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ABSTRACT
Accented speech that is under-represented in the training data still
suffers high Word Error Rate (WER) with state-of-the-art Automatic
Speech Recognition (ASR) systems. Careful collection and tran-
scription of training data for different accents can address this issue,
but it is both time consuming and expensive. However, for many
tasks such as broadcast news or voice search, it is easy to obtain large
amounts of audio data from target users with representative accents,
albeit without accent labels or even transcriptions. Semi-supervised
training have been explored for ASR in the past to leverage such
data, but many of these techniques assume homogeneous training
and test conditions. In this paper, we experiment with cross-entropy
based speaker selection to adapt a source recognizer to a target ac-
cent in a semi-supervised manner, using additional data with no ac-
cent labels. We compare our technique to self-training based only
on confidence scores and show that we obtain significant improve-
ments over the baseline by leveraging additional unlabeled data on
two different tasks in Arabic and English.

Index Terms— Semi-supervised learning, Automatic speech
recognition, Accent adaptation

1. INTRODUCTION

Recent ASR systems used in commercial applications are trained
on massive amounts of training data for languages such as English.
However, such large training corpora usually do not have a bal-
anced distribution of different accents present in the target popula-
tion. Hence, performance of these systems drops significantly for ac-
cented speech, that is not well-represented in the training data [1, 2].
One solution is to adapt the source ASR system to build accent-
dependent systems for the major accents, with data collected from
the customers using the application [3]. Supervised accent adapta-
tion requires annotating the recorded audio data with accent labels
in addition to transcribing it, which is infeasible. We explore semi-
supervised learning in this paper to select appropriate training data
from a diverse dataset for the goal of target accent adaptation.

Semi-supervised learning has become attractive in ASR given
the high cost of transcribing audio data. Self-training is a commonly
used technique for semi-supervised learning in speech recognition
[4, 5, 6, 7, 8], whereby the initial ASR trained using carefully tran-
scribed speech is used to decode the untranscribed data. The most
confident hypotheses are chosen to re-train the ASR. Self-training
has been successfully employed under matched training conditions
where the labeled training set used to train the seed ASR and the
unlabeled dataset have similar acoustic characteristics. It has also
enjoyed some success in cross-domain adaptation where the source
seed ASR is adapted using untranscribed data from a different tar-
get language, dialect or channel [9, 10]. In the latter task the target

data, while different from the initial source training dataset, is still
assumed to be homogeneous. Our work differs from these setups as
the unannotated data in our experiments is not homogeneous. It can
have multiple accents, with or without transcriptions. The goal is to
select the relevant subset to match the target accent. Hence, choosing
hypotheses solely based on confidence scores is not ideal for accent
adaptation in this case.

We employ cross-entropy based data selection to identify speak-
ers that match our target accent, before filtering the utterances by
confidence scores. The seed ASR is initially adapted on the tar-
get accent using limited, manually labeled adaptation data. We then
make use of the adapted and unadapted models to select speakers
based on their change in average likelihoods or cross-entropy under
adaptation. We couple the speaker selection with confidence based
utterance-level selection to choose an appropriate subset from the
unlabeled data to further improve the performance on the target ac-
cent. We evaluate our technique with Arabic and English accents and
show that we achieve between 2.0% and 15.9% relative improvement
over supervised adaptation using cross-entropy based data selection.
Self-training using only confidence scores fails to achieve any im-
provement over the initial supervised adaptation in both tasks.

We note that formally the term ‘Accent’ refers to only pronun-
ciation changes, while the term ‘Dialect’ stands for the ensemble
of variations in vocabulary, syntax, pronunciation including prosody
[11]. Since we focus only on acoustic variations in this work, we use
the term ‘Accent’ throughout this paper.

2. SEMI-SUPERVISED LEARNING

Semi-supervised learning for ASR adaptation involves three steps -
training/adapting initial ASR on limited target data with manual la-
bels, decoding the unlabeled data with the initial adapted model and
selecting a suitable subset to re-train the seed ASR, thereby improv-
ing its performance on the target test set. The criteria to select an
utterance for further re-training, can be based on the following:

• Confidence - How confident is the system about the newly
generated hypothesis for the utterance?

• Relevance - How relevant is the utterance for additional im-
provement in the target test set?

2.1. Self-training
Self-training employs confidence scores to select the data for re-
training. Confidence scores in ASR are computed using word-level
posteriors obtained from consensus network decoding [12]. The se-
lection can be done at utterance, speaker or session level. The aver-
age confident score for the appropriate level is calculated as



CSS =

∑
WεS CWTW∑

WεS TW
(1)

where S can be utterance or speaker or session, CSS is average
confidence score for S and CW , TW are the word-level score and
duration respectively for the 1-best hypothesis. To avoid outliers
with 1-best hypothesis, lattice-level scores have also been proposed
for semi-supervised training [13, 14]. One of the issues with self-
training is that it assumes all the data to be relevant and homoge-
neous. So, data selection is based only on ASR confidence and the
relevance criteria is ignored. In our experiments, the unlabeled data
has speakers with different accents and data selection based entirely
on confidence scores fails to find suitable data for further improve-
ment with re-training.

2.2. Cross-entropy based data selection
In this section, we formulate cross-entropy based speaker selection
to inform relevance inaddition to confidence based utterance selec-
tion for semi-supervised accent adaptation. Let us assume that the
initial model λS is trained on multiple accents from unbalanced
training set. It is then adapted on a limited, manually labeled target
accent data set to produce the adapted model λT . We have available
a large mixed dataset without any accent labels. The goal is to select
the target speakers from this mixed dataset and re-train the initial
ASR for improved performance on the target test set. We formulate
the problem of identifying target data in a mixed dataset similar to
sample selection bias correction [15, 16].

Let PrS be the probability distribution of speakers in the mixed
dataset, while PrT be the accent-specific distribution of speakers
from the mixed set that belong to the target accent. A binary selec-
tion variable σε {0, 1} is used to identify target accent speakers. If
σ = 1 for a speaker s from the mixed set, then s belongs to the target
accent. The target accent probability distribution can be written as

PrT [s] = PrS [s|σ = 1] (2)

By Bayes rule,

PrS [s] =
PrS [s|σ = 1]Pr[σ = 1]

Pr[σ = 1|s] =
Pr[σ = 1]

Pr[σ = 1|s]PrT [s] (3)

The probability that a given speaker s belongs to the target accent
Pr[σ = 1|s] is then

Pr[σ = 1|s] =
PrT [s]

PrS [s]
Pr[σ = 1] (4)

The posterior Pr[σ = 1|s] represents the probability that a ran-
domly selected speaker s from the mixed set, belongs to the target
accent. It can be used as a selection score for identifying relevant
target accent speakers in the mixed set. Since we are only compar-
ing scores between speakers, Pr[σ = 1] can be ignored in the above
equation as it is independent of s. We can approximate PrS [s] and
PrT [s], by unadapted and adapted model likelihoods. Substituting
and changing to log domain,

Selection Score ≈ log Pr[s|λT ]− log Pr[s|λS ] (5)

The speakers in our mixed set may have different durations, so we
need to remove any correlation of the selection score with the dura-
tion. The log-likelihoods can be normalized by the number of frames
for each speaker. The length normalized log-likelihood is also the

cross-entropy of the data given the model [17, 2] with sign reversed.
The final score for target data selection is given by

Selection Score = (−HλT [s])− (−HλS [s]) (6)

where

Hλ(s) = − 1

Ts

Us∑
u=1

uT∑
t=1

log p(ut|λ) (7)

is the average negative log-likelihood or the cross-entropy of s ac-
cording to λ, Us is the number of utterances for s, uT is the number
of frames in utterance u and Ts = ΣuuT refers to total number of
frames for s.

We can now sort the speakers in the mixed dataset using this
selection score and choose the top scoring subset based on a thresh-
old. The algorithm 1 shows the pseudo code for cross-entropy based
semi-supervised learning for target accent adaptation. We note that

Algorithm 1 Cross-entropy based semi-supervised learning
Input: XT := Target Adaptation set ; XM := Mixed set ; λS :=

Initial Model ; minScore := Selection Threshold
Output: λT := Target Model

1: λT := Adapt(λS ,XT )
2: for all x in XM do
3: LoglikeS := Score(λS , x)
4: LoglikeT := Score(λT , x)
5: Len := Length(x)
6: Score := (LoglikeT − LoglikeS)/Len
7: if (Score > minScore) then
8: XT := XT ∪ x
9: XM := XM \ x

10: end if
11: end for
12: λT := Adapt(λS ,XT )
13: return λT
in the formulation above, we assumed that the initial model is trained
on the audio data with multiple accents. The selection score can still
be shown to be valid in the case where the seed ASR is trained on a
source accent different from the target accent.

3. IMPLEMENTATION DETAILS

We start with a GMM-HMM model trained on the source data. We
adapt this model to the target accent using a small amount of man-
ually transcribed target data. We use enhanced polyphone decision
tree adaptation based on semi-continuous models (SPDTS) [2] for
supervised adaptation. It involves using the fully continuous source
model to collect occurance statistics for each state in the target data.
These statistics are used to grow a semi-continuous, second-level de-
cision tree on the adaptation dataset to better match the new contexts
with the target accent. We then use Maximum A Posteriori (MAP)
adaptation [18] to refine the Gaussians (codebooks) and associated
mixture weights (distributions) on the adaptation data. SPDTS gives
additional improvements over the traditional MAP adaptation.

We use the target accent adapted ASR as the baseline and select
suitable data from the mixed set for further improvements on the
target test set. Data selection can be performed at multiple level seg-
ments: utterance, speaker or session. In our experiments, we rely on
both speaker-level and utterance-level scores for both self-training
and cross-entropy based data selection. All our baselines are speaker
adapted systems, so we need a reasonable amount of speaker-specific
data (minimum 15s) for robust Constrained Maximum Likelihood
Linear Regression (CMLLR) based speaker-adaptive training [19].



Utterance-level selection alone does not ensure this constraint. Sec-
ondly, the accent information (relevance) and hypothesis accuracy
(confidence) can be asserted reliably at the speaker and utterance
levels respectively. For self-training, we sort the speakers based
on speaker-level, log-likelihood scores normalized by number of
frames. For each best-scoring speaker in the list, we enforce the ad-
ditional limitation that the selected speaker should have at least 15s
of utterances that passed the minimum confidence threshold. This
allows us to choose speakers with enough utterances for reliable
CMLLR based speaker-adaptive (SA) training. For cross-entropy
based data selection, we replace the speaker-level confidence score
with the difference of length normalized log-likelihoods as specified
in Equation 6.

We experiment with two different setups. In the first task, the
mixed set has transcriptions available, but doesn’t have accent la-
bels. The goal is to choose a relevant subset of audio and its tran-
scription for re-training the initial model. We evaluate both self-
training and cross-entropy based data selection for choosing useful
data from the mixed set. Given that we have transcriptions available,
we omit confidence-based filtering at the utterance level during data
selection for this task. In self-training, we use the adapted model
to Viterbi align the transcription with the audio for the utterances of
each speaker in the mixed set. The confidence score in Equation 1 is
replaced with the speaker-level, length normalized alignment score
for this task. We then select different amounts of data by varying
the threshold and re-train the seed ASR to test for improvements. In
cross-entropy based data selection, the normalized log-likelihoods
corresponding to the adapted and unadapted models are used to se-
lect the relevant speakers. Given the transcriptions for each utterance
of speaker s, Equation 7 becomes

Hλ(s) = − 1

Ts

Us∑
u=1

uT∑
t=1

log p(ut|λ,Wr) (8)

where Wr is the transcription of the audio.
For the second task, the mixed set does not have either tran-

scriptions or accent labels available. Self-training in this case, re-
lies on confidence scores obtained by consensus network decoding
[12]. The speaker-level scores are used to choose the most confi-
dent speakers and for each speaker, utterances that have an average
confidence score greater than 0.85 are selected. 0.85 threshold was
chosen as it gave us a good trade-off between WER and amount of
available data for selection. Additionally, we enforce the 15s mini-
mum constraint for all selected speakers as explained above. In the
case of cross-entropy based selection, we replace the speaker-level
confidence score with difference in cross-entropy between adapted
and unadapted models. The cross-entropy of a speaker with a model
is calculated based on the lattice instead of 1-best hypothesis to avoid
any outliers. The lattice-based cross-entropy can be calculated as

Hλ(s) = − 1

Ts

Us∑
u=1

uT∑
t=1

log p(ut|λ,W ) (9)

where W is the set of paths in the lattice of the decoded hypothesis
and

p(u|λ,W ) =

W∑
w=1

p(u|λ,w)p(w) (10)

where p(w) is LM prior probability of path w. We choose best scor-
ing speakers on the cross-entropy based selection score and for each
speaker, we select utterances same as self-training with minimum
confidence score of 0.85. Speakers are constrained to have mini-
mum of 15s duration as above. We re-train the seed ASR using the
additional data and report improvements on the test set.

4. EXPERIMENTS

4.1. Datasets
We conducted experiments on Arabic and English accented datasets
derived from GALE and WSJ corpora. For Arabic, we used Modern
Standard Arabic (MSA) as the source accent and Levantine Arabic
as the target. 1100 hours of Broadcast News (BN) portion of GALE
database is used as the Training set. This is not purely MSA data
but may also contain limited amount of other accents. We randomly
selected 10 hours from 30 hours of Broadcast Conversations (BC)
marked as Levantine by LDC as our Adaptation set. The remain-
ing 20 hours of Levantine is combined with 200 hours of other BC
data to form the Mixed set. For English, we used American accent
(WSJ database) as the source accent and British English (WSJCAM0
database) as the target. Our supervised adaptation setup has 66 hours
of source accent as Training set and 3 hours of target as Adaptation
set. We combined the remaining 12 hours of target from WSJCAM0
and 15 hours of source data from WSJ0 corpora as our Mixed set.
The test sets, LM, dictionary are same as the setup followed in [2].
Table 1 summarizes the datasets used and their statistics.

Table 1. Database Statistics.

Dataset Accent #Hours Ppl %OOV
Arabic

Training Mostly MSA 1092.13 - -
Adaptation Levantine 10.2 - -
Mixed Mixed 221.9 - -
Test-SRC Non-Levantine 3.02 1011.57 4.5
Test-TGT Levantine 3.08 1872.77 4.9

English
Training US 66.3 - -
Adaptation UK 3.0 - -
Mixed Mixed 27.0 - -
Test-SRC US 1.1 221.55 2.8
Test-TGT UK 2.5 180.09 1.3

4.2. Baselines and Setup
Our baselines are GMM-HMM based fully-continuous systems with
LDA, Semi-Tied Covariance (STC) and Speaker-Adaptive (SA)
Maximum Likelihood (ML) training. More details about these sys-
tems including front-end, training procedure, etc. are reported in
[20, 2]. For semi-supervised learning, we start off with supervised
adaptation of baseline systems on the target accent using limited,
manually labeled Adaptation set. These adapted systems are used
as seed models to select an appropriate subset from the Mixed set to
further improve the performance on the target accent. Table 2 shows
the Word-Error Rates (WER) of the baseline and adapted systems.

Table 2. Baseline and Supervised adaptation WERs.

System # Hours Test WER (%)
SRC TGT

Arabic
Baseline 1100 43.0 50.6
Supervised Adapt +10 44.0 47.8

English
Baseline 66 12.9 23.6
Supervised Adapt +3 13.7 14.5

4.3. Semi-supervised Learning
In this section we study semi-supervised learning on the Mixed set
in two different setups. In the first, we assume that the Mixed set



is transcribed, but with no accent labels. We compare self-training
and cross-entropy data selection based on Viterbi alignment scores
to select appropriate speakers for improving the initial system. In the
second setup, we assign the Mixed set to have neither transcriptions
nor accent labels. In this experiment, we decode the utterances using
initial ASR(s) to obtain the likely hypotheses. We then use lattice
likelihoods and confidence scores to choose the appropriate subset
for accent adaptation.

4.3.1. Task 1 - Mixed set with transcriptions, no accent labels
For English, we choose 5, 10, 12, 15, 20 hours of audio from the
mixed set to re-train the initial ASR in the case of self-training and
cross-entropy based selection. We selected 10, 20, 30, 40 and 50
hours of audio data for Arabic from the mixed set. Figure 1 shows
the WER of English and Arabic semi-supervised data selection with
self-training and cross-entropy difference. The bin 0 corresponds to
the supervised adaptation on manually labeled adaptation data. The
graphs contain two baselines in addition to self-training and cross-
entropy plots. Select-ALL refers to the scenario where all of the
available data in the mixed set (27 hours for English and 222 hours
for Arabic) are selected for re-training. This corresponds to the lower
bound for semi-supervised learning. ORACLE refers to selection of
all of the target data in the mixed set. This includes 12 hours of
British accent in the case of English and 20 hours of Levantine for
Arabic. We note that, ORACLE is only included for comparison and
doesn’t correspond to the upper bound for our task. A robust data
selection would exclude utterances with noise, wrong transcriptions,
etc. which will improve the accuracy of the re-trained model. In
the case of Arabic, 20 hours of Levantine only correspond to data
annotated by LDC. The remaining BC data can have more Levantine
speech, which will also help improve on the ORACLE.

Fig. 1. Semi-supervised data selection with transcriptions

In both Arabic and English, self-training does not produce any
improvements from semi-supervised learning over the supervised
adaptation baseline. In Table.2, the WER on the target test set
is higher than the source test set, even for the adapted systems.
Hence, log-likelihood or confidence based data selection based on
the adapted model cannot differentiate between relevant data (target
accent) and irrelevant data (source accent). The initial speakers se-
lected for self-training belong exclusively to the source accent which
is the reason for the poor performance of re-trained models. This ex-
periment clearly shows that data selection based only on confidence
scores fails when the source ASR is adapted on a limited target data
and the unlabeled data is not homogeneous. Cross-entropy based
selection on the other hand, relies on change in log-likelihood before
and after adaptation to identify the relevant speakers from the mixed
set. It obtains an improvement of 2.3% absolute (or 15.9% relative

@12 hours) for English and 1.8% absolute (or 3.8% relative @20
hours) for Arabic over the supervised baseline.

It is also interesting to note that in the case of English 90% of
the selected speakers at 12 hours were WSJCAM0 (British English)
speakers, while only 40% of the Arabic speakers at 20 hours were
from the LDC annotated Levantine set. We also found that some of
the remaining speakers from the target accent left out for data selec-
tion, had worse scores due to transcription errors, etc. This is prob-
ably the reason for slight improvement of the best semi-supervised
system over the ORACLE (or fully-supervised) adaptation. More
analysis is needed to explore the characteristics of the speakers se-
lected for Arabic from the BC portion of the mixed set.

4.3.2. Task 2 - Mixed set without transcriptions and no accent labels
We used the same framework and bins as in the previous experiment.
For self-training, speaker and utterance selection rely on confidence
scores as in Eq. 1. For cross-entropy based data selection, speaker
level selection is based on the difference in lattice likelihoods as in
Eq 9. Figure 2 shows the WER of semi-supervised data selection
with self-training and cross-entropy difference for English and Ara-
bic datasets. The Select-ALL and ORACLE numbers correspond to
1-best hypothesis from the adapted target ASR.

Fig. 2. Semi-supervised data selection without transcriptions

As expected, the results are similar to the previous experiment
as self-training fails to obtain any additional improvements with the
mixed data. We get 2% absolute (or 13.8% relative @12 hours) im-
provement over supervised baseline for English and 0.8% absolute
(or 2.0% relative @12 hours) for Arabic. The total improvement is
lower for Arabic compared to English (2.0-3.8% relative vs. 13.8-
15.9% relative). However, it is comparable to the gain obtained using
a dialect classifier on a similar setup [1].

5. CONCLUSION AND FUTURE WORK

We presented cross-entropy based semi-supervised learning to select
additional training data for the goal of accent adaptation. We eval-
uated the technique against self-training on two Arabic and English
tasks and showed that self-training failed to obtain any improve-
ments by using additional data over the supervised baseline. Our
cross-entropy based data selection method successfully identifies
relevant data with or without transcriptions, to obtain further 2.0-
15.9% relative improvement over the supervised baseline adapted
on a limited target dataset. We plan to extend this semi-supervised
learning framework to include uncertainity based discriminative
training as proposed in [21]. We also plan to extend this framework
to active learning [13, 22, 23, 24] for accent adaptation to select
appropriate subset for human annotation for further improvements.
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