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ABSTRACT

A conventional approach for noise robust automatic speech recog-

nition consists of using a speech enhancement before recognition.

However, speech enhancement cannot completely remove noise,

thus a mismatch between the enhanced speech and the acoustic

model inevitably remains. Uncertainty decoding approaches have

been used to mitigate such a mismatch by accounting for the feature

uncertainty during decoding. We have proposed dynamic variance

adaptation to estimate the feature uncertainty given adaptation data

by maximization of likelihood or discriminative criterion such as

MMI. For unsupervised adaptation, the transcriptions are obtained

from a first recognition pass and thus contain errors. Such errors

are fatal when using a discriminative criterion. In this paper, we

investigate the recently proposed differenced MMI discriminative

criterion for unsupervised dynamic variance adaptation, because it

inherently includes a mechanism to mitigate the influence of errors

in the transcriptions.

Index Terms— Robust speech recognition, dynamic variance

adaptation, unsupervised adaptation, discriminative training, dMMI

1. INTRODUCTION

Robustness of automatic speech recognition (ASR) systems to noise

or reverberation is known as one of the major remaining challenges

for the ASR community. To tackle this issue, speech enhancement

methods are often used to reduce noise prior to recognition. How-

ever, most speech enhancement methods fail to remove completely

noise or introduce distortions and therefore a mismatch exists be-

tween the enhanced speech and the acoustic model used for recog-

nition. The mismatch is time-varying, i.e. dynamic, because noise is

usually non-stationary and because most speech enhancement meth-

ods involve frame-by-frame processing. Such a dynamic mismatch

cannot be completely compensated with conventional static model

adaptation approaches such as maximum likelihood linear regres-

sion (MLLR) [1].

Recently, uncertainty decoding approaches have been proposed

to mitigate the influence of the dynamic mismatch emanating from

the speech enhancement pre-processor [2, 3, 4]. These approaches

consist of adding a dynamic feature variance term, representing fea-

ture uncertainty, to the variance of the Gaussians of the acoustic

model. The dynamic feature variance takes large values for uncertain

features, therefore reducing their influence on recognition results.

In [5], we proposed dynamic variance adaptation (DVA) to estimate

the dynamic feature variance using adaptation data. DVA relies on a

parametric model of the dynamic feature variance, in which parame-

ters are optimized using maximum likelihood (ML) given adaptation

data [5].

We have recently investigated the use of a discriminative cri-

terion for DVA [6]. The motivation was twofold. First, using a

discriminative criterion we expect to obtain a better estimate of the

dynamic feature variance that would lead to higher recognition per-

formance. Second, since most current recognition systems use dis-

criminatively trained acoustic models, using also a discriminative

criterion for DVA may better preserve the discrimination capability

of the acoustic model. In [6], we demonstrated performance gains

when employing the maximum mutual information (MMI) criterion

for supervised adaptation. However, in case of unsupervised adapta-

tion, the transcriptions are obtained from a first recognition pass and

therefore inevitably contain errors. Such errors in the transcriptions

are particularly harmful when using a discriminative criterion, and

may prevent any performance improvement compared to ML [7].

Recently, the differenced MMI (dMMI) [8] criterion was pro-

posed to generalize conventional criteria such as minimum phone

error (MPE) [9] or boosted MMI (BMMI) [10]. In a similar way

as BMMI, dMMI includes margin terms to boost the contribution

of high error recognition candidates during adaptation. In addition,

dMMI defines references in a soft manner, i.e. as a summation of

low error recognition candidates [11]. This soft definition of the ref-

erences inherently provides a mechanism to mitigate the influence of

errors in the transcriptions. Therefore, the dMMI criterion appears

more suitable for unsupervised adaptation than other discriminative

criteria. In this paper, we investigate the use of dMMI criterion

for DVA. We confirm experimentally with a noisy speech command

recognition task that dMMI based DVA can achieve higher and more

stable performance than MMI for unsupervised adaptation.

2. DYNAMIC VARIANCE ADAPTATION

Let us first briefly recall the principles of uncertainty decoding and

DVA. In this paper, we consider acoustic models represented by hid-

den Markov models (HMMs) with HMM state output probability

density modeled by Gaussian mixture models (GMMs). Uncertainty

decoding approaches consider features as distributions instead of

point estimates. Therefore, the probability density of the enhanced

feature vector at time frame t, yt, given the HMM state n can be



obtained as [4],

p(yt|n) =

M∑

m=1

ωn,mN(yt;µn,m,Σn,m +Σt), (1)

wherem is the Gaussian mixture component index,M is the number

of Gaussian mixtures, ωn,m is the mixture weight, and µn,m and

Σn,m are a mean vector and a covariance matrix, respectively. In

the following, we consider diagonal covariance matrices. Σt is a

dynamic feature covariance matrix that we assume to be diagonal,

with diagonal elements denoted as the dynamic feature variance σ2

t,i,

where i is the feature dimension index and I is the dimension of the

feature vector.

Several approaches have been proposed to estimate the dynamic

feature variance [2, 3, 4]. We have recently proposed to introduce

a parametric model for the feature variance and optimize the model

parameters using adaptation data. In [5], we introduced a model for

the dynamic feature variance that is based on the assumption that the

more features are affected by acoustic distortions, the more features

will be uncertain. Moreover, the amount of acoustic distortion is

assumed proportional to the acoustic distortion reduction provided

by the speech enhancement pre-processor and obtained as the differ-

ence between enhanced and observed features. Therefore, we model

the dynamic feature variance, σ2

t,i, as,

σ
2

t,i = α
2

i (ut,i − yt,i)
2
, (2)

where αi is a pre-processor uncertainty weight representing the un-

certainty of the speech enhancement process, and ut,i is the ob-

served speech feature. The pre-processor uncertainty weights, αi,

are the parameters that should be optimized. Note that as shown by

the index, αi can take different values for each feature dimension i.

The model of the dynamic feature variance of Eq. (2) depends

only on the input and output of the speech enhancement and is

therefore general. However, in some cases the model is too weak at

representing well the actual dynamic feature variance. The dynamic

feature variance changes according to the level of speech sound,

which varies with the HMM states. The model representational

power could be improved by introducing HMM state dependency.

We achieve this by using a cluster-based representation, i.e. the

Gaussians of the acoustic model are grouped into clusters and a

different pre-processor uncertainty weight is associated with each

cluster. The model of the dynamic feature variance is thus expressed

as,

σ
2

t,c,i = α
2

c,i (ut,i − yt,i)
2
, (3)

where c is the index of the HMM state cluster Cc. Accordingly, in

the following, we call the method cluster DVA.The Gaussian clusters

can be obtained using conventional clustering approaches to create a

binary regression tree [1]. Here the clustering is performed accord-

ing to the Mahalanobis distance since it considers the variance of the

Gaussians and may therefore be more suitable for DVA.

The dynamic feature variance model parameters are estimated

using adaptation data. Let us define θ = (α1, . . . ,αc, . . . ,αC),
where αc = (αc,1, . . . , αc,i, . . . , αc,I) is a vector containing the

uncertainty weights associated with the cth cluster andC is the num-

ber of clusters. The model parameters can be obtained by maximiz-

ing an objective function as,

θ̂ = argmax
θ

Fθ(Y, Sr), (4)

where Y = [y1, . . . ,yT ] is a sequence of enhanced speech feature

vectors, Sr is the word sequence corresponding to the feature se-

quence Y and Fθ is an objective function. In case of unsupervised

adaptation, Sr is obtained from a first recognition pass. After opti-

mizing Eq. (4), recognition is performed using Eq. (1) where the dy-

namic feature variance is obtained with Eq. (3) using the estimated

pre-processor uncertainty weights, θ.

Several criteria can be used for the optimization. We have inves-

tigated optimization using ML [5] and MMI [6] objective functions.

In the following section, we discuss the use of dMMI.

3. DMMI-BASED DVA

The dMMI objective function generalizes MPE and BMMI objective

functions. Let us first recall the BMMI objective function which is

given by [10],

FBMMI
θ,υ (Y, Sr) =

1

ψ
log

P (Sr)
ψηpθ(Y |Sr)

ψ

∑
j P (Sj)ψηpθ(Y |Sj)ψeψυEj,r

, (5)

where Sj is a recognition candidate for Y . Ej,r represents the

error between the recognition candidate Sj and the reference Sr .

pθ(Y |Sr) corresponds to the acoustic model. The parameter η is

the language model scaling and ψ is the acoustic scaling. Note

that to simplify the expressions in Eq. (5) we omitted the summa-

tion over the adaptation utterances. The numerator of the BMMI

objective function corresponds to the contribution to the reference

transcription, and the denominator accounts for the contribution of

the competing recognition candidates. BMMI includes a margin

term with parameter υ in the denominator. The error term, Ej,r ,

can be defined as the phone error, word error or phone frame error.

In the following, we use the phone frame error as defined in [12].

Note that by setting υ to a positive value, the contribution of the

recognition candidates with high errors is emphasized, and therefore

candidates with low errors have to work harder to compensate high

error candidates. Consequently, better discrimination is expected.

Accordingly, υ can be interpreted as a boosting factor [10].

The dMMI objective function can be derived from the difference

of two BMMI objective functions with different margin parameters

as [8],

FdMMI
θ,υ1,υ2

(Y, Sr) =
1

ψ(υ2 − υ1)
log

∑
j P (Sj)

ψηpθ(Y |Sj)
ψeψυ1Ej,r

∑
j P (Sj)ψηpθ(Y |Sj)ψe

ψυ2Ej,r
,

(6)

where υ1 and υ2 represents the two margin parameters.

One major difference between dMMI and BMMI is that the

dMMI objective function contains margin terms in both its numera-

tor and denominator. By setting υ2 to a positive value, we emphasize

recognition candidates with a high number of errors in the denomina-

tor, which is equivalent to conventional BMMI as shown in Eq. (5).

By setting υ1 to a negative value, the contribution of recognition can-

didates with low error are emphasized in the numerator. Therefore,

the numerator is equivalent to references defined in a soft manner,

i.e., by also accounting for the recognition candidates with few er-

rors compared to the references [11]. Consequently dMMI possesses

inherently a mechanism to compensate transcription errors that may

have a similar effect to other approaches used to mitigate the tran-

scription errors using for example confidence scores [7]. This lose

definition of the references appears particularly interesting in case

of unsupervised adaptation where transcriptions inevitably contain

errors.

Eq. (4) can be solved using a gradient ascent method [6]. We

use the RPROP algorithm [13] to solve the optimization problem of

Eq. (4). Note that RPROP is often used for discriminative training as



it is simple to implement and has been shown to provide performance

competitive with other optimization approaches [14, 15]. We set the

initial value for θ to the value obtained by likelihood maximization.

Indeed, having appropriate initial value when using discriminative

criterion is essential. In this paper, we did not include any smoothing

during discriminative adaptation.

For cluster DVA, in a similar way to MLLR [1], we decide to

adapt the parameters at a node of the regression tree if the node oc-

cupancy count is lower than an occupancy count threshold. Other-

wise, adaptation is carried out at the leafs of the node. When using

the dMMI criterion, the denominator term that includes high error

recognition candidates would also contribute to the node occupancy

counts which then take unrealistic values (e.g. negative values) . To

solve this issue, we calculate the node occupancy counts using the

ML criterion.

4. EXPERIMENTS

We tested the proposed method on the recent PASCAL ’CHiME’

speech separation and recognition challenge task [16].

4.1. Settings

The CHiME task consists of 6-word commands spoken by 34 En-

glish speakers. The commands are corrupted by background noise

that was collected in a real living room. The noise is highly non-

stationary and includes noise sources such as TV, children’s voices

or music. The recognition target consists of two keywords consisting

of a letter followed by a digit, which are included in the command.

The training data consist of 17,000 utterances and 6 hours of back-

ground noise data. The training utterances are corrupted by reverber-

ation but do not include noise. The test data consist of a development

set and an evaluation set that both include 600 reverberant utterances

at 6 different SNRs ranging from -6 to 9 dB. Note that the training

data set and the test data sets all consist of reverberant speech for

the same room (reverberation time of 300 msec.) but with differ-

ent speaker positions and room configurations (doors open/close ...)

and therefore with different reverberant characteristics. A detailed

description of the CHiME task can be found in [16].

We used the DOLPHIN enhancement algorithm to extract the

target speech from the noisy signals [17]. DOLPHIN is a recently

proposed algorithm that performs speech-noise separation using spa-

tial and spectral models for speech and noise. DOLPHIN was one

of the components of the system we developed for the CHiME chal-

lenge. That system achieved the best performance among the chal-

lenge participants [18]. DOLPHIN represents therefore a state of the

art speech enhancement method for the CHiME challenge task. We

used here the most recent and powerful version of DOLPHIN that is

based on a speech model using MFCCs [17].

We employed the speech recognizer platform SOLON [19],

which was developed at NTT Communication Science Laborato-

ries, to train the acoustic models, and to perform adaptation and

decoding. The acoustic models consisted of conventional left-to-

right HMMs with a total of 254 states (including silent states) each

modeled by a GMM consisting of 7 Gaussian components. We

trained speaker dependent acoustic models according to the CHiME

regulation using the dMMI criterion with the clean training data.

We performed speaker dependent, SNR independent unsuper-

vised adaptation. We used all the test data (from all SNR levels)

from a given speaker and a given test set to generate transcriptions

that were used for adaptation. The amount of adaptation data per
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Fig. 1. Average keyword error rate as a function of the number of

iterations for the development set.

speaker was about 3.5 minutes. The same data were used for recog-

nition.

4.2. Results

Figure 1 plots the keyword error rate as a function of the number of

iterations for global1 and cluster DVA, using ML, MMI and dMMI

criteria for the development set. The results are expressed in terms

of keyword error rate averaged over the 34 speakers and 6 SNR

conditions. The baseline system achieved a 3.25 % keyword error

rate for recognition of clean speech for the development set. This

demonstrates the severeness of the noise conditions since the noisy

speech keyword error rate was up to 30.39 %. For the dMMI crite-

rion, the values of the margin parameters were set to υ1 = −4 and

υ2 = 0.1. These settings were tuned on the development set for clus-

ter DVA. Consequently, different parameters may provide better per-

formance for global DVA. The occupancy count threshold used for

cluster DVA was set to 1000 for all experiments (this corresponds to

between around 10 and 30 clusters depending on the speaker). The

initial value for the pre-processor weights αi,r was set to 1 for the

ML-based adaptation. For MMI and dMMI, the initial value was set

to the weights obtained from ML-DVA after convergence.

Figure 1 clearly shows that MMI based DVA fails to bring per-

formance improvement compared to ML. This may be partly caused

by the errors in the transcriptions. Note that the error rate of the

transcriptions was 14.93 % (as shown in Table 1). In contrast, us-

ing the dMMI criterion for cluster DVA provides consistent perfor-

mance improvement compared to ML or MMI criteria. Note that

although we obtained best performance with the above dMMI pa-

rameters, other values around υ1 = −4 can provide similar per-

formance, which indicates that dMMI-DVA is not over sensitive to

the choice of margin parameters. We also observe that performance

degrades when using global DVA. Note that by setting υ1 = −1,

1Global DVA consists of the originally proposed DVA were the pre-

processor uncertainty weights αi are common to all the Gaussians of the

acoustic model [5].



Table 1. Average keyword error rate for the development and eval-

uation sets of the CHiME challenge task.

Dev. Eval.

Noisy 30.39 % 31.00 %

Enhanced (no adaptation) 14.93 % 12.75 %

ML-DVA (global) 13.03 % 11.49 %

ML-DVA (cluster 1000) 12.96 % 11.41 %

MMI-DVA (global) 13.39 % 11.88 %

MMI-DVA (cluster 1000) 13.41 % 12.24 %

dMMI-DVA (global) 13.35 % 11.67 %

dMMI-DVA (cluster 1000) 12.58 % 11.12 %

we could obtain some improvement with global DVA. This suggest

that the values of the margins may depend on the occupancy count

threshold used.

Table 1 summarizes the results obtained for the development and

evaluation sets. It confirms that improvement can be obtained with

the dMMI criterion for cluster DVA for both the development and

evaluation sets. These results are close to the state of the art results

for this task [18]. However, this paper includes only a part of the

system we proposed for the CHiME challenge. By including the

proposed method with the other parts of our CHiME system we can

expect further improvement.

5. CONCLUSION

We proposed using the dMMI discriminative criterion for DVA when

dealing with unsupervised adaptation. dMMI possesses an inherent

mechanism to compensate the effect of errors in the transcriptions,

which enables unsupervised discriminative adaptation. The effect of

dMMI for DVA was confirmed in a noisy speech command recogni-

tion task.

Future work will include combining dMMI based DVA with dis-

criminative adaptation of the mean parameters of the Gaussians of

the acoustic model, as well as testing the proposed method with large

vocabulary tasks.
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