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ABSTRACT

A two-layer NMF model is proposed for vocabulary discov-

ery. The model first extracts low-level vocabulary patterns

based on a histogram of co-occurrences of Gaussians. Then

latent units are discovered by spectral embedding of Gaus-

sians at layer-1. Layer-2 discovers vocabulary patterns based

on the histogram of co-occurrences of the latent units. Im-

provements in unordered word error rates are observed from

the low-level representation to the two-layer model on the Au-

rora2/Clean database. The relation between the latent units

and the states of an HMM is discussed.

Index Terms— non-negative matrix factorization, hidden

Markov models, speech recognition

1. INTRODUCTION

Hidden Markov models (HMM) have been used successfully

in automatic speech recognition (ASR) for several decades.

Their success can be attributed to at least two aspects. One is

modeling the observations of the hidden states with statistical

models, e.g. Gaussian mixture models (GMM). The other is

modeling the sequential nature of speech with a left-to-right

structure. However, the model is also criticized for its strict

left-to-right structure and first order memory. [1]

A new framework for discovering words in utterances and

subsequently recognizing them was proposed in [2], where a

histogram of acoustic co-occurrences (HAC) was used to rep-

resent speech, and non-negative matrix factorization (NMF)

was used to extract recurring spoken patterns. As the acous-

tic co-occurrences can be defined with any time spacing, the

HAC representation thus seems to be albe to model speech

variations [3]. The HAC in [2] was based on a vector quan-

tization (VQ) of a short term spectrum, which is a source of

loss of accuracy. By replacing the code words with Gaussian

posterior probabilities to generate HAC features (hence rep-

resenting co-occurrences of Gaussians), one major difference

with the HMM baseline is removed in this paper. A second

The research was funded by the K.U.Leuven research grant

OT/09/028(VASI).

difference that is addressed in this paper is the shallow struc-

ture of the HAC+NMF model, i.e. a word is characterized

directly from its statistics of Gaussian posteriors. In con-

trast, an HMM recognizes a state level, where each state is

in turn described in terms of a Gaussian mixture. In this pa-

per, an intermediate abstraction level, comparable to an HMM

state is introduced. The creation of the intermediate level (re-

ferred to as latent units) does not require supervision and is

also obtained by a matrix factorization. Effectively, the co-

occurrence modeling in HAC+NMF now happens at the level

of the latent units.

The benefits of such an intermediate level are firstly

that since there are less latent units than Gaussians, the

co-occurrence statistics require less data to be estimated.

This will result in an increased learning rate for new words,

since the first layer (the relation between Gaussians and la-

tent units) is reused. Secondly, the co-occurrence statistics

can be constrained at the level of the latent units, e.g. us-

ing an upper-band-diagonal structure. While the original

HAC+NMF model has a very weak description of sequential

aspects (many sequences can map onto similar HAC repre-

sentations), the constrained transitions of latent unit brings

the proposed model closer to the sequential modeling of a

left-to-right HMM, without imposing a rigid order which

might lead to poor modeling of many pronunciation variants

seen in spontaneous speech [3]. These arguments are listed to

motivate the layered NMF model and are not the focus of this

paper, where the primary question of accuracy of the model

and analysis if the latent units is addressed.

The work in [4, 5, 6] shows that there is an intimate rela-

tion between an HMM and non-negative low-rank decompo-

sitions of co-occurrences. Internal variables (between Gaus-

sians and states) and symmetric embedding matrices were as-

sumed in [4, 6]. High order statistics were deployed to com-

pute co-occurrences in [5] to ensure the HMM model is re-

constructible from data. In this paper, we derive a matrix fac-

torization model to discover latent units from the probabilistic

relations of observations, Gaussians, and HMM states.

The primary goal of this paper is to improve the perfor-

mance of vocabulary discovery by using the co-occurrences



of the latent units as new HAC features with respect to the

original model using the co-occurrences of Gaussians. The

paper is organized as follows: the NMF model, embedding

model and their algorithms are in section 2. The results are in

section 3. The discussion and future work are in section 4.

Table 1. Summary of notation

Gi Gaussian i

Sk potential state or latent unit k

Ot observation or feature vector of frame t

Vg grounding matrix

Va, X data matrices of layer-0 and layer2

Wa, Y acoustic pattern matrices of layer-0 and layer-2

Wg , Q mapping matrices of layer-0 and layer-2

H , Z coefficient matrices of layer-0 and layer-2

A, D embedding matrices of out- and in- Gaussians

C, B co-occurrence matrices of Gaussians and latent units

2. NMF MODEL FOR SPOKEN PATTERN

DISCOVERY

The framework of the model is depicted in (a1) of Fig-

ure 1, where layer-0 discovers vocabulary patterns with co-

occurrences of Gaussians, layer-1 embeds Gaussians into a

number of latent units, and layer-2 extracts vocabulary pat-

terns with co-occurrences of the latent units. The pattern

discovery task in all layers is accomplished by matrix fac-

torization. The two-layer model refers to layer-1 + layer-2,

which makes a complete recognition system.
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Fig. 1. The model framework (a1) and the modeling of a

latent unit (a2).

2.1. Layer-0: NMF based on the histogram of the co-

occurrences of Gaussians

Given M Gaussians {Gi = N (µi, Σi), 1 ≤ i ≤ M}, the

procedure to get the HAC representation is as follows.

• Gaussians and Posterior Probabilities

First, the utterance is chopped up in overlapping signal

analysis frames. For each frame, a MFCC+∆+∆∆
vector O is computed. The likelihood of all Gaussians

p(O; Gi) is evaluated and the top-K1 probabilities are

retained and normalized to sum to unity to yield a

sparse posterior distribution p(Gi|O) of the frame.

• Co-occurrences of Gaussians

The feature vectors Ot1 and Ot2 are said to form

a frame-pair for a given lag-value if lag=t2 − t1.

For each frame-pair, K1 ∗ K1 Gaussian-pairs among

{p(Gi|Ot1) ∗ p(Gj |Ot2)|i, j = 1, . . . , M} will have

positive activation probabilities. For a given lag-

value, the ((i − 1) ∗ M + j)-th element of the M2-

dimensional HAC representation of an utterance is

obtained by accumulating the activation scores of the

Gaussian-pairs over all frame-pairs of an utterance,
∑

t2−t1=lag p(Gi|Ot1) ∗ p(Gj |Ot2), which forms a

column of the data matrix Vlag. We can take several

different lags to capture rich context dependency in-

formation and stack the data matrices to form Va =
[V T
lag1 V T

lag2 V T
lag3]

T (one column per utterance).

The grounding matrix Vg is used as supervision to as-

sociate acoustic representations with speech events and evi-

dences: if the n-th utterance is known to contain the m-th

vocabulary item l times, Vgmn
= l; otherwise, Vgmn

= 0.

For details about the model and algorithms of layer-0 NMF,

one can refer to [2]. The training model is as in Equation 1.

V ≈ WH :⇔

[

Vg

Va

]

≈

[

Wg

Wa

]

H (1)

For training NMF, by solving minW,H C0(V ||WH)
where C0 is the extended Kullback-Leibler divergence [2], it

yields the vocabulary patterns as the columns of W and the

activations of the patterns as the columns of H . Wg reflects

the relations between the acoustic parts Wa of the patterns

and the vocabulary identities.

In the testing stage, we first estimate the activations H ′

of the acoustic patterns Wa by argminH′ C0(V
′

a ||WaH ′) on

the test set. Then the activations of the vocabulary items is

computed as V̂
′

g = WgH
′. Since V̂

′

g indicates the presence of

the vocabulary items in each utterance without ordering them

in time, the performance metric that is adopted here is an un-

ordered error rate. Suppose that the number Du of different

words occurring in the u-th test utterance is given, the Du

candidates with highest activation are retained in the u-th col-

umn of V̂
′

g . The error rate is then defined as the sum of the

number of incorrect digits (only substitutions), divided by the

sum of Du over the complete test set. Notice that the conven-

tional word error rate can be used if NMF based recognition

is used in a sliding window type of processing [2], but it in-

volves all sorts of design choices that would blur the analysis.

2.2. Layer-1: embedding Gaussians to latent units

Suppose the observations are generated by an HMM, i.e. the

latent units are HMM states. The configuration of the rela-

tions between the Gaussians and a prospective HMM state is



in (a2) of Figure 1, where Gi’s are Gaussians, Sk is a state or

a latent unit.

Notice there are two kinds of connections (weights) be-

tween Gaussians and states: A denotes the matrix of out-

Gaussian probabilities p(Gi|Sk), D denotes the matrix of

in-Gaussian probabilities p(Gj |Sl). Certainly, we can as-

sume that A = DT as in the conventional HMM observation

model or [6], but we have chosen not to impose the con-

straint in these first experiments. The relationship of the

co-occurrences of Gaussians p(Gi, Gj) (from Gi to Gj ),

the observation probabilities of out-Gaussians p(Gi|Sk), the

observation probabilities of in-Gaussians p(Gj |Sl) and the

co-occurrence probabilities between states p(Sk, Sl) (from

Sk to Sl) are described in Equation 2.

p(Gi, Gj)
=

∑

k,l

∑

s,t p(Gi|Os)p(Os|Sk)p(Sk, Sl)p(Ot|Sl)p(Gj |Ot)

=
∑

k,l p(Gi|Sk)p(Sk, Sl)p(Gj |Sl)
(2)

The matrix form is in Equation 3, where C is the co-

occurrence matrix of Gaussians Cij = p(Gi, Gj), B is the co-

occurrence matrix of the states Bkl = p(Sk, Sl). As the num-

ber of Gaussians is usually larger than the number of states,

the role of A or D is to embed the space of Gaussians to some

latent space of states. Hence they are called embedding ma-

trices and will be obtained by matrix factorization.

C = ABD (3)

We call the prospective states latent units because the

learning of Equation 3 is unsupervised. Thus the columns

of A and the rows of D don’t have to correspond to the

underlying HMM states, but the two are expected to be-

have similarly. An algorithm with the normalization of

columns of A and rows of D in Table 2 is used to learn

A, B, D from the co-occurrences of Gaussians C by solving

argminA,B,D C0(C||ABD) [7].

Table 2. Algorithms to get the embedding matrices

1 Initialization A,B,D,n = 0
2 While n < # iterations

(1) Pkl ←
P

i(A ∗B)il,1 ≤ k ≤M ;

(2) Dkl ← Dkl ∗ ((A ∗B)T ∗ ( C.
A∗B∗D

))kl/Pkl,

(3) Dkl ← Dkl/
P

j Dkj , Btk ← Btk ∗
P

j Dkj ;

(4) Qkl ←
P

i(B ∗D)ki,1 ≤ l ≤M ;

(5) Akl ← Akl ∗ (( C.
A∗B∗D

) ∗ (B ∗D)T )kl/Qkl,

(6) Akl ← Akl/
P

i Ail, Blk ← Blk ∗
P

i Ail;

(7) B ← B. ∗ (AT ∗ ( C.
A∗B∗D

) ∗DT );

(8) n← n + 1;

With the model above, the embedding matrices A, D,

the latent units and their co-occurrence matrix B for an

underlying HMM are obtained. Now we prove that the co-

occurrences of Gaussians of layer-0 are the estimates of the

co-occurrences in Equation 2. The equation is in Equation 4

by summing away the Sk and Sl, where p(Os, Ot) = 1 iff

t − s=lag, so p(Gi, Gj) is just the accumulated posterior

probability of Gaussian-pairs in layer-0.

p(Gi, Gj)
=

∑

k,l

∑

s,t p(Gi|Os)p(Os|Sk)p(Sk, Sl)p(Ot|Sl)p(Gj |Ot)

=
∑

s,t p(Gi|Os)p(Os, Ot)p(Gj |Ot)
(4)

The rank and complexity of the embedding model grows

linearly with the number of states of the underlying HMM and

hence with the vocabulary size, so learning the latent units

without further constraints has not been successful. Also,

in [4, 5], HMMs of far smaller complexity are considered.

However, the layer-0 model generates a per-word Gaussian

co-occurrence model that is used to generate a set of embed-

ding matrices as follows.

In the layer-0 model, the vocabulary patterns are stored

in the columns of the acoustic pattern matrix Wa. With the

grounding part Wg , we know which word a column of Wa

represents. So for the first word argmaxiWgi,1
, consider-

ing the acoustic part of the first column Wa:,1, taking the

rows corresponding to the same lag, we can reshape it to a

M × M matrix of co-occurrences of Gaussians C1. Then by

factorization C1 ≈ A1B1D1, we obtain A1, D1 as embed-

ding matrices of the Gaussians to the latent units and B1 as

the co-occurrences of the latent units of this word with con-

textual dependence lag. For the second word argmaxiWgi,2
,

the embedding matrix A2, D2 and the co-occurrences of the

new latent units B2 can be obtained in the same way from the

co-occurrences of Gaussians C2 reshaped from Wa:,2 with

contextual dependence lag.

By making the same procedures for all the vocabulary

patterns obtained in layer-0, we estimate the overall embed-

ding matrices A = [A1, . . . , AL] and D = [D1; . . . ; DL],
and the overall co-occurrence matrix of latent units B =
blkdiag(B1, . . . , BL). Different words have different units.

For any other lag, the process is the same. One only needs to

concatenate the obtained co-occurrences of latent units in the

new data matrix X in section 2.3.

2.3. Layer-2: NMF based on the histogram of the co-

occurrences of latent units

Now the utterances are going to be represented by the co-

occurrences of latent units. With a fixed lag, an utterance

is firstly represented by its histogram of co-occurrences of

Gaussians, which is reshaped to be a M by M matrix C. Let

K2 be the number of Gaussians retained per frame. Then by

using the obtained embedding matrices A, D of this lag, the

co-occurrences of states B is estimated by the factorization

C ≈ ABD. Here only B is going to be updated with the

algorithm of Table 2. Then B is reshaped back to a column

vector as the representation of the utterance to be a column of

the new data matrix X . Together with the grounding matrix



Vg , the training model is in Equation 5. At the end of the

training stage, A,D,Y ,Q are retained as key information for

the recognition model.

[

Vg

X

]

=

[

Q

Y

]

Z (5)

In the testing stage, the Gaussian co-occurrences of a test-

ing utterance is computed to be the matrix C′. By solving

C′ ≈ AB′D, the co-occurrence matrix of the latent units B′

is estimated, which is then flattened to be a column of the data

matrix X ′ of the test set. By solving X ′ ≈ Y Z ′ w.r.t. Z ′, and

computing the activations of the digits by V̂
′

g = QZ ′, the un-

ordered word error rates can be computed as in section 2.1.

3. EXPERIMENTS AND RESULTS

The experiments were made on the Aurora2/Clean database

which contains 8438 training utterances and 1001 test utter-

ances of the 11 digits from male and female speakers. The

window length for spectral analysis was 20ms and the frame

shift was 10ms. The MFCC extraction used 30 Mel-filter

banks from which 12 MFCC coefficients are computed plus

the frame’s log-energy. The three vectors of Static, Velocity,

Acceleration were concatenated to a 39-dimensional feature

vector on which a Gaussian mixture of M=3628 components

were trained from HTK. No Gaussian was shared by any two

HMM states. The word error rate of HMM in Table 3 was

also obtained by using the Gaussians. For each frame, top K1

and K2 Gaussians with highest posterior probabilities were

retained in layer-0 and layer-2 respectively. lags of 2, 5, and

9, so the time spacing of the frame-pairs were 20, 50 and

90 ms respectively, which represent contextual dependence

with different time scales. R1 is the number of latent units

per digit to be discovered at layer-1. R=12 is the factorization

dimension at layer-0 and layer-2. R ≥11 to ensure enough

model complexity for the 11 digits.

Table 3. Unordered word error rates of the models
Model K1 K2 lags R1 init. B uWER

only layer-0 3 - [2,5,9] - - 0.73%

three layers 3 3 [2,5,9] 35 rand 1.82%

only layer-0 5 - [2,5,9] - - 0.58%

three layers 5 3 [2,5,9] 35 rand 0.44%

three layers 5 5 [2,5,9] 35 rand 0.44%

three layers 5 3 [2,5,9] 50 rand 0.47%

three layers 5 3 [2,5,9] 35 diag. 0.47%

HMM - - - 16 - 0.15%

The unordered word error rates (uWER) are in Table 3.

The uWER of the HMM is computed from the incorrectly de-

coded utterances by only considering the appearance or not of

digits as in Section 2.1. The conventional word error rate of

the HMM is 0.25%. Note that the HMM result is obtained

with a different recognition paradigm: frame level Viterbi
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Fig. 2. The co-occurrences of the latent units of digit “one”,

R1=35 units per digit, from Wa with K1=5. (a1): upper-

band-diagonal initialization. (a2): random initialization.

decoding instead of the utterance level co-occurrence count

based detection approach explained in section 2.3.

Experiments to initialize B with upper-band-diagonal

structures were also tried. In the experiments, B was ar-

ranged as (from,to), which implies the lower triangle to be

zero. The upper triangle should only have co-occurrences of

“states” nearby. Thus the upper diagonal was narrow with

lag diagonals. All other elements of B were zero. With the

multiplicative updates used to solve NMF, they remain zero.

4. DISCUSSION

The two-layer model always performs better than the layer-

0 model given K1=5. But embedding matrices with K1=3

fail to improve the corresponding layer-0 model. A sufficient

number of Gaussians seem to be necessary to be retained per

frame at layer-0 to model the relations between Gaussians and

latent units (or potential HMM states). The performance of

the two-layer model is robust to the number of latent units per

digit, R1, and the number of Gaussians retained per frame at

layer-2, K2.

Taking digit “one” with lag=5 as an example, the obtained

co-occurrence matrices B’s are shown in Figure 2, where (a1)

is with upper-band-diagonal initialization and (a2) is with ran-

dom initialization. In both cases, B is very sparse, showing

that the latent units are sparsely co-occur as the HMM model

suggests. The upper-band-diagonal and random initialization

perform equally (within the experimental accuracy), showing

that the two-layer model was able to discover the underly-

ing sparse latent unit structure, which opens perspectives for

modeling pronunciation variation.

The upper-band-diagonal initialization selects a permuta-

tion of the latent units by ordering them with “from”-“to”

pairs. By analyzing the embedding matrices, we find that

each latent unit usually activates Gaussians of several suc-

cessive HMM states. So the units are indeed related to the

HMM states, but there is (not surprisingly) not a one-to-one

relation. Since the model can really discover an HMM-like

structure, we may use its outputs as initializations to train an

HMM or to make sequential decoding with its own sequential

structure.



5. REFERENCES

[1] L. R. Rabiner, “A tutorial on hidden Markov models and

selected applications in speech recognition”, in Proc.

IEEE, vol.77, no.2, pp.257-285, 1989.

[2] H. Van hamme, “HAC-models: a Novel Approach to

Continuous Speech Recognition”, in Proc. International

Conference on Spoken Language Processing, pp. 2554-

2557, Brisbane, Australia, 2008.

[3] M. Ostendorf, “Moving Beyond the ‘Beads-On-A-

String’ Model of Speech”, in Proc. IEEE ASRU Work-

shop, pp.79-84, 1999.

[4] B. Lakshminarayanan, R. Raich, “Non-negative matrix

factorization for parameter estimation in hidden Markov

models”, in IEEE International Workshop on Ma-

chine Learning for Signal Processing (MLSP), pp.89-

94, 2010.

[5] G. Cybenko, V. Crespi, “Learning hidden markov mod-

els using non-negative matrix factorization”, Technical

report, arXiv:0809.4086, 2008.

[6] B. Vanluyten, J. C. Willems, B. De Moor, “Structured

Nonnegative Matrix Factorization with Applications to

Hidden Markov Realization and Clustering”, Linear Al-

gebra and its applications, vol.429, no.1, pp.1409-1424,

2008.

[7] J. Yoo, S. Choi, “Probabilistic matrix tri-factorization”,

in Proceedings of the IEEE International Conference

on Acoustics, Speech, and Signal Processing (ICASSP),

Taipei, Taiwan, 2009.


