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Introduction

• Modern ASR systems (still) use HMMs with state-dependent Gaussian mixture
models for the acoustic feature vectors

• What has changed over the years is the estimation, transformation, adaptation
of the Gaussian parameters

• Allocation of Gaussians to states based on heuristics (e.g. fifth root of the
number of frames aligned to a state)

• Models can be easily overtrained especially with discriminative training
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Shared representations

Reduce the number of parameters by sharing common structures

• Tied Gaussian mixture models: shared means and covariances,
state-dependent mixture coefficients

• Subspace precision and mean (SPAM) models [Axelrod’02]: subspace
constraint on precision matrices

• Subspace GMMs [Povey’10]: shared covariances, subspace constraint on
component means
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Parsimonious representations

Find good approximations to rich representations that use few parameters

• Diagonal covariance GMMs: Σ = diag(σ2
1, . . . , σ

2
D)

• Semi-tied covariance transforms [Gales’98]: Σ = AΛAT , Λ = diag(λ1, . . . , λD)

• Extended maximum likelihood linear transforms [Olsen’02]: Σ = AΛAT ,
Λ = diag(λ1, . . . , λK), D ≤ K ≤ D(D + 1)/2

• Factor-analyzed HMMs [Gopinath’98]: Σ = Λ + ΦΦT , Λ diagonal, Φ ∈ IRD×K

is a “tall” factor loading matrix

• SPAM models: Σ−1 =
∑n

i=1 λiBi, Bi ∈ IRD×D are basis matrices
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Bayesian estimation

• Rely on priors to prevent overfitting

• Regularized models perform better on noisy or mismatched test data

• Provides distribution estimates or “error bars” of latent variables instead of
point estimates which can be unreliable

• Applications in speaker/noise adaptation: MAP, MAPLR, FMAPLR

• Little traction in acoustic modeling
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Outline

• Model specification

• Some properties

• Parameter estimation

• Large scale ASR experiments
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Model specification

Feature vectors xt ∈ IRD are generated from a state-dependent additive model

xt = Φiwt + εt (1)

where Φi = [φi1, . . . , φiN ], φij ∈ IRD, is the basis (or dictionary) for state i and
wt = [wt1, . . . , wtN ]T is a time-dependent weight vector. Assumptions:

• εt|st = i ∼ N (0, R−1
i ), i.e.

p(xt|wt, st = i) ∝ |Ri|
1/2 exp

[

−
1

2
(xt − Φiwt)

TRi(xt − Φiwt)

]

(2)

• wt|st = i ∼ N (0, A−1
i ), i.e.

p(wt|st = i) ∝ |Ai|
1/2 exp

[

−
1

2
w

T
t Aiwt

]

(3)
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Graphical model for Bayesian sensing HMMs

T
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1tw tw 1tw

1tx tx 1tx
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Marginal state likelihood

p(xt|st = i) =

∫

IRN
p(xt|wt, st = i)p(wt|st = i)dwt ∝

∫

IRN
|Ri|

1/2 exp

[

−
1

2
(xt − Φiwt)

TRi(xt − Φiwt)

]

|Ai|
1/2 exp

[

−
1

2
w

T
t Aiwt

]

dwt

∝ |Ri|
1/2|Ai|

1/2|Σi|
1/2 exp

[

−
1

2
x

T
t (Ri − RiΦiΣiΦ

T
i Ri)xt

]

= |Ri|
1/2|Ai|

1/2|Σi|
1/2 exp

[

−
1

2
(xT

t Rixt − m
T
tiΣ

−1
i mti)

]

(4)

Σi
∆
= (ΦT

i RiΦi + Ai)
−1, mti

∆
= ΣiΦ

T
i Rixt are the covariance matrix and the mean

vector of the posterior distribution p(wt|xt, st = i).
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Gaussians with factor analyzed covariances

• Woodbury matrix inversion lemma

(A + UCV )−1 = A−1 − A−1U(C−1 + V A−1U)−1V A−1 (5)

where A, U , C and V denote matrices of compatible dimensions.

• Setting A = Ri, U = RiΦi, V = ΦT
i Ri and C = −Σi, we get

Si
∆
= (Ri − RiΦiΣiΦ

T
i Ri)

−1

= R−1
i − R−1

i RiΦi((−Σi)
−1 + ΦT

i RiR
−1
i RiΦi)

−1ΦT
i RiR

−1
i

= R−1
i + ΦiA

−1
i ΦT

i

(6)

• ΦiA
−1/2
i is a D × N factor loading matrix
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Determinant equality

For (4) to be a Gaussian likelihood, the following has to hold

|Ri − RiΦiΣiΦ
T
i Ri| = |Ri||Ai||Σi| (7)

This can be shown by applying the determinant identity for a partitioned matrix

∣

∣

∣

∣

B11 B12

B21 B22

∣

∣

∣

∣

= |B22||B11 − B12B
−1
22 B21| = |B11||B22 − B21B

−1
11 B12| (8)

to the extended matrix of size (D + N) × (D + N)

[

(Ri)D×D (RiΦi)D×N

(ΦT
i Ri)N×D Σ−1

i = (ΦT
i RiΦi + Ai)N×N

]
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Intuition behind the model
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ML type II parameter estimation

• EM auxiliary function

Q(λ|λ(k)) =
∑

S

p(S|X,λ(k)) log p(X,S|λ) =
∑

i

∑

t

γt(i) log p(xt|st = i) + C

where γt(i) = p(st = i|X, λ(k)) is the posterior probability of being in state i at
time t given observation sequence X = {xt} and current parameters
λ(k) = {Φ

(k)
i , A

(k)
i , R

(k)
i }.

• M step
λ(k+1) = argmax

λ
Q(λ|λ(k))
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Parameter updates

• A
(k+1)
i =

[

Σi +

∑

t γt(i)mtim
T
ti

∑

t γt(i)

]−1

• Φ
(k+1)
i =

[

∑

t

γt(i)xtm
T
ti

] [

∑

t

γt(i)(Σi + mtim
T
ti)

]−1

• R
(k+1)
i =

[

ΦiΣiΦ
T
i +

∑

t γt(i)(xt − Φimti)(xt − Φimti)
T

∑

t γt(i)

]−1
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Discriminative training

• MMI objective function (X observation sequence, W r reference word
sequence)

F(λ) = log
p(X,W r|λ)

p(X|λ)Pr(W r)

= log p(X|W r, λ) − log
∑

W

p(X|W,λ)Pr(W )

= Fnum(λ) −Fden(λ)

(9)

• Auxiliary function

Q(λ|λ(k)) = Qnum(λ|λ(k)) − Qden(λ|λ(k)) + Qsm(λ|λ(k)) (10)

Qsm(λ|λ(k)) =
∑

i

Di

∫

IRD
p(x|λ

(k)
i ) log p(x|λi)dx (11)

where Di is a state-dependent smoothing constant
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Example of feature and model space DT results
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Automatic relevance determination

• Consider Ai = diag(αi1, . . . , αiN)

• If αij → ∞ then wtj → 0 because of the dimension-specific prior N (0, α−1
ij )

implying an irrelevant basis φij for the Bayesian representation

• This is known as automatic relevance determination (ARD) [Tipping’01]

• Effect of αij on the factor analyzed covariance Si from (6)

Si = R−1
i +

N
∑

j=1

1

αij
φijφ

T
ij (12)

• Model compression by discarding the φij’s corresponding to large αij’s
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Improvements for ASR I: mixture models

• Parameter initialization:

– Train a GMM for each state and cluster the resulting means using k-means
– Bases Φij initialized to the partitioned means
– Precisions Rij and Aij assumed diagonal and initialized to identity

• Word error rates for an English broadcast news system trained on 50 hours:

mix/state 1 2 4 8 16
Aij, Rij training 29.8% 27.1% 25.7% 25.2% 24.8%
Aij, Rij, Φij training 29.4% 26.8% 25.3% 24.4% 24.4%
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Improvements for ASR II: non-zero means

Word error rates for an Arabic broadcast news system trained on 1800 hours:

Means Adaptation DEV07 DEV08 DEV09
zero none 14.3% 16.7% 19.7%
non-zero none 14.2% 16.4% 19.6%
non-zero MLLR 13.6% 16.0% 18.9%
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Experimental setup

• 1800 hours of Arabic broadcast news training data

• VTL-warped PLP cepstra with LDA and STC

• Speaker adaptation with VTLN, FMLLR and multiple MLLR

• Feature and model space discriminative training with boosted MMI [Povey’08]

• Acoustic models have 5000 states and

– 800K Gaussians for the baseline
– 417K Gaussians for the BSHMMs (initialized from 2.8M Gaussians)

• Recognition vocabulary: 795K words

• Language model: 4-gram with 884M n-grams
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ML type II training results

• Training regime: 5 iterations with fixed state alignments followed by one Viterbi
iteration

• Word error rates:

System DEV07 DEV08 DEV09
baseline 800K 13.8% 16.4% 19.6%
baseline 2.8M 14.1% 16.2% 19.3%
BSHMM 417K 13.6% 16.0% 18.9%

• Number of free parameters:

System Nb. parameters
baseline 800K 64.8M
baseline 2.8M 226.8M
BSHMM 417K 148.5M
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Histogram of sensing weight precisions
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Model compression using ARD

• Acoustic models built with discriminative feature-space transforms [Povey’05]

• Discard 50% of basis vectors corresponding to the largest precision values
after training

• Results before and after discriminative training of the parameters:

Model Training DEV07 DEV08 DEV09
original ML type II 12.0% 13.9% 17.4%
compressed ML type II 12.4% 14.2% 17.6%
original boosted MMI 10.7% 11.9% 15.0%
compressed boosted MMI 10.4% 11.7% 14.8%
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GALE 2011 evaluation results

• All models are cross-adapted on the output of a system using SGMMs

• Evaluation testset EVAL-P5 previously unseen

• Word error rates:

System DEV09 EVAL-P4 EVAL-P5
baseline 800K 13.1% 10.0% 9.4%
compressed BSHMM 12.8% 9.7% 9.1%
system combination 12.6% 9.6% 9.0%
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Conclusion

• Gaussians with factor analyzed covariance matrices

• Bayesian smoothing (prevents overtraining)

• Model compression using ARD

• Outperformed state-of-the-art models during the last GALE evaluation

• More details:

– G. Saon and J.-T. Chien. ”Bayesian Sensing Hidden Markov Models for
Speech Recognition”, ICASSP 2011.

– G. Saon and J.-T. Chien. ”Discriminative Training for Bayesian Sensing
Hidden Markov Models”, ICASSP 2011.

– G. Saon and J.-T. Chien. ”Some Properties of Bayesian Sensing Hidden
Markov Models”, submitted to ASRU 2011.
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