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ABSTRACT

In this paper, we compare two different frameworks for exemplar-
based speech recognition and propose a combined system that ap-
proximates the input speech as a linear combination of exemplars
of variable length. This approach allows us not only to use multi-
ple length long exemplars, each representing a certain speech unit,
but also to jointly approximate input speech segments using several
exemplars. While such an approach is able to model noisy speech,
it also enforces a feature representation in which additivity of the
effect of signal sources holds. This is observed to limit the recogni-
tion accuracy compared to e.g. discriminatively trained representa-
tions. We investigate the system performance starting from a base-
line single-neighbor exemplar matching system using discriminative
features to the proposed combined system to identify the main rea-
sons of recognition errors. Even though the proposed approach has
a lower recognition accuracy than the baseline, it significantly out-
performs the intermediate systems using comparable features.

Index Terms— speech recognition, exemplar-based, template
matching, sparse representations

1. INTRODUCTION

Exemplar-based (or template-based) speech recognition recently re-
gained popularity due to the significant increase in computational
power and development of fast template matching and search al-
gorithms [1]. Several hybrid recognition systems combining this
approach with hidden Markov models (HMMs) are also proposed
[2, 3]. Exemplars are labeled speech segments such as phones or
syllables, possibly of different length, that have occurred in the train-
ing data and they are matched with the input speech segments using
dynamic time warping (DTW). We refer to this approach as exem-
plar matching. This approach allows to use any choice of frame-
synchronous feature vector to represent the input speech and the
exemplars. For instance, in [1], motivated by a better recognition
accuracy, a mutual information based discriminant analysis (MIDA
[4]) is applied to log-spectral data.

One can simply classify the segment as the label of the closest
exemplar, or by a voting scheme on the set of K nearest neighbors
[1, 5]. Applying exemplar matching under noisy conditions creates
mismatch problems similar to what is experienced with HMMs. One
can resort to feature compensation methods to increase the robust-
ness to noise [6]. Model compensation techniques require would re-
quire all exemplars to be modified, which is a formidable task in the
case of non-stationary noise. Since the search problem in exemplar-
based recognition is a lot more involved than in HMM-based recog-
nition, the equivalent of factorial models is also not a trivial path
to walk. Finally, multi-condition training, i.e. storing noisy exem-
plars, will increase the number of exemplars dramatically. Further-
more, noisy exemplars can only capture a certain instant of speech

and noise resulting in a limited noise modeling especially in case of
non-stationary noise.

More recently, exemplar-based sparse representations have been
used successfully for clean [7, 8] and noisy [9, 10, 11] speech recog-
nition. This technique models input speech segments as a sparse lin-
ear combination of fixed-length exemplars. These exemplars are rep-
resented in the linear magnitude spectral domain to ensure additiv-
ity. By combining speech and noise exemplars linearly, it explicitly
models the noisy speech. Because exemplars are combined linearly,
they need to be of the same length, unlike in exemplar matching, and
cannot model our choice of speech segments (phones, syllables, ...).
The exemplars can therefore not serve directly as an acoustic model,
so sparse representations have been used for speech enhancement,
a model of state likelihoods (sparse classification) or to generate a
mask in a missing data recognition framework.

In this paper, we elaborate on the differences between the DTW
and sparse representation exemplar techniques and propose a proce-
dure to combine them. This results in a basic exemplar matching
recognizer having the advantage of using long exemplars of vari-
able length in a sparse representation formulation. The main mo-
tivation is to establish a new framework that allows noise model-
ing for exemplar matching based recognition systems. This task in-
volves both the selection of the appropriate representation domain
of speech and the distance/divergence measure used for comparing
the input speech segments with exemplars. Most exemplar match-
ing techniques make use of state-of-the-art features with high dis-
criminative power among the classes to lower the recognition errors
[1, 5]. However, as additivity and non-negativity properties are re-
quired for linearly combining exemplars, mel-scaled magnitude and
power spectra can be used to represent speech in the proposed ap-
proach. The Euclidean distance used in exemplar matching has to be
replaced by e.g. the generalized Kullback-Leibler divergence. This
study focusses on the price that needs to be paid in terms of the
accuracy on clean data for these modifications. An analysis of the
resulting noise robustness is the topic of other work currently under
review.

The rest of the paper is organized as follows. Section 2 explains
exemplar matching based recognition, exemplar-based sparse repre-
sentations of speech and the combined system. The experimental
setup is discussed in Section 3. Section 4 presents the results. The
conclusions are discussed in Section 5.

2. EXEMPLAR-BASED RECOGNITION SYSTEMS

2.1. Exemplar-matching

This technique compares the input speech segments with labeled ex-
emplars, each representing a certain class. The exemplars are col-
lected from a large corpus that is segmented in terms of the desired
classes. The segments will have variable lengths, so the natural du-



ration distribution of each class in the training corpus is preserved.
Input speech and exemplars are represented using state-of-the-art
speech features in order to maximize recognition accuracy. Recog-
nition then consists of finding the sequence of exemplars that best
matches the input subject to lexical and grammatical segment con-
catenation constraints. The quality of a match is measured by a met-
ric (e.g. Euclidean distance) that expresses how well the exemplars
reconstruct the data. Additional constraints are imposed. Each ex-
emplar is tagged with meta-information such as speaker characteris-
tics (e.g. gender, age) or prosodic information (e.g. speaking rate,
position in the sentence). This information is used during decod-
ing to penalize inconsistent exemplar sequences (e.g. mixed gender)
with various concatenation costs. In the present work, only two types
of concatenation costs are considered, namely exemplar startup costs
and gender costs. Exemplar startup costs penalize longer exemplar
sequences and control the insertion/deletion rate. Gender costs pe-
nalize mixed gender exemplar sequences, a constraint which has
been shown to improve the recognition accuracy [1]. Finally, in
earlier exemplar matching work, strict matches across the time di-
mension were relaxed using DTW. In this work, time warping is not
applied for three reasons. Firstly, it would complicate the distance
calculation. Secondly, in noisy conditions, too much freedom in time
warping may lead to unrealistic warping, so duration constraints are
more important than in clean conditions. The same effect has been
observed in HMM systems [12]. Thirdly, in the combined system
described in Section 2.3, the linear combination of exemplars with
different internal time warping will relax the requirement for strict
matching along the time axis.

2.2. Sparse Combinations of Exemplars

The exemplar-based sparse representations approach models the in-
put speech as a linear combination of several speech exemplars [7].
The input speech and exemplars are represented in the linear mel-
scaled spectral domain in order to ensure additivity of exemplars.
In this framework, exemplars are fixed-length speech segments ran-
domly extracted from the training corpus and may be associated with
more than one class. Labeling is performed probabilistically using
a conventional HMM-based recognizer either at the word or state
level.

Exemplars consisting of L frames are reshaped as a single col-
umn vector and collected in a single dictionary S of dimensionality
DL × N where D is the number of frequency bands and N is the
number of available exemplars. A reshaped input speech vector yL

of length L is expressed as a linear combination of the exemplars
with non-negative weights:

yL ≈
NX

m=1

xmsm = Sx s.t. xm ≥ 0 (1)

where x is an N -dimensional sparse weight vector. Sparsity of the
weight matrix implies that the input speech is approximated by a
small number of exemplars. The exemplar weights are obtained by
minimizing the cost function,

d(yL,Sx) +
NX

m=1

xmΛm s.t. xm ≥ 0 (2)

where Λ is an N -dimensional vector. The first term is the divergence
between the input speech vector and its approximation. A regulariza-
tion term is added in order to limit the l1-norm of the weight vector.
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Fig. 1. Exemplars are organized in multiple dictionaries Sc,l for
each class c and each length l.

Here, Λ controls how sparse the resulting vector x is. The general-
ized Kullback-Leibler divergence (KLD) is used for d:

d(y, ŷ) =

KX
k=1

yk log
yk

ŷk
− yk + ŷk (3)

which is commonly used in source separation problems and shown to
produce better results than Euclidean distance when used with linear
mel-scaled spectra [13].

The regularized convex optimization problem can be solved us-
ing various methods including LASSO and non-negative sparse cod-
ing (NSC). For NSC, the multiplicative update rule to minimize the
cost function (2) is derived in [14] and found as

x← x � (ST (yL � (Sx))) � (ST 1 + Λ) (4)

with � and � denoting element-wise multiplication and division re-
spectively. 1 is a DL-dimensional vector with all elements equal to
one. Applying this update rule iteratively, the weight vector becomes
sparse and the reconstruction error between the input speech vector
and its approximation decreases monotonically.

In order to decode the input speech, a window of length L is
slid over the input speech with a constant frame shift and the weight
vector for each window is obtained. Then, using a label matrix con-
taining the word or state based labels for each exemplar, the HMM
likelihood scores are calculated. Finally, a modified Viterbi algo-
rithm is applied to find the most likely class sequence.

2.3. Combined System

The combined system aims to benefit from the advantages of the
two frameworks explained in the previous sections. It is an exem-
plar matching approach in the sense that it explains the input as the
sequence of classes leading to a minimal reconstruction error, each
class being represented by exemplars of variable length. The re-
construction error is however measured by the sparse combination
model in the linear spectral domain, which has the advantage of eas-
ily modeling noisy speech by adding noise exemplars. The exem-
plars are thus organized in multiple dictionaries Sc,l: one for each
class c and each length l as shown in Figure 1. Each dictionary is
of dimensionality Dl × Nc,l where Nc,l is the number of available
exemplars of length l and class c. Using separate dictionaries for
different classes is expected to provide better classification than us-
ing a single dictionary as every input segment is guaranteed to be



approximated by a combination of exemplars belonging to the same
class only.

For any class c, a reshaped input speech vector yl of length
l is expressed as a linear combination of the exemplars with non-
negative weights:

yl ≈
Nc,lX
m=1

xm
c,ls

m
c,l = Sc,lxc,l s.t. xm

c,l ≥ 0 (5)

where xc,l is an Nc,l-dimensional sparse weight vector. The class
and length dependent weight vectors are obtained by applying the
multiplicative update rule in Equation (4) for each dictionary. The
reconstruction error between a class c and an input speech segment
of length l can be calculated using Equation (3). It satisfies the con-
ditions to apply dynamic programming, hence the class sequence
that best matches the input speech can be simply found.

The input speech is decoded similar to the exemplar matching
based recognizer. Every input frame sequence of each available ex-
emplar length is approximated as a linear combination of exemplars
by iteratively applying the update formula. For each class and ex-
emplar length, the approximation is performed separately using the
dictionaries. After a certain number of iterations, the reconstruction
error is calculated using Equation (3). As every dictionary contains
exemplars with known labels, the entire input utterance is searched
to find the digit sequence yielding the minimum reconstruction error.

A known problem of sparse representation approaches working
on magnitude spectra is that the silence exemplars are not recognized
[14]. This is due to the fact that silence is well-approximated by
combining speech exemplars with small weights, so all classes will
score equally well. To overcome this problem, reconstruction errors
for the class representing silence have to be compensated. This is
achieved by reducing the reconstruction errors corresponding to si-
lence dictionaries by a compensation factor CF depending on the
voice activity value assigned to the middle frame of the correspond-
ing input speech segment and the reconstruction error itself,

CF = C · d(yl,Ssil,lxsil,l) · V AD (6)

where C is a scale factor and V AD is the voice activity estimate (0
for speech, 1 for silence). The V AD value can either be obtained
from an autonomous module implementing a preferred method from
the vast literature on the topic, or it can be estimated using the ex-
emplar weights xc,l. In this work, an energy-based VAD is used.
It should be noted that including the reconstruction error itself in
Equation (6) compensates for length differences.

3. EXPERIMENTAL SETUP

3.1. Data, Preprocessing and Features

We have conducted recognition experiments on the 4 clean test sets
of the AURORA-2 database [15]. To reduce simulation time, we
subsampled each test set by a factor of 4, bringing the total number of
utterances to 1001. For feature extraction, a 17 channel Mel-scaled
filter bank with triangular magnitude response is computed from a
spectral analysis with a window length of 32 ms and a frame shift of
10ms. The first channel is centered at 200 Hz and the last at 3030 Hz.
Channel normalization of the magnitude spectrum is achieved by
transforming it to the log-domain, applying mean normalization and
moving back to the linear domain. The exemplar matching baseline
uses MIDA features, i.e. a discriminatively trained linear transform
of the mean-normalized log-power spectra and its first and second
order differences (a total of 3 × 17 = 51 features) resulting in 32-
dimensional feature vectors.

Table 1. Word error rates for the 1-NN exemplar matching based
recognizer in percentages

Features Dimension Dis./Div. Measure WER (%)
MIDA 32 Eucl. 1.11

MN+logPowSpec 17 Eucl. 3.36
MN+PowSpec 17 KLD 10.10
MN+MagSpec 17 KLD 4.41

PowSpec 17 KLD 10.34
MagSpec 17 KLD 4.36

Table 2. Word error rates for the proposed system in percentages

Features Dimension Dis./Div. Measure WER (%)
PowSpec 17 KLD 7.70
MagSpec 17 KLD 2.98

l2-N+PowSpec 17 KLD 5.14
l2-N+MagSpec 17 KLD 2.16

3.2. Exemplar Matching

The exemplars used in both the exemplar matching and in the com-
bined system are half-digits which are extracted from the clean train-
ing set and segmented by a conventional HMM-based system. As
argued before, the design strives for long units. Full digits turned
out to be too long for matching without DTW resulting in a high
error rate. With half-digits the exemplars seemed to generalize suf-
ficiently to unseen data resulting in an acceptable baseline (see be-
low). This results in 49,354 exemplars belonging to 22 half-digit
classes and 14,418 silence exemplars (in total 63,772 exemplars).
The minimum and maximum exemplar lengths are 5 and 30 frames
respectively. Exemplars longer than 30 frames are omitted to limit
the number of dictionaries that are to be used in the further steps of
the experiment.

Speech segments are classified as the their single closest neigh-
boring exemplar (1-NN). The exemplar startup and gender costs are
tuned manually for maximal recognition accuracy.

3.3. Combined System

In the combined system, there are in total 508 dictionaries contain-
ing the same speech exemplars as in the exemplar matching base-
line. However, only 1300 silence exemplars (50 exemplars for each
length) are used since silence exemplars do not contribute much as
discussed in Section 2.3. The system ends up using 50,654 exem-
plars in total. In the combined system, the l2-norm of each dictio-
nary column is set to unity, i.e. the energy of each exemplar is nor-
malized. The same normalization is applied to the reshaped input
speech vectors. The reconstruction error shows enough discrimina-
tion among classes after 50 iterations. All elements of Λ are set to 2.
The scale factor C is set to 0.5. The combined system only uses ex-
emplar startup cost which is, like for the exemplar matching system,
tuned for maximal accuracy.

3.4. Reconstruction Error Metrics

The log-compressed features that are used in the exemplar matching
baseline and the first intermediate system are compared using the
Euclidean distance. All the other intermediate systems and the final
system use the generalized KLD to calculate the reconstruction error.



4. RESULTS AND DISCUSSION

In this section, we migrate the 1-NN exemplar matching system in
several steps towards the final combined design. The steps dealing
with feature representation and distance metric in a single nearest
neighbor exemplar matching context are summarized in Table 1.

Based on prior design experience, we start from a design us-
ing MIDA features, channel (mean) normalization and Euclidean
distance resulting in a word error rate (WER) of 1.11%. Since the
sparse representation approach does not use linear transforms or
derivatives, we remove this first, resulting in 3.36% WER. The sec-
ond and the third lines compare the recognition accuracies obtained
using mean normalized log-compressed power spectra and mean
normalized linear power spectra in conjunction with the Euclidean
distance and generalized KLD respectively. It can be concluded that
log-compression combined with the Euclidean distance performs
much better. The results in the last two blocks of Table 1 shows that
the generalized KLD couples much better with linear magnitude
spectra and mean normalization is not effective both for magnitude
and power spectra in this task.

The first block of Table 2 presents the WER obtained with the
combined system using power and magnitude spectra. Compared to
the last block of Table 1, there is a significant improvement on recog-
nition accuracies in both magnitude and power spectra due to sparse
combination approach. Finally, the l2-norm of the exemplars is set
to unity as described in Section 3.3 which boosts the recognition
accuracy. Even though the best result obtained with the proposed
approach is still behind the baseline system, it significantly outper-
forms all the other intermediate systems with comparable features.

5. CONCLUSIONS

We discussed two different exemplar-based recognition schemes,
namely exemplar matching and exemplar-based sparse representa-
tions, and proposed a combined system that uses multiple length
exemplars to jointly approximate the input speech. Such a design
can benefit from the noise model provided by the sparse representa-
tions approach while it can decode unseen speech directly in terms of
exemplar identities using a reconstruction error metric. Exemplars
are organized in separate dictionaries which are expected to provide
better classification than using a single dictionary as every input seg-
ment is approximated by a combination of exemplars belonging to
the same class only. The additivity and non-negativity requirement
limits the representation domain to magnitude or power spectra.
This apparently leads to lower recognition accuracy compared to
discriminatively trained speech features. Moreover, the Euclidean
distance, which is widely used in exemplar matching based systems,
has to be replaced by the generalized KLD.

This initial study still leaves many questions open, some of
which are listed here. Firstly, other divergences such as Itakura-
Saito have been proposed to model spectral data in exemplar tech-
niques. Secondly, the dictionaries can most likely be pruned without
accuracy cost. Thirdly, when dropping non-negativity of the rep-
resentation, linear transforms of the features are allowed. Fourth,
exemplar sequences can be constrained by e.g. prosody.
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