
Online Learning of Large Margin HMMs
for Automatic Speech Recognition

Lawrence Saul
Department of Computer Science and Engineering

UC San Diego

Joint work with Chih-Chieh Cheng (UCSD) and Fei Sha (USC)

1



Speech recognition since 1980s

• Hidden Markov models (HMMs)
‣ Hidden states: phone/word classes (s1, s2, ..., sT)

‣ Observations: acoustic feature vectors (x1, x2, ..., xT)

• Inference and Learning
‣ Viterbi algorithm for decoding

‣ Forward-backward algorithms for sufficient statistics

the      man      saw       the      dog
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• If n is fixed, then it can be shown that: 

∫ π 

Xn(ejω) =  2
1 

π W (ejθ)ejθnX (ej(ω+θ))dθ 

−π 

• The above equation is meaningful only if we assume that X (ejω) represents the 

Fourier transform of a signal whose properties continue outside the window, or 

simply that the signal is zero outside the window. 

• In order for Xn(ejω) to correspond to X (ejω), W (ejω) must resemble an impulse 

with respect to X (ejω). 
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Types of learning

• Maximum likelihood estimation (ML)
  + simple updates, monotonic convergence
  - model mismatch, wrong objective

• Discriminative training
  + minimize error rates
  - more complicated, expensive

• Online learning
  + scales well to large data sets
  - potential instability 
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Outline

• Motivation and overview

• Mistake-driven learning in CD-HMMs

• Large margins: do they help?

• Acoustic feature adaptation

• Whatʼs next?
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• Joint distribution

• Emission densities are parameterized by 
Gaussian mixture models (GMMs): 

• Maximum likelihood estimation (MLE)

Continuous-density HMMs 

Matrix Updates for Perceptron Training of CD-HMMs

implement and more feasible for large-scale learning, but
in many cases they converge more quickly and attain better
(generalization) performance than their batch counterparts.

One of the simplest and oldest online learning algorithms
is the perceptron (Rosenblatt, 1958). An exciting line of
recent work has generalized the perceptron algorithm to
discriminative training of discrete HMMs (Collins, 2002).
The perceptron algorithm for discrete HMMs combines
simple additive updates with Viterbi decoding of train-
ing examples. On problems of part-of-speech tagging and
base noun phrase chunking, perceptron training of dis-
crete HMMs outperformed other leading discriminative ap-
proaches.

Motivated by the potential of this approach for ASR, in this
paper we investigate a similarly inspired online learning al-
gorithm for CD-HMMs. CD-HMMs for ASR are param-
eterized in terms of the means and covariance matrices of
multivariate Gaussian emission densities. The online up-
dating of these parameters raises several issues that do not
arise in perceptron training of discrete HMMs. For in-
stance, perceptron updates in CD-HMMs can violate the
positive definiteness of covariance matrices, thus requir-
ing further computation to maintain these constraints. Our
main contribution (in sections 2.4–2.5) is to propose a par-
ticular reparameterization of CD-HMMs that lends itself
very well to perceptron training. We present experimen-
tal results for CD-HMMs trained in this way on the TIMIT
speech corpus, a standard data set for phoneme recognition
benchmarks. We systematically compare the effects of dif-
ferent matrix parameterizations, initializations, and aver-
aging schemes on recognition accuracies and convergence
rates. Our results reveal the particular formulation of per-
ceptron training that yields the most consistently significant
and rapid reductions in recognition error rates.

Beyond ASR, our methods should also appeal more
broadly to researchers interested in optimizations involving
positive semidefinite matrices. Instances of semidefinite
programming arise in many problems of machine learning,
including nonlinear dimensionality reduction (Weinberger
& Saul, 2006) and metric learning (Weinberger et al., 2006;
Davis et al., 2007). Online learning of positive semidefinite
matrices has also been explored for classification of i.i.d.
labeled examples (Shalev-Shwartz et al., 2004).

The remainder of the paper is organized as follows. Sec-
tion 2 describes our formulation of perceptron training in
CD-HMMs. Section 3 presents experimental results that
reveal the effects of different parameterizations, matrix fac-
torizations, initializations, and averaging schemes. Finally,
section 4 summarizes our most important findings and dis-
cusses various directions for future work.

2. Model

In this section, we begin by reviewing CD-HMMs and in-
troducing our notation. We then present the perceptron al-
gorithm for CD-HMMs in its most general terms. Finally,
we consider how to reparameterize CD-HMMs in a more
sensible way for perceptron training and highlight various
issues that arise from this reparameterization.

2.1. Background

CD-HMMs define a joint probability distribution over
sequences of hidden states s = {s1, s2, . . . , sT } and
observations x = {x1, x2, . . . xT }. The joint distri-
bution is expressed in terms of the initial state distri-
bution πi = P(s1 = i), the hidden state transition ma-
trix aij = P(st+1 =j|st = i), and the emission densities
P(xt|st). In terms of these quantities, the joint distribution
is given by:

P(s,x) = πs1

T−1�

t=1

P(st+1|st)
T�

t=1

P(xt|st). (1)

For ASR, each hidden state represents a sub-word linguis-
tic unit (such as a phoneme), and each observation corre-
sponds to an acoustic feature vector. The emission densi-
ties for ASR are usually represented as Gaussian mixture
models (GMMs). The GMM in the sth hidden state is pa-
rameterized by the means µsc and covariance matrices Σsc

associated with the cth mixture component, as well as the
mixture weights ωsc = P(c|s). In terms of these parame-
ters, the emission density is given by:

P(x|s) =
�

c

ωsc�
(2π)d|Σsc|

e−
1
2 (x−µsc)

�Σ−1
sc (x−µsc). (2)

Given a sequence of observations x, we can infer the most
likely hidden state sequence s∗ as:

s∗ = argmaxs log P(s,x; Θ). (3)

The inference in eq. (3) depends on the parameters of the
CD-HMM, which we collectively denote by Θ. The right
hand side of eq. (3) can be computed efficiently by dynamic
programming. In particular, of all possible sequences of
hidden states, the Viterbi algorithm recursively constructs
the one with the highest log-likelihood.

The simplest form of training for CD-HMMs is max-
imum likelihood (ML) estimation. For joint examples
{(xn,yn)}N

n=1 of observation sequences and target state
sequences, this approach aims to maximize the joint log-
likelihood:

ΘML = argmaxΘ

N�

n=1

log P(yn,xn; Θ). (4)

# Frame Error Rate (%)
mix Φ Λ-SVD
1 32.2 (243) 30.0 (7)
2 31.5 (258) 27.6 (4)
4 30.7 (296) 26.0 (11)
8 30.4 (131) 26.5 (28)

Table 1: Frame error rates of perceptron training from the update in eq. (??) versus the update in
eq. (??). For the latter, we studied two different forms of matrix factorization, one using singular
value decomposition (SVD), one using Cholesky factorization. For each result, the number of
sweeps through the training data is shown in parentheses.
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log P(sn,xn|Θ) (19)

s∗ = argmaxsP(s,X|Θ) (20)
�

n

log P(Xn|Wn) (21)
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n

log P(Wn|Xn) (22)

D(x, s) = log P(s1) +
T−1�
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P(xt|st) (23)

(µ,Σ) (24)
xn yn s∗n (25)

Φ-updates
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No averaging
Averaging in Φ

Φ̃(i) =
1
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�
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[D(xn,yn)−D(xn, s∗n)] (27)
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Recognition with CD-HMMs

• Discriminant function:

• Correct recognition if:

   : correct transcription of the observation 
   : arbitrary transcription
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directly seek to minimize the number of classification errors.
Though discriminative training generally yields better perfor-
mance for ASR, it also requires much more computation. The
extra computation arises for two reasons. First, for each train-
ing utterance, discriminative methods must compute likelihoods
not only for the target transcription, but also for all incorrect
transcriptions that may have possibly higher likelihoods. Sec-
ond, many update rules for discriminative training require fine-
tuning of one or more learning rates. They do not converge as
quickly as the EM algorithm for MLE in practice.

2.2. Online Training

In this work we explore a mistake-driven, online algorithm for
discriminative training of CD-HMMs. Our approach builds on
earlier work on perceptron training of discrete HMMs [13] and
CD-HMMs [8]. We briefly review the latter before considering
its extension to large margin training in the next section. Our
earlier work [8] began by defining a discriminant function over
observation and state transition sequences:

D(x, s) = logP(s1)+
T−1X

t=1

logP(st+1|st)+
X

t

logP(xt|st).

(3)
The discriminant function in eq. (3) is simply the logarithm of
the joint distribution in eq. (1). Let y denote the correct tran-
scription of the observation sequence x. For correct recogni-
tion, we require that

∀s �= y, D(x,y) > D(x, s); (4)

note that eq. (4) defines a set of inequalities for all incorrect
transcriptions s �= y. We use s∗ to denote the optimal decoding

s∗ = argmaxsD(x, s), (5)

which can be efficiently computed by the Viterbi algorithm.
Let Θ denote the parameters of the CD-HMM, and let (xn,yn)
denote the acoustic observations and (ground truth) hidden state
transcriptions of the nth training utterance. (We assume these
transcriptions to be known.) In our earlier work, we updated the
CD-HMM parameters using the online learning rule:

Θ ← Θ + η
∂

∂Θ
[D(xn,yn)−D(xn, s∗n)] , (6)

where η > 0 was a carefully chosen learning rate. The up-
date in eq. (6) attempts to close the gap betweenD(xn,yn) and
D(xn, s∗n) whenever an error occurs in recognition. In practice,
training utterances are often processed in random order. Fur-
thermore, multiple passes are made through the training corpus
with each utterance being presented once in each “pass”.

In general, this mistake-driven approach will not converge
to a fixed set of parameters. However, convergence to a fixed
set can be obtained by averaging parameters across different
updates of eq. (6); the averaging also gives a better result after a
finite number of iterations through the training set [14, 15]. The
averaged parameter estimates after r updates are given by:

Θ̂(r) =
1
r

rX

j=1

Θ(j). (7)

Note that this averaging does not affect training process: it only
affects the parameters used for evaluating the model on held-
out data. In our earlier work, we applied the online update in
eq. (6) and the parameter averaging in eq. (7), looping through
the training utterances until the CD-HMM (with averaged pa-
rameters) reached its minimum error rate on a held-out set.

2.3. Large margin training

Large margin training of CD-HMMs seeks not only to minimize
the empirical error rate, but also to separate the scores of cor-
rect and incorrect transcriptions by the largest possible amount,
thus achieving better generalization on unseen data. This idea
has been independently investigated by many researchers in
ASR [2, 3, 4, 5]. Our main contribution in this work is to in-
vestigate a simple, online method for large margin training of
CD-HMMs.

Let (x,y) denote an observation sequence and its ground
truth transcription. The essence of large margin training lies in
the following observation: whereas for correct recognition we
merely require the inequalities in eq. (4), for correct recognition
by a large margin, we additionally require that

∀s �= y, D(x,y) > D(x, s) + ρH(s,y), (8)

where H(s,y) is the Hamming distance between two hidden
state sequences of the same length, and ρ > 0 is a constant
margin scaling factor. In other words, for large margin training,
the score of the correct transcription should exceed the score of
any incorrect transcription by an amount that grows in propor-
tion to the number of recognition errors.

We can use dynamic programming to compute the hidden
state sequence that most egregiously violates the margin con-
straint in eq. (8). We use s̃∗ to denote this hidden state sequence.
From eq. (8), we have:

s̃∗ = argmaxs [D(x, s) + ρH(s,y)] . (9)

The right hand side of eq. (9) can be maximized by a simple
variant of the standard Viterbi algorithm [16].

For online training of large margin CD-HMMs, we consider
the following update rule:

Θ ← Θ + η
∂

∂Θ
[D(xn,yn)−D(xn, s̃∗n)] . (10)

Eq. (10) differs from eq. (6) in one critical aspect: namely,
we replace the usual Viterbi sequence s∗n = argmaxsD(xn, s)
by the sequence s̃∗n = argmaxs [D(xn, s) + ρH(yn, s)] from
margin-based decoding. Though the margin scaling factor ρ
does not appear explicitly in eq. (10), it directly affects the com-
putation of s̃∗n. In fact, our experiments in section 3 will show
that the subtle change in eq. (10) leads to profoundly different
updates. To obtain smoother parameter estimates over time, the
results from eq. (10) can also be averaged as in eq. (7). We
performed this averaging in all of our experiments.

2.4. Parameterization

The online updates in eqs. (6) and (10) are written in terms of
the parameters Θ of the CD-HMM. In this paper, we adopt a
particular parameterization of CD-HMMs that has proven use-
ful in earlier work [8, 17]. Also, in all our experiments, we only
adapt the parameters of the GMMs, not the transition probabil-
ities of the CD-HMMs. The latter generally play a less signifi-
cant role in ASR; moreover, we have found that they are easily
over-trained.

We briefly review the parameterization for GMMs de-
scribed in earlier work [8, 17]. A single Gaussian distribu-
tion P(x|µ,Σ) is conventionally parameterized in terms of its
mean µ and covariance matrix Σ. Let γ = − log[1/(2π)d

|Σ]
denote the log of the scalar prefactor that normalizes the distri-
bution. In terms of these parameters, we consider the matrix:

Φ =

»
Σ−1 −Σ−1µ

−µ�Σ−1 µ�Σ−1µ + γ

–
. (11)
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We briefly review the parameterization for GMMs de-
scribed in earlier work [8, 17]. A single Gaussian distribu-
tion P(x|µ,Σ) is conventionally parameterized in terms of its
mean µ and covariance matrix Σ. Let γ = − log[1/(2π)d

|Σ]
denote the log of the scalar prefactor that normalizes the distri-
bution. In terms of these parameters, we consider the matrix:

Φ =
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directly seek to minimize the number of classification errors.
Though discriminative training generally yields better perfor-
mance for ASR, it also requires much more computation. The
extra computation arises for two reasons. First, for each train-
ing utterance, discriminative methods must compute likelihoods
not only for the target transcription, but also for all incorrect
transcriptions that may have possibly higher likelihoods. Sec-
ond, many update rules for discriminative training require fine-
tuning of one or more learning rates. They do not converge as
quickly as the EM algorithm for MLE in practice.

2.2. Online Training

In this work we explore a mistake-driven, online algorithm for
discriminative training of CD-HMMs. Our approach builds on
earlier work on perceptron training of discrete HMMs [13] and
CD-HMMs [8]. We briefly review the latter before considering
its extension to large margin training in the next section. Our
earlier work [8] began by defining a discriminant function over
observation and state transition sequences:

D(x, s) = logP(s1)+
T−1X

t=1

logP(st+1|st)+
X

t

logP(xt|st).

(3)
The discriminant function in eq. (3) is simply the logarithm of
the joint distribution in eq. (1). Let y denote the correct tran-
scription of the observation sequence x. For correct recogni-
tion, we require that

∀s �= y, D(x,y) > D(x, s); (4)

note that eq. (4) defines a set of inequalities for all incorrect
transcriptions s �= y. We use s∗ to denote the optimal decoding

s∗ = argmaxsD(x, s), (5)

which can be efficiently computed by the Viterbi algorithm.
Let Θ denote the parameters of the CD-HMM, and let (xn,yn)
denote the acoustic observations and (ground truth) hidden state
transcriptions of the nth training utterance. (We assume these
transcriptions to be known.) In our earlier work, we updated the
CD-HMM parameters using the online learning rule:

Θ ← Θ + η
∂

∂Θ
[D(xn,yn)−D(xn, s∗n)] , (6)

where η > 0 was a carefully chosen learning rate. The up-
date in eq. (6) attempts to close the gap betweenD(xn,yn) and
D(xn, s∗n) whenever an error occurs in recognition. In practice,
training utterances are often processed in random order. Fur-
thermore, multiple passes are made through the training corpus
with each utterance being presented once in each “pass”.

In general, this mistake-driven approach will not converge
to a fixed set of parameters. However, convergence to a fixed
set can be obtained by averaging parameters across different
updates of eq. (6); the averaging also gives a better result after a
finite number of iterations through the training set [14, 15]. The
averaged parameter estimates after r updates are given by:

Θ̂(r) =
1
r

rX

j=1

Θ(j). (7)

Note that this averaging does not affect training process: it only
affects the parameters used for evaluating the model on held-
out data. In our earlier work, we applied the online update in
eq. (6) and the parameter averaging in eq. (7), looping through
the training utterances until the CD-HMM (with averaged pa-
rameters) reached its minimum error rate on a held-out set.

2.3. Large margin training

Large margin training of CD-HMMs seeks not only to minimize
the empirical error rate, but also to separate the scores of cor-
rect and incorrect transcriptions by the largest possible amount,
thus achieving better generalization on unseen data. This idea
has been independently investigated by many researchers in
ASR [2, 3, 4, 5]. Our main contribution in this work is to in-
vestigate a simple, online method for large margin training of
CD-HMMs.

Let (x,y) denote an observation sequence and its ground
truth transcription. The essence of large margin training lies in
the following observation: whereas for correct recognition we
merely require the inequalities in eq. (4), for correct recognition
by a large margin, we additionally require that

∀s �= y, D(x,y) > D(x, s) + ρH(s,y), (8)

where H(s,y) is the Hamming distance between two hidden
state sequences of the same length, and ρ > 0 is a constant
margin scaling factor. In other words, for large margin training,
the score of the correct transcription should exceed the score of
any incorrect transcription by an amount that grows in propor-
tion to the number of recognition errors.

We can use dynamic programming to compute the hidden
state sequence that most egregiously violates the margin con-
straint in eq. (8). We use s̃∗ to denote this hidden state sequence.
From eq. (8), we have:

s̃∗ = argmaxs [D(x, s) + ρH(s,y)] . (9)

The right hand side of eq. (9) can be maximized by a simple
variant of the standard Viterbi algorithm [16].
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that the subtle change in eq. (10) leads to profoundly different
updates. To obtain smoother parameter estimates over time, the
results from eq. (10) can also be averaged as in eq. (7). We
performed this averaging in all of our experiments.
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ML estimates of the parameters in CD-HMMs may be

computed by the Expectation-Maximization (EM) algo-

rithm. The EM algorithm monotonically increases the log-

likelihood in eq. (4) with each update, scales well to large

data sets, and does not involve any tuning parameters. All

these properties make it very attractive as a starting point

for ASR. However, one particular drawback of ML esti-

mation is that maximizing the joint likelihood in eq. (4)

does not generally minimize the error rate of the recog-

nizer. To achieve this goal, we therefore seek a mistake-

driven method for parameter estimation in CD-HMMs.

2.2. Perceptron Training

Discriminative training of CD-HMMs has a long history in

ASR (Bahl et al., 1986; Nádas, 1983; Juang & Katagiri,

1992), and new work continues to appear in this area. The

fundamental idea behind discriminative training is to seek

parameters that explicitly minimize the error rate rather

than attempting to model the data itself. Discriminative

training of CD-HMMs is more complicated than ML es-

timation for several reasons: (i) log-likelihoods must be

computed not only for desired state sequences, but also

for competing ones; (ii) most update rules involve some

form of gradient descent, requiring careful tuning of learn-

ing rates; (iii) convergence is not generally as fast as the

EM algorithm for ML estimation.

Mindful of these issues, we have explored an online method

for discriminative training of CD-HMMs based on the per-

ceptron algorithm (Rosenblatt, 1958) and its recent use in

discrete HMMs (Collins, 2002). We begin by describing

our framework at a high level, then give further details (in

sections 2.3–2.5) relating to the issue of parameterization.

We start by defining a so-called discriminant function over

observation and hidden state sequences:

D(x, s) = log πs1 +
�

t>1

log ast−1st +
�

t

log P(xt|st).

(5)

The discriminant function is essentially the logarithm of the

joint probability distribution in CD-HMMs, eq. (1). How-

ever, for discriminative training, we may adapt the parame-

ters of the CD-HMM in such a way that they no longer de-

fine a properly normalized joint distribution. In particular,

we need not enforce sum-to-one constraints on the rows of

the transition matrix aij nor the mixture weights of GMMs.

In terms of the discriminant function, eq. (5), the target

state sequence yn will be correctly inferred if D(xn,yn)
exceeds D(xn, s) for all competing state sequences s. To

estimate parameters that have this property, we consider the

following online update rule:

Θ← Θ + η
∂

∂Θ
[D(xn,yn)−D(xn, s∗n)] , (6)

where s∗n denotes the most likely state sequence returned

by the Viterbi decoding in eq. (3) and η > 0 is a carefully

chosen learning rate. Eq. (6) is a mistake-driven update

rule that only adjusts the parameters when the Viterbi de-

coding returns an incorrect answer s∗n �= yn. The gradient

in eq. (6) computes the fastest search direction in parameter

space to close the gap in the discriminant function between

D(xn,yn) and D(xn, s∗n). As in perceptron training, we

update the parameters of the CD-HMM in an iterative fash-

ion, looping through all the training examples until either

the algorithm converges or no longer reduces the average

number of classification errors.

In general, perceptron learning will not converge to a fixed

set of parameter estimates if the training examples cannot

be perfectly classified. However, convergence to a fixed

set of parameter estimates can be obtained by averaging

the results of perceptron training from different updates of

the training examples (Freund & Schapire, 1999). In prac-

tice, this sort of averaging also appears to yield better re-

sults (Gentile, 2002) by damping fluctuations in the deci-

sion boundary that occur during training. Let Θ(j)
repre-

sent the parameter estimates after the perceptron update in

eq. (6) has been applied for the jth
time. We compute the

averaged parameters Θ̃(r)
after r updates as:

Θ̃(r) =
1
r

r�

j=1

Θ(j). (7)

Note that the averaged parameter estimates are not them-

selves used during training; they are only computed after

training and then used for the classification of new test ex-

amples.

2.3. Parametrization of GMMs

Conventionally, CD-HMMs are parameterized in terms of

their state transition probabilities and the means and co-

variance matrices of their GMMs. The choice of param-

eterization plays an important role in perceptron training.

For example, consider the update rules for the mixture

weights ωsc and the diagonal elements of the covariance

matrices Σsc. Simple additive updates to parameters may

not preserve their nonnegativity, which is necessary for the

discriminant function in eq. (5) to be well-defined for all

possible observation and state sequences. More generally,

the choice of parameterization can significantly affect the

rate of convergence of perceptron training, as well as the

nature of the averaging in eq. (7).

In the rest of this section, we flesh out these issues, con-

centrating mainly on the parameterization of the GMMs.

In general, the transition probabilities in CD-HMMs play a

much less important role in ASR than the GMM parame-

ters; moreover, they are easily over-trained. Thus, in prac-

tice, if the transition probabilities are updated at all by dis-
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# Frame Error Rate (%)
mix Φ Λ-SVD
1 32.2 (243) 30.0 (7)
2 31.5 (258) 27.6 (4)
4 30.7 (296) 26.0 (11)
8 30.4 (131) 26.5 (28)

Table 1: Frame error rates of perceptron training from the update in eq. (??) versus the update in
eq. (??). For the latter, we studied two different forms of matrix factorization, one using singular
value decomposition (SVD), one using Cholesky factorization. For each result, the number of
sweeps through the training data is shown in parentheses.
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Devil in the details

• How to parameterize CD-HMMs for online learning?

• How to enforce constraints on parameters?

• How to dampen fluctuations in decision boundary?

8



GMMs – a closer look

• Conventionally parameterized in terms of means, 
covariance matrices, and mixture weights.

• Gradient-based learning for component c of state s :

Empirically difficult to tune multiple learning rates:
many gradient-based systems only adapt GMM means.

Averaging in Φ

Φ̃(i) =
1
i

�

j

Φ(j) (28)

Φsc ← Φsc + η
∂

∂Φsc
[D(xn,yn)−D(xn, s∗n)] (29)

Λsc ← Λsc + η
∂

∂Λsc
[D(xn,yn)−D(xn, s∗n)] (30)

s̃∗n (31)

s̃∗n = argmaxs[D(xn, s) + ρH(s,y)] (32)

s̃∗n �= yn (33)




ν
µ
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sc

←




ν
µ
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sc

+
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0 ηµ 0
0 0 ηΣ









∂
∂ν
∂
∂µ
∂

∂Σ





sc

[D(xn,yn)−D(xn, s̃∗n)] (34)
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• Change of variables
    For each mixture component, aggregate Gaussian
    parameters into a single positive semidefinite matrix:

                                               

• Likelihood computation

Reparameterization

Online learning of Large margin HMM
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Averaging in Φ

Φ̃(i) =
1
i

�

j

Φ(j) (28)

Φsc ← Φsc + η
∂

∂Φsc

[D(xn,yn)−D(xn, s∗n)] (29)

Λsc ← Λsc + η
∂

∂Λsc

[D(xn,yn)−D(xn, s∗n)] (30)

s̃∗n (31)

s̃∗n = argmaxs[D(xn, s) + ρH(s,y)] (32)

s̃∗n �= yn (33)
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Φ vs. {µ, Σ, ν} (37)
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�
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Reparameterized Update

• Problem:
    Update can violate positive semidefiniteness
    of matrix Φsc.

• Solution:
    Follow each update by projecting Φsc back to cone
    of positive semidefinite matrices.

# Frame Error Rate (%)
mix Φ Λ-SVD
1 32.2 (243) 30.0 (7)
2 31.5 (258) 27.6 (4)
4 30.7 (296) 26.0 (11)
8 30.4 (131) 26.5 (28)

Table 1: Frame error rates of perceptron training from the update in eq. (??) versus the update in
eq. (??). For the latter, we studied two different forms of matrix factorization, one using singular
value decomposition (SVD), one using Cholesky factorization. For each result, the number of
sweeps through the training data is shown in parentheses.

P (wk|w1, w2, ..., wk−1) = P (wk|wk−n+1, ..., wk−1) (15)

P(s,x) = P(s1)
T−1�

t=1

P(st+1|st)
T�

t=1

P(xt|st) (16)

P(x|s, c) ∼ N(µsc,Σsc) (17)
P(x|s) =

�

c

P(c|s)P(x|s, c) (18)

ΘMLE = argmaxΘ

N�

n=1

log P(sn,xn|Θ) (19)

s∗ = argmaxsP(s,X|Θ) (20)
�

n

log P(Xn|Wn) (21)

�

n

log P(Wn|Xn) (22)

D(x, s) = log P(s1) +
T−1�

t=1

P(st+1|st) +
T�

t=1

P(xt|st) (23)

(µ,Σ) (24)
xn yn s∗n (25)

Φ-updates
Λ-updates
No averaging
Averaging in Φ

Φ̃(i) =
1
i

�

j

Φ(j) (26)

Φsc ← Φsc + η
∂

∂Φsc
[D(xn,yn)−D(xn, s∗n)] (27)

Λsc ← Λsc + η
∂

∂Λsc
[D(xn,yn)−D(xn, s∗n)] (28)
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Reparameterized Update

• Problem:
    Update can violate positive semidefiniteness
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• Solution:
    Follow each update by projecting Φsc back to cone
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• Problem:
    Projected gradient methods converge much slower 
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Matrix factorization

• Yet another reparametrization

   Remove constraint via matrix square root:
                            

• New update rule:

Matrix Updates for Perceptron Training of CD-HMMs

trix Φsc as the product of another matrix Λsc and its trans-
pose Λ�sc. The factorization

Φsc = ΛscΛT
sc (14)

makes explicit that the matrix Φsc is positive semidefi-
nite. With this factorization, we can replace the update in
eq. (13) by

Λsc ← Λsc + η
∂

∂Λsc
[D(Xn, yn)−D(Xn, s∗n)] , (15)

in which the square matrices Λsc (of the same size as Φsc)
are completely unconstrained.

The update in eq. (15) has potential advantages and disad-
vantages. As a form of unconstrained optimization, it has
the potential advantage of faster convergence since it does
not involve a projected gradient step. On the other hand, it
has the potential disadvantage of creating an optimization
landscape with more local minima. In particular, note that
for the special case in which each Gaussian mixture model
has only one mixture component, the difference of discrim-
inant functions is actually linear in the matrices Φsc. This
simple optimization landscape is lost with the factorization
in eq. (15). Our experiments in section 3.2 attempt to deter-
mine which potential advantages and disadvantages of this
matrix factorization are realized in practice.

We note that the factorization in eq. (14) is not unique.
While a matrix square root satisfying eq. (14) can be com-
puted by singular value decomposition, the matrix Λsc is
not uniquely determined unless additional constraints are
imposed. One way to obtain a unique factorization is
by constraining Λsc to be positive semi-definite; however,
such a constraint is precisely what we hoped to finesse by
factorizing the matrix Φsc in the first place. Another way to
obtain a unique factorization – the Cholesky factorization
– is by constraining Λsc to be a lower triangular matrix. In
section 3.2, we evaluate and present results for two ways of
updating the matrices Λsc: one that constrains them to be
lower triangular, and one that does not.

The factorization in eq. (14) raises another issue related to
the averaging of parameter estimates as in eq. (7). For train-
ing, we can update the matrices Φsc directly by eq. (13) or
indirectly by eq. (15). However, the best approach for train-
ing does not necessarily correspond to the best approach for
testing with smoothed parameter estimates. Using the no-
tation of eq. (7), one approach is to average the parameter
estimates for Φsc as:

Φ̃(r)
sc =

1
r

r�

j=1

Φ(j)
sc =

1
r

r�

j=1

Λ(j)
sc Λ(j)�

sc . (16)

Another approach is to average the parameter estimates

for Λsc, then to square their average as:

Φ̃(r)
sc = Λ̃(r)

sc Λ̃(r)�
sc , where Λ̃(r)

sc =
1
r

r�

j=1

Λsc. (17)

In section 3.4, we evaluate and present results for both of
these types of averaging.

3. Experiments

We performed experiments on the TIMIT speech cor-
pus (Lamel et al., 1986). The speech signals in this corpus
have been manually segmented and aligned with their pho-
netic transcription. We adopted the same front end as recent
benchmarks for phoneme recognition on this data set (Sha
& Saul, 2009). As is common for ASR, we computed 39-
dimensional acoustic feature vectors of mel-frequency cep-
stral coefficients on sliding windows of speech. Finally, we
followed the standard partition of the TIMIT corpus, yield-
ing roughly 1.1 million, 120K, and 57K frames respectively
for training, test, and holdout data.

We experimented with all the methods described in sec-
tion 2 for perceptron training of CD-HMMs. The CD-
HMMs were trained to minimize the number of phonet-
ically misclassified frames in each utterance. The CD-
HMMs had 48 hidden states (one per phone) and GMMs
that varied in size from one to eight mixture components.

We evaluated the performance of each CD-HMM by com-
paring the hidden state sequences inferred by Viterbi de-
coding to the “ground-truth” phonetic transcriptions pro-
vided by the TIMIT corpus. We report two types of errors:
the frame error rate (FER), computed simply as the per-
centage of misclassified frames, and the phone error rate
(PER), computed from the edit distances between ground
truth and Viterbi decodings (Lee & Hon, 1988). While the
perceptron update in eq. (6) is designed to minimize the
frame error rate (which is approximated by differences be-
tween discriminant functions aggregated over frames), the
phone error rate provides a more relevant metric for ASR.

Perceptron training of CD-HMMs raises several issues that
do not arise in perceptron training of discrete HMMs. Our
experiments addressed three main issues: (i) how should
the GMMs be parameterized, in the same way as for MLE
(section 2.3), or by aggregating the parameters for each
mixture component into a single matrix (section 2.4)? (ii)
how should we enforce the positive semidefiniteness con-
straints on matrix parameters, by projected gradient meth-
ods in the original parameter space or by reparameteriz-
ing the matrices using singular value decompositions or
Cholesky factorizations (section 2.5)? (iii) in which param-
eter space should we average to obtain smoothed parame-
ter estimates for testing (section 2.5)? Our experimental
results provide fairly definitive answers to these questions.

# Frame Error Rate (%)
mix Φ Λ-SVD
1 32.2 (243) 30.0 (7)
2 31.5 (258) 27.6 (4)
4 30.7 (296) 26.0 (11)
8 30.4 (131) 26.5 (28)

Table 1: Frame error rates of perceptron training from the update in eq. (??) versus the update in
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value decomposition (SVD), one using Cholesky factorization. For each result, the number of
sweeps through the training data is shown in parentheses.
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Dampening fluctuations
• Cumulative averaging
     Borrow idea from “averaged” perceptrons:

• Smoothed parameter trajectories

‣ averaged      changes more slowly than non-averaged 

‣ used only for testing, not training
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Experiments 
• Phonetic transcription on TIMIT corpus
‣ 39 phone classes
‣ Frames of speech: 

            1.1M training, 120K development, 56K test

• Evaluation
Compare recognized vs manual transcriptions:
‣ Frame error rate (FER): % of misclassified frames
‣ Phone error rate (PER): edit distance by alignment
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Batch versus Online
ML = maximum likelihood estimation (batch)
MCE = minimum classification error (batch) 
Online (best configuration)
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Devil in the details
Training FER (%)

 Batch ML 30.7

 Online (w/o reparametrization) 33.9

 Online (w/o factorization) 30.9

 Online (Cholesky) 31.4

 Online (w/o averaging) 35.2

 Online (w/o MLE initialization) 36.2

 Online (init+SVD+averaging) 28.8



Outline

• Motivation and overview

• Mistake-driven learning in CD-HMMs

• Large margins: do they help?

• Acoustic feature adaptation

• Whatʼs next?
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Large Margin Training
• Goal
    Attempt to separate scores of correct and incorrect
    transcriptions by a large margin.

• Motivation
    Balance minimization of empirical error rate versus
    generalization on unseen data. 

• Large margin criterion

                             Hamming distance
                             margin scaling factor

directly seek to minimize the number of classification errors.
Though discriminative training generally yields better perfor-
mance for ASR, it also requires much more computation. The
extra computation arises for two reasons. First, for each train-
ing utterance, discriminative methods must compute likelihoods
not only for the target transcription, but also for all incorrect
transcriptions that may have possibly higher likelihoods. Sec-
ond, many update rules for discriminative training require fine-
tuning of one or more learning rates. They do not converge as
quickly as the EM algorithm for MLE in practice.

2.2. Online Training

In this work we explore a mistake-driven, online algorithm for
discriminative training of CD-HMMs. Our approach builds on
earlier work on perceptron training of discrete HMMs [13] and
CD-HMMs [8]. We briefly review the latter before considering
its extension to large margin training in the next section. Our
earlier work [8] began by defining a discriminant function over
observation and state transition sequences:

D(x, s) = logP(s1)+
T−1X

t=1

logP(st+1|st)+
X

t

logP(xt|st).

(3)
The discriminant function in eq. (3) is simply the logarithm of
the joint distribution in eq. (1). Let y denote the correct tran-
scription of the observation sequence x. For correct recogni-
tion, we require that

∀s �= y, D(x,y) > D(x, s); (4)

note that eq. (4) defines a set of inequalities for all incorrect
transcriptions s �= y. We use s∗ to denote the optimal decoding

s∗ = argmaxsD(x, s), (5)

which can be efficiently computed by the Viterbi algorithm.
Let Θ denote the parameters of the CD-HMM, and let (xn,yn)
denote the acoustic observations and (ground truth) hidden state
transcriptions of the nth training utterance. (We assume these
transcriptions to be known.) In our earlier work, we updated the
CD-HMM parameters using the online learning rule:

Θ ← Θ + η
∂

∂Θ
[D(xn,yn)−D(xn, s∗n)] , (6)

where η > 0 was a carefully chosen learning rate. The up-
date in eq. (6) attempts to close the gap betweenD(xn,yn) and
D(xn, s∗n) whenever an error occurs in recognition. In practice,
training utterances are often processed in random order. Fur-
thermore, multiple passes are made through the training corpus
with each utterance being presented once in each “pass”.

In general, this mistake-driven approach will not converge
to a fixed set of parameters. However, convergence to a fixed
set can be obtained by averaging parameters across different
updates of eq. (6); the averaging also gives a better result after a
finite number of iterations through the training set [14, 15]. The
averaged parameter estimates after r updates are given by:

Θ̂(r) =
1
r

rX

j=1

Θ(j). (7)

Note that this averaging does not affect training process: it only
affects the parameters used for evaluating the model on held-
out data. In our earlier work, we applied the online update in
eq. (6) and the parameter averaging in eq. (7), looping through
the training utterances until the CD-HMM (with averaged pa-
rameters) reached its minimum error rate on a held-out set.

2.3. Large margin training

Large margin training of CD-HMMs seeks not only to minimize
the empirical error rate, but also to separate the scores of cor-
rect and incorrect transcriptions by the largest possible amount,
thus achieving better generalization on unseen data. This idea
has been independently investigated by many researchers in
ASR [2, 3, 4, 5]. Our main contribution in this work is to in-
vestigate a simple, online method for large margin training of
CD-HMMs.

Let (x,y) denote an observation sequence and its ground
truth transcription. The essence of large margin training lies in
the following observation: whereas for correct recognition we
merely require the inequalities in eq. (4), for correct recognition
by a large margin, we additionally require that

∀s �= y, D(x,y) > D(x, s) + ρH(s,y), (8)

where H(s,y) is the Hamming distance between two hidden
state sequences of the same length, and ρ > 0 is a constant
margin scaling factor. In other words, for large margin training,
the score of the correct transcription should exceed the score of
any incorrect transcription by an amount that grows in propor-
tion to the number of recognition errors.

We can use dynamic programming to compute the hidden
state sequence that most egregiously violates the margin con-
straint in eq. (8). We use s̃∗ to denote this hidden state sequence.
From eq. (8), we have:

s̃∗ = argmaxs [D(x, s) + ρH(s,y)] . (9)

The right hand side of eq. (9) can be maximized by a simple
variant of the standard Viterbi algorithm [16].

For online training of large margin CD-HMMs, we consider
the following update rule:

Θ ← Θ + η
∂

∂Θ
[D(xn,yn)−D(xn, s̃∗n)] . (10)

Eq. (10) differs from eq. (6) in one critical aspect: namely,
we replace the usual Viterbi sequence s∗n = argmaxsD(xn, s)
by the sequence s̃∗n = argmaxs [D(xn, s) + ρH(yn, s)] from
margin-based decoding. Though the margin scaling factor ρ
does not appear explicitly in eq. (10), it directly affects the com-
putation of s̃∗n. In fact, our experiments in section 3 will show
that the subtle change in eq. (10) leads to profoundly different
updates. To obtain smoother parameter estimates over time, the
results from eq. (10) can also be averaged as in eq. (7). We
performed this averaging in all of our experiments.

2.4. Parameterization

The online updates in eqs. (6) and (10) are written in terms of
the parameters Θ of the CD-HMM. In this paper, we adopt a
particular parameterization of CD-HMMs that has proven use-
ful in earlier work [8, 17]. Also, in all our experiments, we only
adapt the parameters of the GMMs, not the transition probabil-
ities of the CD-HMMs. The latter generally play a less signifi-
cant role in ASR; moreover, we have found that they are easily
over-trained.

We briefly review the parameterization for GMMs de-
scribed in earlier work [8, 17]. A single Gaussian distribu-
tion P(x|µ,Σ) is conventionally parameterized in terms of its
mean µ and covariance matrix Σ. Let γ = − log[1/(2π)d

|Σ]
denote the log of the scalar prefactor that normalizes the distri-
bution. In terms of these parameters, we consider the matrix:

Φ =

»
Σ−1 −Σ−1µ

−µ�Σ−1 µ�Σ−1µ + γ

–
. (11)
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2.4. Parameterization

The online updates in eqs. (6) and (10) are written in terms of
the parameters Θ of the CD-HMM. In this paper, we adopt a
particular parameterization of CD-HMMs that has proven use-
ful in earlier work [8, 17]. Also, in all our experiments, we only
adapt the parameters of the GMMs, not the transition probabil-
ities of the CD-HMMs. The latter generally play a less signifi-
cant role in ASR; moreover, we have found that they are easily
over-trained.

We briefly review the parameterization for GMMs de-
scribed in earlier work [8, 17]. A single Gaussian distribu-
tion P(x|µ,Σ) is conventionally parameterized in terms of its
mean µ and covariance matrix Σ. Let γ = − log[1/(2π)d

|Σ]
denote the log of the scalar prefactor that normalizes the distri-
bution. In terms of these parameters, we consider the matrix:

Φ =

»
Σ−1 −Σ−1µ

−µ�Σ−1 µ�Σ−1µ + γ

–
. (11)
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Online update rule
• For each      in the training set
‣ compute the margin-based decoding sequence

‣ compare to ground truth sequence

‣ update if

• iterate until the algorithm converges or no 
longer reduces recognition errors

# Frame Error Rate (%)
mix Φ Λ-SVD
1 32.2 (243) 30.0 (7)
2 31.5 (258) 27.6 (4)
4 30.7 (296) 26.0 (11)
8 30.4 (131) 26.5 (28)

Table 1: Frame error rates of perceptron training from the update in eq. (??) versus the update in
eq. (??). For the latter, we studied two different forms of matrix factorization, one using singular
value decomposition (SVD), one using Cholesky factorization. For each result, the number of
sweeps through the training data is shown in parentheses.
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directly seek to minimize the number of classification errors.
Though discriminative training generally yields better perfor-
mance for ASR, it also requires much more computation. The
extra computation arises for two reasons. First, for each train-
ing utterance, discriminative methods must compute likelihoods
not only for the target transcription, but also for all incorrect
transcriptions that may have possibly higher likelihoods. Sec-
ond, many update rules for discriminative training require fine-
tuning of one or more learning rates. They do not converge as
quickly as the EM algorithm for MLE in practice.

2.2. Online Training

In this work we explore a mistake-driven, online algorithm for
discriminative training of CD-HMMs. Our approach builds on
earlier work on perceptron training of discrete HMMs [13] and
CD-HMMs [8]. We briefly review the latter before considering
its extension to large margin training in the next section. Our
earlier work [8] began by defining a discriminant function over
observation and state transition sequences:

D(x, s) = logP(s1)+
T−1X

t=1

logP(st+1|st)+
X

t

logP(xt|st).

(3)
The discriminant function in eq. (3) is simply the logarithm of
the joint distribution in eq. (1). Let y denote the correct tran-
scription of the observation sequence x. For correct recogni-
tion, we require that

∀s �= y, D(x,y) > D(x, s); (4)

note that eq. (4) defines a set of inequalities for all incorrect
transcriptions s �= y. We use s∗ to denote the optimal decoding

s∗ = argmaxsD(x, s), (5)

which can be efficiently computed by the Viterbi algorithm.
Let Θ denote the parameters of the CD-HMM, and let (xn,yn)
denote the acoustic observations and (ground truth) hidden state
transcriptions of the nth training utterance. (We assume these
transcriptions to be known.) In our earlier work, we updated the
CD-HMM parameters using the online learning rule:

Θ ← Θ + η
∂

∂Θ
[D(xn,yn)−D(xn, s∗n)] , (6)

where η > 0 was a carefully chosen learning rate. The up-
date in eq. (6) attempts to close the gap betweenD(xn,yn) and
D(xn, s∗n) whenever an error occurs in recognition. In practice,
training utterances are often processed in random order. Fur-
thermore, multiple passes are made through the training corpus
with each utterance being presented once in each “pass”.

In general, this mistake-driven approach will not converge
to a fixed set of parameters. However, convergence to a fixed
set can be obtained by averaging parameters across different
updates of eq. (6); the averaging also gives a better result after a
finite number of iterations through the training set [14, 15]. The
averaged parameter estimates after r updates are given by:

Θ̂(r) =
1
r

rX

j=1

Θ(j). (7)

Note that this averaging does not affect training process: it only
affects the parameters used for evaluating the model on held-
out data. In our earlier work, we applied the online update in
eq. (6) and the parameter averaging in eq. (7), looping through
the training utterances until the CD-HMM (with averaged pa-
rameters) reached its minimum error rate on a held-out set.

2.3. Large margin training

Large margin training of CD-HMMs seeks not only to minimize
the empirical error rate, but also to separate the scores of cor-
rect and incorrect transcriptions by the largest possible amount,
thus achieving better generalization on unseen data. This idea
has been independently investigated by many researchers in
ASR [2, 3, 4, 5]. Our main contribution in this work is to in-
vestigate a simple, online method for large margin training of
CD-HMMs.

Let (x,y) denote an observation sequence and its ground
truth transcription. The essence of large margin training lies in
the following observation: whereas for correct recognition we
merely require the inequalities in eq. (4), for correct recognition
by a large margin, we additionally require that

∀s �= y, D(x,y) > D(x, s) + ρH(s,y), (8)

where H(s,y) is the Hamming distance between two hidden
state sequences of the same length, and ρ > 0 is a constant
margin scaling factor. In other words, for large margin training,
the score of the correct transcription should exceed the score of
any incorrect transcription by an amount that grows in propor-
tion to the number of recognition errors.

We can use dynamic programming to compute the hidden
state sequence that most egregiously violates the margin con-
straint in eq. (8). We use s̃∗ to denote this hidden state sequence.
From eq. (8), we have:

s̃∗ = argmaxs [D(x, s) + ρH(s,y)] . (9)

The right hand side of eq. (9) can be maximized by a simple
variant of the standard Viterbi algorithm [16].

For online training of large margin CD-HMMs, we consider
the following update rule:

Θ ← Θ + η
∂

∂Θ
[D(xn,yn)−D(xn, s̃∗n)] . (10)

Eq. (10) differs from eq. (6) in one critical aspect: namely,
we replace the usual Viterbi sequence s∗n = argmaxsD(xn, s)
by the sequence s̃∗n = argmaxs [D(xn, s) + ρH(yn, s)] from
margin-based decoding. Though the margin scaling factor ρ
does not appear explicitly in eq. (10), it directly affects the com-
putation of s̃∗n. In fact, our experiments in section 3 will show
that the subtle change in eq. (10) leads to profoundly different
updates. To obtain smoother parameter estimates over time, the
results from eq. (10) can also be averaged as in eq. (7). We
performed this averaging in all of our experiments.

2.4. Parameterization

The online updates in eqs. (6) and (10) are written in terms of
the parameters Θ of the CD-HMM. In this paper, we adopt a
particular parameterization of CD-HMMs that has proven use-
ful in earlier work [8, 17]. Also, in all our experiments, we only
adapt the parameters of the GMMs, not the transition probabil-
ities of the CD-HMMs. The latter generally play a less signifi-
cant role in ASR; moreover, we have found that they are easily
over-trained.

We briefly review the parameterization for GMMs de-
scribed in earlier work [8, 17]. A single Gaussian distribu-
tion P(x|µ,Σ) is conventionally parameterized in terms of its
mean µ and covariance matrix Σ. Let γ = − log[1/(2π)d

|Σ]
denote the log of the scalar prefactor that normalizes the distri-
bution. In terms of these parameters, we consider the matrix:

Φ =

»
Σ−1 −Σ−1µ

−µ�Σ−1 µ�Σ−1µ + γ

–
. (11)
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Margin-based decoding

Yields very different competing transcriptions!

Note that in terms of this matrix, we can write the Gaussian
distribution as:

P(x|µ,Σ) = e−
1
2 z�Φz where z =

»
x
1

–
. (12)

By a further reparameterization, we can also make explicit that
the matrix Φ should be positive semidefinite. To this end, we
consider the matrix factorization:

Φ = ΛΛ�, (13)

where the matrix Λ is the same size as the matrix Φ. In practice,
we do not constrain the matrix Λ to preserve the normalization
of the Gaussian distribution. However, normalized Gaussians
are not needed to interpret CD-HMMs as discriminative models.

For online learning in CD-HMMs, we parameterize the
Gaussian in each state s and mixture component c (after ab-
sorbing the mixture weight logP(c|s) into γ) by a square ma-
trix Λsc. We then update the parameters Θ = {Λsc} over
all states and mixture components using the rules in eqs. (6)
and (10). As in earlier work [8], we obtain smoothed parameter
estimates (for testing on held-out data) by averaging the matri-
ces Φsc = ΛscΛ

�
sc over time using eq. (7).

3. Experiments
We performed experiments on the TIMIT speech corpus [18],
whose signals have been manually segmented and aligned with
phonetic transcriptions. We adopted the same front end as re-
cent benchmarks for phone recognition on this data set [17].
We computed 39-dimensional acoustic feature vectors of mel-
frequency cepstral coefficients on sliding windows of speech.
We also followed the standard partition of the TIMIT corpus,
yielding roughly 1.1 million, 120K, and 57K frames respec-
tively for training, test, and holdout data.

We built recognizers using monophone CD-HMMs in
which each of 48 states represented a context-independent
phoneme. We experimented with models of different sizes by
varying the number of Gaussian mixture components in each
state. We evaluated the performance of each CD-HMM by com-
paring the hidden state sequences inferred by Viterbi decoding
to the “ground-truth” phonetic transcriptions provided by the
TIMIT corpus. We report two types of errors: the frame error
rate (FER), computed simply as the percentage of misclassified
frames, and the phone error rate (PER), computed from the edit
distances between ground truth and Viterbi decodings. In calcu-
lating the errors, we follow the standard of mapping 48 phonetic
classes down to broader 39 categories [19]. The performance
of our baseline models with maximum likelihood estimation is
similar to those previously reported [3, 8].

All CD-HMMs were initialized by maximum likelihood es-
timation. Starting from these baseline CD-HMMs, we then
compared the performance of the different online updates in
eq. (6) and (10). For the margin-based update, the results of
training depend on the margin scaling factor ρ. We experi-
mented with a wide range of values for this scaling factor.

Table 1 shows the results from the best models trained in
this way. (For the margin-based results, we chose the scaling
factor ρ that yielded the lowest phone error rates on the held-
out development set.) The results show that online learning
with margin-based decoding significantly reduces the frame and
phone error rates across all model sizes. The results for on-
line learning with margin-based decoding are also comparable
or better than previously published benchmarks for batch im-
plementations of discriminative training on this task [17]. In

# Frame Error Rate (%)
mixture Maximum Online Online

component likelihood w/o margin w/ margin
1 39.3 30.0 28.3
2 37.1 27.6 26.5
4 31.4 26.0 25.0
8 28.1 26.5 25.0

# Phone Error Rate (%)
mixture Maximum Online Online

component likelihood w/o margin w/ margin
1 42.0 35.2 33.5
2 38.6 33.2 31.8
4 34.8 31.2 30.3
8 32.5 31.9 30.2

Table 1: Frame error rates (top) and phone error rates (bottom)
on the TIMIT test set for CD-HMMs of varying size, as ob-
tained by maximum likelihood (ML) estimation, online train-
ing, and online training with margin-based decoding.

general, the frame error rates improve more than the phone er-
ror rates; this discrepancy reflects the fact that the margin-based
updates more closely track the Hamming distance (not the edit
distance) between target and Viterbi phone sequences.

While Table 1 quantifies the effects of margin-based de-
coding on error rates, Fig. 1 graphically illustrates the profound
influence it exerts during training. To create this figure, we com-
puted the Hamming distance between the Viterbi decoding s∗ in
eq. (5) and the margin-based decoding s̃∗ in eq. (9) for each ut-
terance during one online pass through the training corpus. The
figure shows a histogram of these Hamming distances after they
have been normalized by the number of frames in the utterance.
The histogram’s peak away from zero shows that margin-based
decoding yields very different competing transcriptions for dis-
criminative training than standard Viterbi decoding.

The frame and phone error rates from large margin training
depend on the value of the margin scaling factor ρ. Fig. 2 shows
this dependence for CD-HMMs with 4-component GMMs in
each state. More generally, for phone error rates on the develop-
ment set, the optimal values of ρ were respectively 0.8, 1.0, 0.7,
and 1.0 for CD-HMMs with 1, 2, 4, and 8-component GMMs.
Training with ρ =0 (i.e., without margin-based decoding) pro-
duces the results shown in the middle columns of Table 1.

Finally, Fig. 3 illustrates the fast convergence of online
training. The figure shows the frame error rates on the devel-
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# Frame Error Rate (%) Phone Error Rate (%)
mix ML PT PT w/ margin ML PT PT w/ margin
1 39.3 30.0 28.2 42.0 35.2 33.4
2 37.1 27.6 26.2 38.6 33.2 32.3
4 31.4 26.0 ? 34.8 31.2 ?
8 28.1 26.5 ? 32.5 31.9 ?

Table 1: trained on Λ, average on Φ

# Frame Error Rate (%)
mix ML PT PT w/ margin
1 39.3 32.2 32.1
2 37.1 31.5 31.4
4 31.4 30.7 ?
8 28.1 30.4 ?

Table 2: trained on Φ, average on Φ

H(s∗, s̃∗)/|x|

s∗ = argmaxsD(x, s)
s̃∗ = argmaxs[D(x, s) + ρH(y, s)]

1

Normalized Hamming Distance
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1

Figure 1: Histogram of normalized Hamming distances be-
tween sequences from Viterbi and margin-based decoding. The
distances were computed during the fifth iteration through the
training corpus for the large margin CD-HMM with two Gaus-
sian mixture components.
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Figure 1: Histogram of normalized Hamming distances be-
tween sequences from Viterbi and margin-based decoding. The
distances were computed during the fifth iteration through the
training corpus for the large margin CD-HMM with two Gaus-
sian mixture components.

# Frame Error Rate (%)
mix Φ Λ-SVD
1 32.2 (243) 30.0 (7)
2 31.5 (258) 27.6 (4)
4 30.7 (296) 26.0 (11)
8 30.4 (131) 26.5 (28)

Table 1: Frame error rates of perceptron training from the update in eq. (??) versus the update in
eq. (??). For the latter, we studied two different forms of matrix factorization, one using singular
value decomposition (SVD), one using Cholesky factorization. For each result, the number of
sweeps through the training data is shown in parentheses.
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Do large margins help?  Yes.

• MLE = maximum likelihood estimation (batch)

• MCE = minimum classification error (batch) 

• Online w/o margin = online algorithm for CD-HMMs

• Online w/ margin = online algorithm for large margin training 
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Outline

• Motivation and overview

• Mistake-driven learning in CD-HMMs

• Large margins: do they help?

• Acoustic feature adaptation

• Whatʼs next?
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Acoustic features

• Standard front end
   Compute 13 cepstral features from each 30 ms
   window of speech.

• Context modeling
   Incorporate features from adjacent windows into
   observations of CD-HMMs.

• Scaling of model size
           (# GMM parameters) ~ (# features)2
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Acoustic feature adaptation

• Incorporating context

‣ Concatenate features from 13 adjacent windows.
‣ Project into a lower dimensional subspace.

• End-to-end learning
.
.
.
.
.
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How to adapt GMM parameters Φsc along with projection H?  



Online Optimization
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• Approach
Maximize margin by alternatively updating projection 
matrix H and GMM parameters Φsc.

• Problem
Small changes in H (from one utterance) result in big 
changes to recognizer (across all phonemes).

• Solutions
1. Mini-batches of training utterances
2. Parameter-tying (of H) across 

        different recognizers
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Experiments

• Acoustic features

‣    = 13 MFCCs across 13 consecutive frames (D=139)

‣ z = lower-dimensional linear projection of     (d=39)

‣ H = projection matrix initialized to simulate differencing 
operations for 13 MFCCs + 13Δ + 13ΔΔ

• End-to-end large-margin training

‣ Initialize with maximum likelihood CD-HMMs
‣ Alternately optimize H and Φ
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Summary

• Best practices:

‣Reparameterization

‣Factorization Φ= ΛΛT

‣Averaging

‣Large margin

‣Feature adaptation with parameter-tying

• Did we succeed?

Online learning of Large margin HMM

March 10, 2009
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# Frame Error Rate (%)
mix Φ Λ-SVD
1 32.2 (243) 30.0 (7)
2 31.5 (258) 27.6 (4)
4 30.7 (296) 26.0 (11)
8 30.4 (131) 26.5 (28)

Table 1: Frame error rates of perceptron training from the update in eq. (??) versus the update in
eq. (??). For the latter, we studied two different forms of matrix factorization, one using singular
value decomposition (SVD), one using Cholesky factorization. For each result, the number of
sweeps through the training data is shown in parentheses.
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How to improve discriminative training 
of CD-HMMs with online updates?



Improvement over time
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Online methods ultimately beat our best batch implementation.



Outline

• Motivation and overview

• Mistake-driven learning in CD-HMMs

• Large margins: do they help?

• Acoustic feature adaptation

• Whatʼs next?
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Whatʼs next?

• Scaling up

‣ larger corpora

‣ word recognition (not phone recognition)

‣ context-dependent (triphone) HMMs

‣ word lattices for large-vocabulary ASR

• Fast adaptation

‣ new speakers

‣ infinite data (e.g., refreshed daily)
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Whatʼs next? (conʼt)

• Other models and loss functions

‣ Direct loss minimization (McAllester et al, 2010)

‣ Hidden-unit conditional random field 
(van der Maaten et al, 2011)

‣ Edit distance (versus Hamming distance)
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Whatʼs next? (conʼt)

• Other models and loss functions

‣ Direct loss minimization (McAllester et al, 2010)

‣ Hidden-unit conditional random field 
(van der Maaten et al, 2011)

‣ Edit distance (versus Hamming distance)
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See you at the next workshop ...
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