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ABSTRACT

Joint-Factor Analysis (JFA) and I-vectors have been shown to be ef-
fective for speaker verification and language identification. Channel
factor adaptation has also been used for language and accent iden-
tification. In this paper, we show how these techniques can be used
successfully in the task of accent classification, and we achieve good
accuracy on a 14 accent problem using a novel iterative classification
framework based on an iterative linear/quadratic classifier. These re-
sults compare favourably with recent results obtained using other
non-fused acoustic techniques.

Index Terms— Ivector, accent classification, discriminant anal-
ysis, confidence measure

1. INTRODUCTION

Recently, it has been demonstrated that the use of I-vectors has in-
creased the accuracy of speaker verification and language identifi-
cation tasks [1, 2, 3, 4]. In this paper, we extend the use of these
techniques to the problem of accent classification. After conversion
of our utterances to I-vectors, we use an iterative classifier based on
either linear discriminant (LDA) classification or quadratic discrim-
inant analysis (QDA) to successively eliminate unlikely classes, and
achieve results that are comparable to recently published results.

Our model of voice production output O can be roughly de-
scribed as the combination of three factors - the utterance ‘plan’, P ,
the speaker characteristics S and the speaker’s accent A, as shown
in Equation 1.

O = P → S → A (1)

To a large extent, accents are acoustic substitutions in the produc-
tion of equivalent utterance plans. Differences in accent are realised
at a phonetic, rather than at a phonological level [5]. Therefore, if
we hypothetically assume that a given speaker could perfectly re-
produce the speaking style of n different accents (with no change
in speaker), the same utterance plan P spoken by the same speaker
S in n accents would result in the outputs O1 . . . On. The acoustic
differences in these different outputs would pinpoint the effect that
different accents have on the different productions. In this paper,
we utilize and evaluate the I-Vector approach (followed by channel
compensation) to provide speaker and channel normalisation, i.e. to
suppress the effects of S in our model. We ignore the term P to
construct a text-independent, unsupervised classification system for
accents, our term A. Our goal is to evaluate whether the I-Vector
subspace is comparable to other methods for accent classification,
and to introduce an iterative method of classification.

The classification of accents of British English has been studied
in depth by Hanani et. al. [6]. They produced several systems with
different acoustic classifiers: a GMM-UBM system, a GMM-SVM
system, GMM-ngram systems, and a fusion of these methods. In

the GMM-UBM approach, an accent-independent Universal Back-
ground Model (UBM) is constructed from the training data from
each of the classes. MAP adaptation of means and weights is then
performed on the UBM using class-specific data, to generate accent-
dependent Gaussian Mixture Models (GMMs), one for each accent.
These GMMs can then be used to evaluate the likelihood of test ut-
terances as belonging to a particular accent. The GMM with the
highest likelihood gives the accent classification.

In the GMM-SVM method, speech data from individual speak-
ers in the training set is used to estimate parameters of a GMM, by
MAP adaptation of the UBM, based only on speaker-specific data.
The adapted GMM mean vectors are concatenated into supervectors,
and supervectors of each accent class are used to train Support Vec-
tor Machines (SVMs). One SVM per accent is trained to classify
supervectors of one accent class (positive examples) against super-
vectors of all other accent classes (negative examples).

In the GMM-ngram method, the UBM is used as an acoustic to-
kenizer to generate GMM sequence indexes from sequences of fea-
ture vectors. These sequences are used to train unigram and bigram
language models for each accent using SVMs. Essentially, this is an
unsupervised language model. Crucial to the classification methods
described, was inter-channel and inter-speaker variability compen-
sation applied to the feature vectors. In their work, Hanani et. al. [6]
apply the method outlined in Vair et. al. [7]. The idea of speaker
and channel variability compensation is to normalize differences be-
tween speakers of the same accent class, as well as differences in the
channel. The compensation method by Vair et. al. [7] employs com-
pensation in the feature domain rather than the model domain. For
this reason, it allows the construction of any classifier built on top of
compensated features. The fusion of all the above methods together
yielded an accuracy of 74% on 30 second cuts.

2. CORPUS DESCRIPTION

The Accents of the British Isles (ABI) corpus [8] was used for this in-
vestigation. This corpus comprises fourteen different accent groups,
with ten speakers per gender per accent. Speakers were divided into
three sets. Each set includes both male and female speakers, and
speakers were balanced equally across all sets. In total, there are
two sets of 98 speakers, and one set of 84 speakers. In each exper-
iment, the training set consists of two of these groups, whilst the
testing set consists of the remaining group. No speaker in any one
group is present in any other group. This ensures that each test is
speaker-independent. Groups are transposed three times, so that all
speakers are eventually tested. Training data is gathered from all
utterances available in the training set, whilst testing is performed
on the basis of three long passages of 30-45 seconds each for each
speaker. Results over this corpus are gathered by pooling the three
test trials together.



3. SYSTEM DESCRIPTION

3.1. Feature extraction

Feature extraction stage is performed in a number of stages:

• Perform voice activity detection on the speech utterance
based on the algorithm of Sohn et. al. [9]. Only segments
with voice activity are retained.

• Extract 13-dimensional MFCC vectors on the speech utter-
ance, with a window of 30ms and a frame rate of 15ms.

• Convert each MFCC vector into a 49-dimensional shifted
delta cepstral (SDC) vector using a 7-1-3-7 SDC parameteri-
zation [10].

• Warp original MFCC feature vectors to a standard normal dis-
tribution with a 3 second time window to minimize effects of
channel mismatch [11].

• Concatenate the warped MFCC feature vectors with their re-
spective SDC vectors, to form a final set of 62-dimensional
feature vectors.

3.2. Universal background model

We construct a universal background model (UBM) by first obtain-
ing a VQ codebook via the Linde-Buzo-Gray (LBG) algorithm [12].
The codebook splitting criteria we used was to double the number of
centroids at every LBG iteration, and then re-estimate the centroid
means via traditional k-means algorithm until the desired number of
centroids is reached. Once the cluster centroids (the VQ codes) are
estimated, the covariances and weights of each cluster are estimated.
This initial estimation is then passed on to a GMM trainer to perform
five iterations of Expectation-Maximization, which outputs the final
UBM.

3.3. Accent total variability

Total variability and I-vector methods were introduced first in the
area of speaker verification [3, 1]. This method followed from the
success of joint factor analysis (JFA). In speaker recognition, factor
analysis is used to construct a low-dimensional space, called the to-
tal variability space. This space contains both speaker and channel
variability, which is modelled in separate spaces in JFA. Intersession
compensation can then be applied in a low-dimensional space. In
the task of accent classification, there is one important difference:
the total variability space T is estimated differently compared to
eigenvoice space estimation in speaker verification. In eigenvoice
estimation, all utterances of a particular speaker are considered to
belong to the same person. In total variability modelling for accent
classification, however, we consider every utterance of a particular
accent as having been produced by a different accent class.

The premise of a representation of the data in total variabil-
ity space is that the UBM (trained on data across multiple accents)
can be adapted to a given utterance, creating an utterance-dependent
GMM. The eigenvoice adaptation technique assumes that the matrix
T contains speaker and channel variability information. The utter-
ance GMM supervector (concatenation of mean vectors of adapted
GMM) is obtained as shown in Equation 2. In this equation, m is
the UBM supervector, T is the total variability space matrix, and w
is the I-vector, which is a random vector with a normal distribution
N (0, I).

M = m+ Tw (2)

The I-vector w is obtained for any given utterance. The method is
outlined in full in [1].

3.4. Dimensionality reduction via LDA

Following the work done in language identification, we perform di-
mensionality reduction on I-vectors based on Linear Discriminant
Analysis (LDA). The idea of LDA is to project I-vectors into a new
subspace of reduced dimensionality that aims to maximize the ratio
of between-class variance to the within-class variance, thus optimiz-
ing linear separability. Being a linear projection, it is defined ev-
erywhere in the ambient space. The projection matrix A obtained
through LDA on the training set is therefore applicable to the I-
vectors in the testing set. The classes in our case are the different
accents. LDA reduces dimensionality to one fewer than the number
of classes. Therefore, for 14 accents, LDA will reduce dimensional-
ity to 13.

3.5. Classification method

The low dimensional I-vectors themselves can be used for further
processing and arbitrary classifiers. The compactness of having each
utterance represented by a single I-vector provides for very efficient
classification. We propose a novel classification framework based
around two generative classification methods: one based on Fisher’s
linear discriminant analysis (LDA), and another based on quadratic
discriminant analysis (QDA) [13]. Classification of a test utterance
proceeds as follows:

1. Obtain initial LDA classifier L∗ and QDA classifier Q∗ using
all accent classes. L← L∗ , Q← Q∗

2. Classify test utterance using L and Q and rank classes in or-
der of likelihood. Identify lowest ranking class and remove it
from training data.

if a single class remains in the training data then
Classify utterance (see below)

else
Re-train LDA/QDA classifiers using reduced training data
L← L∗ , Q← Q∗

Goto 2 with new classifiers L and Q
end if

Traditional LDA/QDA classification would produce a result af-
ter the first scoring, by selecting the class with the highest likeli-
hood. However, by applying the above iterative algorithm, we re-
move at an early stage classes that are likely to be incorrect, and
hence strengthen the accumulation of evidence for classes that ap-
pear to be good contenders for the correct class. Because each it-
eration of the algorithm removes a class, the vector dimensionality
reduces by one on each iteration, so that the algorithm is very fast.

The motivation for this iterative approach is that traditional
acoustic methods have not performed as well in accent identification
as in language identification, probably because of a larger acoustic
overlap between classes in accent identification. The proposed algo-
rithm attempts to iteratively sharpen the separation between classes
by removing the weakest candidates at each iteration: these classes
contribute mainly noise to the classification process. The rank of
each class and the order in which classes are removed is recorded
for the test utterance. Two possible ways in which this information
could be used are:

• Classification method 1: the last class to be eliminated is the
classification result, or

• Classification method 2: the class that had the best (top rank)
likelihood for most iterations is the classification result



Table 1. Classification accuracy for all classifier types under all tested conditions, grouped by the number of factors used in I-Vector
extraction.

UBM Size # of
Factors

LDA
Method 1

QDA
Method 1

LDA
Method 2

QDA
Method 2

LDA Non-
Iterative

QDA Non-
Iterative

Linear
SVM

RBF
SVM

256 50 40% 39% 48% 48% 46% 40% 44% 46%
512 50 45% 38% 51% 50% 51% 43% 46% 47%

1024 50 44% 41% 51% 48% 49% 43% 48% 46%
256 100 51% 50% 59% 57% 58% 48% 54% 56%
512 100 48% 47% 58% 60% 57% 51% 56% 56%

1024 100 49% 48% 58% 57% 59% 58% 57% 58%
256 200 49% 48% 62% 63% 64% 60% 60% 61%
512 200 53% 46% 64% 63% 63% 60% 61% 62%

1024 200 46% 37% 58% 58% 62% 59% 59% 57%
256 300 41% 42% 68% 66% 65% 66% 63% 62%
512 300 37% 43% 63% 63% 64% 63% 64% 61%

1024 300 41% 43% 61% 64% 63% 62% 64% 64%

Table 2. This table shows three examples (rows two, three and four) of the iterative classification procedure working. The target class is
given in the first column, and columns 3 through 16 show the ranked position of the target class (upper number) and the identity of the class
removed (lower three letter identifier) at each iteration. A discussion of these examples is given in section 4.

Scenario Iteration 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Target = ULS Rank of target 4 3 3 2 4 3 3 1 3 1 1 1 1 1
Class removed shl ean lan crn ilo eyk lvp ncl nwa sse gla brm roi uls

Target = ULS Rank of target 1 1 1 1 1 1 1 1 1 1 2 2 2 -
Class removed shl ilo nwa ean eyk lan crn lvp ncl gla brm sse uls roi

Target = CRN Rank of target 6 6 6 5 5 5 4 5 4 4 3 3 - -
Class removed ean shl uls gla roi lan eyk brm ncl lvp sse crn nwa ilo

4. RESULTS

Results are based on two testing conditions: one is the number of
components in the UBM, the other is the number of factors used
for I-Vector extraction. Three UBM sizes are tested: 256, 512 and
1024. Four factor sizes are tested: 50, 100, 200 and 300. For each
combination of these testing conditions, we report classification ac-
curacy for the iterative algorithm introduced in this paper, as well as
results for non-iterative counterparts of LDA/QDA, linear SVM and
radial basis function (RBF) kernel SVM techniques (as used in e.g.
[4, 14]). The results are summarized in Table 1. They show that iter-
ative classification method 2 is consistently better than classification
method 1. Also, the general trend for both LDA/QDA based classi-
fication is that classification performance improves mainly with an
increase in the number of factors in the I-vector extraction system.
The order of the GMM to construct the UBM was not so influential.
LDA and QDA seem to give very similar performance.

Table 3 shows the individual classifier performance for each in-
dividual accent for the best iterative LDA classifier. It is interesting
to note that the classifier seems to perform badly mostly on southern
accents, whilst the better performing accents are mostly in north-
ern/central areas of the British Isles. Ferragne & Pellegrino [15]
made extensive studies on the ABI-1 corpus, and pointed out that the
Inner London accent shows extreme heterogeneity, and should not
really be considered as a single accent, which may account for the
poor performance of the classifier on this accent. There is some ev-
idence from the pattern of confusions that accents from regions that
are geographically close tend to be confused: for instance, the New-
castle accent was mainly confused with Liverpool and Lancashire,
and standard Southern English was confused mostly with Birming-
ham and Northern Wales. Cornwall, the worst performing accent,

was confused across the board with most other accents except for
East Anglia and Ulster. Analysis of I-vectors in low-dimensionality
revealed that poorly performing accents seemed to be ones that over-
lap each other or a large set of other accents in this space, making
them hard to have discriminative I-vector based acoustic character-
istics from just acoustic information.

Table 3. This table shows accent classification performance on the
best classifier developed in this paper.

Accent Accuracy
Scottish Highlands (shl) 95.24%

Glasgow (gla) 94.44%
East Yorkshire (eyk) 91.67%

East Anglia (ean) 88.89%
Liverpool (lvp) 88.89%

Republic Of Ireland (roi) 83.33%
Ulster (uls) 77.78%

North Wales (nwa) 71.43%
Birmingham (brm) 61.11%

Lancashire (lan) 52.38%
Newcastle (ncl) 38.89%

Inner London (ilo) 38.10%
Standard Southern English (sse) 33.33%

Cornwall (crn) 22.22%

Three examples of the classification processes are shown in Ta-
ble 2. The first example (row two) shows a case where the target
rank gradually climbs to one as incorrect classes are removed by the
LDA/QDA classifier during the iterative procedure. The second ex-
ample (row three) is a case where the final classification would be



incorrect under the first classification technique, but is correct using
the second. The third example (row four) is a case where classifi-
cation is incorrect under both classification methods. However, we
can see that the iterative procedure has still managed to increase the
target class rank during the iterations.

Table 4 compares the classification accuracies obtained in this
work (methods 6–11) with those found in the work by Hanani et.
al. [6] (methods 1–5) for 30 second test utterances. The best classi-
fication method proposed in this paper performs better (three cases)
or on a par (one case) with all the unfused methods developed in [6],
but not as well as a fusion-based classifier. We posit that including
our method in the fusion process can achieve even better results for
a fused classification system.

Fig. 1. Box and whisker plot for confidence measure.
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We can construct a simple confidence measure using output from
the iterative classification algorithm which should be useful in any
techniques that integrate decisions from different classifiers, as was
done in [6]. For a given test utterance, let NC be the number of times
the correct class was top-ranked at each iteration, which is a maxi-
mum of 14 (the number of classes), and a minimum of zero. Figure 1
shows the distribution of a confidence measure, CM = NC/14, for
correctly classified utterances and incorrectly classified utterances.
Although there is some overlap between the two distributions, it is
clear that higher values of CM are correlated with correct classifi-
cation, and this encourages us that CM will be useful in fusion with
other classifiers.

Table 4. Comparison of classification accuracy of the results ob-
tained in Hanani et. al. [6] (methods 1–5) with the results obtained
in this work (methods 6–11) for 30 second test utterances.

Method Classifier Type Accuracy
1 GMM-UBM(4096) 56%
2 GMM-SVM (4096) 68%
3 GMM-uni-gram 60%
4 GMM-bi-gram 52%
5 Acoustic fused #1 to #4 74%
6 Iterative LDA via I-Vectors 68%
7 Iterative QDA via I-Vectors 66%
8 Non-Iterative LDA via I-Vectors 65%
9 Non-Iterative QDA via I-Vectors 66%
10 Linear SVM 64%
11 RBF Kernel SVM 64%

5. CONCLUSIONS AND FUTURE WORK

The ABI corpus consists of fourteen accents of British English spo-
ken by native speakers, which is a considerably more difficult clas-
sification task than, e.g. foreign accent identification. We have in-
troduced a new, iterative, discriminative algorithm, and have shown
that performance using this algorithm is better than using a stan-
dard SVM technique, and comparable to the GMM-SVM technique
presented in [6]. The algorithm is low footprint and fast in both

training and testing. Future work will include investigating fusion of
the output from the iterative algorithm with other classifier outputs
to improve overall accent classification and evaluating performance
on shorter test utterances. We shall also investigate unsupervised
phonotactic ngram models over specific prosodic contexts.
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