training of the parameters:

Model Training DEVO7 | DEV0O8 | DEVO09
original ML type Il 12.0% | 13.9% | 17.4%
compressed ML type Il 12.4% | 14.2% | 17.6%
original boosted MMI | 10.7% | 11.9% | 15.0%
compressed | boosted MMI | 10.4% | 11.7% | 14.8%
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GALE 2011 evaluation results

e All models are cross-adapted on the output of a system using SGMMs

e Evaluation testset EVAL-P5 previously unseen

e \Word error rates:

System DEV09 | EVAL-P4 | EVAL-P5
baseline 800K 13.1% 10.0% 9.4%
compressed BSHMM | 12.8% 9.7% 9.1%
system combination 12.6% 9.6% 9.0%
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Conclusion

e Gaussians with factor analyzed covariance matrices

e Bayesian smoothing (prevents overtraining)

e Model compression using ARD

e Outperformed state-of-the-art models during the last GALE evaluation

e More detalls:

— G. Saon and J.-T. Chien. "Bayesian Sensing Hidden Markov Models for
Speech Recognition”, ICASSP 2011.

— G. Saon and J.-T. Chien. "Discriminative Training for Bayesian Sensing
Hidden Markov Models”, ICASSP 2011.

— G. Saon and J.-T. Chien. "Some Properties of Bayesian Sensing Hidden
Markov Models”, submitted to ASRU 2011.
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