Online Learning of Large Margin HMMs for Automatic Speech Recognition

Lawrence Saul

Department of Computer Science and Engineering UC San Diego

Joint work with Chih-Chieh Cheng (UCSD) and Fei Sha (USC)

Speech recognition since 1980s

Hidden Markov models (HMMs)

- ► Hidden states: phone/word classes (s₁, s₂, ..., s_T)
- Observations: acoustic feature vectors (x₁, x₂, ..., x_T)

Inference and Learning

- Viterbi algorithm for decoding
- Forward-backward algorithms for sufficient statistics

Types of learning

Maximum likelihood estimation (ML)

- + simple updates, monotonic convergence
- model mismatch, wrong objective

Discriminative training

- + minimize error rates
- more complicated, expensive

Online learning

- + scales well to large data sets
- potential instability

$$p(s|x) = \frac{p(x|s)p(s)}{\sum_{s'} p(x|s')p(s')}$$

p(x|s)

perceptron training of **discrete** HMMs (Collins, 2002)

3

Outline

- Motivation and overview
- Mistake-driven learning in CD-HMMs
- Large margins: do they help?
- Acoustic feature adaptation
- What's next?

Continuous-density HMMs

Joint distribution

Gaussian mixture models (GMMs):

$$\mathcal{P}(x|s) = \sum_{c} \frac{\omega_{sc}}{\sqrt{(2\pi)^d |\Sigma_{sc}|}} e^{-\frac{1}{2}(x-\mu_{sc})^\top \Sigma_{sc}^{-1}(x-\mu_{sc})}$$

5

• Maximum likelihood estimation (MLE) $\Theta^{\text{MLE}} = \operatorname{argmax}_{\Theta} \sum_{n=1}^{N} \log \mathcal{P}(\mathbf{s}_n, \mathbf{x}_n | \Theta)$

Recognition with CD-HMMs

Discriminant function:

 $\mathcal{D}(\mathbf{x}, \mathbf{s}) = \log \mathcal{P}(s_1) + \sum_{t=1}^{T-1} \log \mathcal{P}(s_{t+1}|s_t) + \sum_{t=1}^T \log \mathcal{P}(x_t|s_t)$

• Correct recognition if:

 $\forall \mathbf{s} \neq \mathbf{y}, \quad \mathcal{D}(\mathbf{x}, \mathbf{y}) > \mathcal{D}(\mathbf{x}, \mathbf{s})$

 \mathbf{y} : correct transcription of the observation \mathbf{x}

s : arbitrary transcription

Online Updating

• For each \mathbf{x}_n in the training set

- ► compute Viterbi decoding sequence \mathbf{s}_n^* $\mathbf{s}_n^* = \operatorname{argmax}_{\mathbf{s}} \mathcal{D}(\mathbf{x}_n, \mathbf{s})$
- compare to ground truth sequence yn
- update if $\mathbf{s}_n^* \neq \mathbf{y}_n$

$$\Theta \leftarrow \Theta + \eta \frac{\partial}{\partial \Theta} \left[\mathcal{D}(\mathbf{x}_n, \mathbf{y}_n) - \mathcal{D}(\mathbf{x}_n, \mathbf{s}_n^*) \right]$$

 Iterate until algorithm converges or no longer reduces recognition errors

Devil in the details

- How to parameterize CD-HMMs for online learning?
- How to enforce constraints on parameters?
- How to dampen fluctuations in decision boundary?

GMMs – a closer look

- Conventionally parameterized in terms of means, covariance matrices, and mixture weights.
- Gradient-based learning for component c of state s :

$$\begin{pmatrix} \nu \\ \mu \\ \Sigma \end{pmatrix}_{sc} \leftarrow \begin{pmatrix} \nu \\ \mu \\ \Sigma \end{pmatrix}_{sc} + \begin{pmatrix} \eta_{\nu} & 0 & 0 \\ 0 & \eta_{\mu} & 0 \\ 0 & 0 & \eta_{\Sigma} \end{pmatrix} \begin{pmatrix} \frac{\partial}{\partial \nu} \\ \frac{\partial}{\partial \mu} \\ \frac{\partial}{\partial \Sigma} \end{pmatrix}_{sc} [\mathcal{D}(\mathbf{x}_{n}, \mathbf{y}_{n}) - \mathcal{D}(\mathbf{x}_{n}, \tilde{\mathbf{s}}_{n}^{*})]$$

Empirically difficult to tune multiple learning rates: many gradient-based systems only adapt GMM means.

Reparameterization

Change of variables

For each mixture component, aggregate Gaussian parameters into a single positive semidefinite matrix:

where $\gamma = \log[(2\pi)^d |\Sigma|] + \mu^\top \Sigma^{-1} \mu$

Likelihood computation

$$\log \mathcal{P}(x|s) = -\frac{1}{2}z^T \Phi_s z$$
 where $z = \begin{bmatrix} x \\ 1 \end{bmatrix}$

Reparameterized Update $\Phi_{sc} \leftarrow \Phi_{sc} + \eta \frac{\partial}{\partial \Phi_{sc}} [\mathcal{D}(\mathbf{x}_n, \mathbf{y}_n) - \mathcal{D}(\mathbf{x}_n, \mathbf{s}_n^*)]$

• Problem:

Update can violate **positive semidefiniteness** of matrix Φ_{sc} .

• Solution:

Follow each update by projecting Φ_{sc} back to cone of positive semidefinite matrices.

Reparameterized Update $\Phi_{sc} \leftarrow \Phi_{sc} + \eta \frac{\partial}{\partial \Phi_{sc}} [\mathcal{D}(\mathbf{x}_n, \mathbf{y}_n) - \mathcal{D}(\mathbf{x}_n, \mathbf{s}_n^*)]$

• Problem:

Update can violate **positive semidefiniteness** of matrix Φ_{sc} .

• Solution:

Follow each update by projecting Φ_{sc} back to cone of positive semidefinite matrices.

• Problem:

Projected gradient methods converge **much slower** than unconstrained methods.

Matrix factorization

• Yet another reparametrization

Remove constraint via matrix square root:

$$\Phi_{sc} = \Lambda_{sc} \Lambda_{sc}^T$$

• New update rule:

$$\Lambda_{sc} \leftarrow \Lambda_{sc} + \eta \frac{\partial}{\partial \Lambda_{sc}} [\mathcal{D}(\mathbf{x}_n, \mathbf{y}_n) - \mathcal{D}(\mathbf{x}_n, \mathbf{s}_n^*)]$$

- + unconstrained update
- local minima?
- which matrix square root?

Dampening fluctuations

Cumulative averaging

Borrow idea from "averaged" perceptrons:

$$\tilde{\Phi}^{(i)} = \frac{1}{i} \sum_{j} \Phi^{(j)}$$

- Smoothed parameter trajectories
 - \blacktriangleright averaged Φ changes more slowly than non-averaged Φ
 - used only for testing, not training

Experiments

Phonetic transcription on TIMIT corpus

- 39 phone classes
- Frames of speech:
 - 1.1M training, 120K development, 56K test

Evaluation

Compare recognized vs manual transcriptions:

- Frame error rate (FER): % of misclassified frames
- Phone error rate (PER): edit distance by alignment

Batch versus Online

ML = maximum likelihood estimation (batch)MCE = minimum classification error (batch)Online (best configuration)

Devil in the details

Training	FER (%)
Batch ML	30.7
Online (w/o reparametrization)	33.9
Online (w/o factorization)	30.9
Online (Cholesky)	31.4
Online (w/o averaging)	35.2
Online (w/o MLE initialization)	36.2
Online (init+SVD+averaging)	28.8

Outline

- Motivation and overview
- Mistake-driven learning in CD-HMMs
- Large margins: do they help?
- Acoustic feature adaptation
- What's next?

Large Margin Training

Goal

Attempt to separate scores of correct and incorrect transcriptions by a large margin.

Motivation

Balance minimization of empirical error rate versus generalization on unseen data.

Large margin criterion

 $\begin{aligned} \forall \mathbf{s} \neq \mathbf{y}, \quad \mathcal{D}(\mathbf{x}, \mathbf{y}) > \mathcal{D}(\mathbf{x}, \mathbf{s}) + \rho \mathcal{H}(\mathbf{s}, \mathbf{y}) \\ \mathcal{H}(\mathbf{s}, \mathbf{y}) \quad \text{Hamming distance} \\ \rho > 0 \quad \text{margin scaling factor} \end{aligned}$

Online update rule

- For each \mathbf{x}_n in the training set
 - compute the margin-based decoding sequence $\tilde{\mathbf{s}}_n^*$

 $\tilde{\mathbf{s}}_n^* = \operatorname{argmax}_{\mathbf{s}}[\mathcal{D}(\mathbf{x}_n, \mathbf{s}) + \rho \mathcal{H}(\mathbf{s}, \mathbf{y})]$

- compare to ground truth sequence yn
- update if $\tilde{\mathbf{s}}_n^* \neq \mathbf{y}_n$

$$\Theta \leftarrow \Theta + \eta \frac{\partial}{\partial \Theta} \left[\mathcal{D}(\mathbf{x}_n, \mathbf{y}_n) - \mathcal{D}(\mathbf{x}_n, \tilde{\mathbf{s}}_n^*) \right]$$

 iterate until the algorithm converges or no longer reduces recognition errors

Margin-based decoding

$$\mathbf{s}_{n}^{*} = \operatorname{argmax}_{\mathbf{s}} \mathcal{D}(\mathbf{x}_{n}, \mathbf{s})$$
$$\tilde{\mathbf{s}}_{n}^{*} = \operatorname{argmax}_{\mathbf{s}} [\mathcal{D}(\mathbf{x}_{n}, \mathbf{s}) + \rho \mathcal{H}(\mathbf{s}, \mathbf{y})]$$

Normalized Hamming Distance $\mathcal{H}(\mathbf{s}^*, \tilde{\mathbf{s}}^*)/\mathrm{length}(\mathbf{s}^*)$

Yields very different competing transcriptions!

Do large margins help? Yes.

- MLE = maximum likelihood estimation (batch)
- MCE = minimum classification error (batch)
- Online w/o margin = online algorithm for CD-HMMs
- Online w/ margin = online algorithm for large margin training

Outline

- Motivation and overview
- Mistake-driven learning in CD-HMMs
- Large margins: do they help?
- Acoustic feature adaptation
- What's next?

Acoustic features

Standard front end

Compute 13 cepstral features from each 30 ms window of speech.

Context modeling

Incorporate features from adjacent windows into observations of CD-HMMs.

Scaling of model size

(# GMM parameters) ~ (# features)²

. 00 00

----lana â

Online Optimization

Approach

Maximize margin by alternatively updating projection matrix H and GMM parameters Φ_{sc} .

• Problem

Small changes in H (from one utterance) result in big changes to recognizer (across all phonemes).

Solutions

- 1. Mini-batches of training utterances
- 2. Parameter-tying (of *H*) across different **recognizers**

Recognizer 1

Н

Recognizer 2

Experiments

Acoustic features

- $\hat{x} = 13$ MFCCs across 13 consecutive frames (D=139)
- ► z =lower-dimensional linear projection of \hat{x} (d=39)
- H = projection matrix initialized to simulate differencing operations for 13 MFCCs + $13\Delta + 13\Delta\Delta$

End-to-end large-margin training

- Initialize with maximum likelihood CD-HMMs
- Alternately optimize H and Φ

Results

Summary

How to improve discriminative training of CD-HMMs with online updates?

• Best practices:

- ► Reparameterization $\Phi = \begin{bmatrix} \Sigma^{-1} & -\Sigma^{-1}\mu \\ -\mu^{\top}\Sigma^{-1} & \mu^{\top}\Sigma^{-1}\mu + \gamma \end{bmatrix}$
- ► Factorization $\Phi = \Lambda \Lambda^{T}$
- Averaging $\tilde{\Phi}^{(i)} = \frac{1}{i} \sum_{i} \Phi^{(j)}$
- ► Large margin $\tilde{\mathbf{s}}_n^* = \operatorname{argmax}_{\mathbf{s}} [\mathcal{D}(\mathbf{x}_n, \mathbf{s}) + \rho \mathcal{H}(\mathbf{s}, \mathbf{y})]$
- Feature adaptation with parameter-tying
- Did we succeed?

Outline

- Motivation and overview
- Mistake-driven learning in CD-HMMs
- Large margins: do they help?
- Acoustic feature adaptation
- What's next?

What's next?

Scaling up

- larger corpora
- word recognition (not phone recognition)
- context-dependent (triphone) HMMs
- word lattices for large-vocabulary ASR

Fast adaptation

- new speakers
- infinite data (e.g., refreshed daily)

What's next? (con't)

Other models and loss functions

- Direct loss minimization (McAllester et al, 2010)
- Hidden-unit conditional random field (van der Maaten et al, 2011)
- Edit distance (versus Hamming distance)

What's next? (con't)

Other models and loss functions

- Direct loss minimization (McAllester et al, 2010)
- Hidden-unit conditional random field (van der Maaten et al, 2011)
- Edit distance (versus Hamming distance)

See you at the next workshop ...

Publications

<u>C.-C. Cheng</u>, F. Sha, and L. K. Saul (2010). **Online Learning and Acoustic Feature Adaptation in Large Margin Hidden Markov Models**. In *IEEE Journal of Selected Topics in Signal Processing* 4(6): 926-942.

<u>C.-C. Cheng</u>, F. Sha, and L. K. Saul (2009). Large Margin Feature Adaptation for Automatic Speech Recognition. In *Proceedings of the IEEE Workshop on Automatic Speech Recognition and Understanding (ASRU-09)*, pages 87-92. Merano, Italy.

<u>C.-C. Cheng</u>, F. Sha, and L. K. Saul(2009). **A fast online algorithm for large margin training of continuous-density hidden Markov models.** In *Proceedings of the Tenth Annual Conference of the International Speech Communication Association (Interspeech-09)*, pages 668-671. Brighton, UK.

<u>C.-C. Cheng</u>, F. Sha, and L. K. Saul (2009). Matrix updates for perceptron training of continuous-density hidden Markov models. In *Proceedings of the Twenty Sixth International Conference on Machine Learning (ICML-09)*, pages 153- 160. Montreal, Canada.