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ABSTRACT

Most conventional semi-supervised learning methods attempt
to directly include unlabeled data into training objectives.
This paper presents an alternative approach that learns fea-
ture affinity information from unlabeled data, which is in-
corporated into the training objective as regularization of a
maximum entropy model. The regularization favors mod-
els for which correlated features have similar weights. The
method is evaluated in text classification, where feature affin-
ity can be computed from feature co-occurrences in unlabeled
data. Experimental results show that this method consistently
outperforms baseline methods.

Index Terms— semi-supervised learning, text classifica-
tion, maximum entropy, feature affinity matrix, regularization

1. INTRODUCTION

Semi-supervised learning techniques are used in many prob-
lems to leverage unlabeled data [1]. Applying semi-supervised
learning to text classification is desirable due to limited la-
beled text and increasing amount of unlabeled text. A pop-
ular approach is to use the expectation-maximization (EM)
algorithm on generative models such as Naive Bayes, treating
unlabeled data as data with missing information [2]. Discrim-
inative models are found to be more effective than generative
models in many text classification tasks [3, 4, 5], because they
do not need to estimate the joint probability distributions. The
maximum entropy (MaxEnt) model [6] is a widely used dis-
criminative classifier due to its computational tractability
and straightforward optimization. However, because MaxEnt
only computes the conditional probability of a label given
features, the EM algorithm cannot be directly applied.

Various alternatives for semi-supervised learning have
been explored for MaxEnt models. Suppose we are given a
set of label data L and unlabeled data U that come from the
same distribution, and the goal is to learn a classifier based
on both L and U . Grandvalet et al. proposed entropy min-
imization in [7], which adds an entropy regularization term
to the traditional MaxEnt training objective. This regularizer
encourages lower entropy of predicted labels on unlabeled
data. The intuition behind entropy minimization is the prin-
ciple used by many semi-supervised learning methods, that

is, classification boundaries should lie in low density regions.
By favoring lower entropy (thus more certain) predictions on
unlabeled data, the decision boundaries are effectively pushed
away from high density regions. As with other methods that
use this principle, it may not work well if the data has signif-
icant overlaps between different classes, where the classifier
may get over-confident for the incorrect decisions.

Mann et al. [8] proposed another semi-supervised Max-
Ent learning method named expectation regularization (XR).
Like entropy minimization, XR also adds a new regulariza-
tion term to the training objective, specifically the Kullback-
Leibler divergence D(p̃‖p̂) between the model-expected la-
bel distribution p̂ of unlabeled data and a prior label distri-
bution p̃. It prefers models that produce a label distribution
closer to the prior, which may be estimated empirically from
labeled data or specified by experts. It was shown that XR
outperforms entropy minimization on a few tasks [8]. Other
work has invetigated l2 posterior label distribution regular-
ization for conditional randome fields [9]. XR has also been
extended to weakly-supervised MaxEnt learning by annotat-
ing salient features, from which a label distribution can be
estimated [10].

In this paper, we attempt to use unlabeled data in semi-
supervised learning in a different way. Instead of regulariz-
ing the labels or posteriors on the unlabeled data, we regu-
larize the feature weights based on the structure of features
learned from unlabeled data. This approach is motivated by
the fact that the feature space in text classification problems
is typically very high dimension, so many features are not ob-
served in a limited labeled training data set. Since the poste-
rior predictions based on a more limited feature set are weak,
it may be more productive to focus on leveraging information
about the features in the unlabeled data. Specifically, we pro-
pose feature affinity regularization (FAR), which learns fea-
ture affinity information from unlabeled data and incorporates
it in the training objective in the form of regularization, such
that we favor models which assign similar weights to corre-
lated features. With FAR, even if we only observe a small
number of features on labeled data, the model will still be
aware of other unseen features that are related to the observed
features. Therefore, we can train a model that generalizes
better to new data. The method applies to both inductive and
transductive classifiers, depending on whether the test data



can be incorporated in the unlabeled set when learning fea-
ture correlation.

A similar algorithm is proposed as regularizing with net-
works of features, in work by Sandler et al. [11], also moti-
vated by the challenges of high-dimensional features in text
classification. They show that the Gaussian form of their
regularization is equivalent to the locally linear embedding
(LLE) method for transforming high-dimensional data [12],
without the dimensionality reduction, and achieves better re-
sults for two text classification problems. A key difference in
our work is the mechanism for representing feature affinity. In
[11], the feature similarity measure is application-dependent.
In contrast, our work represents feature affinity purely based
on co-occurrence, which is computationally cheap to obtain
and (we conjecture) generalizes reasonably across tasks. It is
shown to be helpful in our experiments on two tasks.

Another method that explores feature similarity (or more
precisely, feature correspondence) from unlabeled data is
structural correspondence learning (SCL) [13]. SCL can
be applied to domain transfer, where source and target do-
mains are unmatched, and labeled data is only available in
the source domain. SCL defines a set of pivot features which
are common across domains, and constructs linear predictors
to predict those pivot features from unlabeled data in both
domains. A feature in the source domain is said to corre-
spond to a feature in the target domain if they are both useful
in predicting the pivot features, and a linear combination of
them is used as a new feature in supervised learning. FAR is
similar in motivation, but is different from SCL in a few as-
pects: it does not require hand-picking of pivot features, and
it is designed for within-domain semi-supervised learning
(vs. domain transfer).

2. FEATURE AFFINITY REGULARIZATION

Assume that, for each N -dimensional feature vector x, the
MaxEnt model computes the posterior probability for class
k = 1, 2, . . . ,K based on the following formula,

p(y = k|x) =
exp

(∑N
i=1 λikxi

)
∑K

j=1 exp
(∑N

i=1 λijxi

) ,
where λik’s are real-valued feature weights which describe
how indicative feature i is with respect to class k. They form
an N ×K weight matrix Λ.

The FAR regularizer is defined as

JFAR =
1

2

K∑
k=1

∑
i,j, i<j

wij(λik − λjk)2,

where wij’s are elements of a symmetric matrix W. We call
W a feature affinity matrix as it encodes affinity information
between pairs of features. The larger wij is, the more corre-
lated feature i and feature j are. All wij’s are non-negative.

To use FAR in MaxEnt model learning, we add JFAR to
the training objective function,

J = −
∑

(x,y)∈L

log p(y|x) +
∑
i,k

λ2ik
2σ2

+ γJFAR.

The first two terms are negative loglikelihood and an l2 regu-
larizer, respectively. l2 regularization is a standard technique
to perform weight smoothing for MaxEnt, and it improves
the classification accuracy in testing. σ and γ > 0 are hyper-
parameters that are tuned on development data.

It can be shown that JFAR is convex with respect to Λ.
Therefore, overall J is still convex with respect to Λ, and we
can safely use gradient algorithms to minimize J without the
risk of being stuck at local optima. We use L-BFGS in our
experiments.

The gradient of JFAR can be computed as follows. In this
derivation, δij is the Kronecker delta.

∂JFAR

∂λmn
=
∑

i,j, i<j

wij(λin − λjn)
∂(λin − λjn)

∂λmn

=
∑

i,j, i<j

wij(λin − λjn)(δim − δjm)

=
∑

j, m<j

wmj(λmn − λjn)

−
∑

i, i<m

wim(λin − λmn)

=
∑
i

wim(λmn − λin).

Intuitively, the gradient pushes λmn towards λin if wim > 0,
therefore correlated features get similar weights.

Unlike XR, where specifying a prior distribution over a
small set of labels is relatively easy, coming up with anN×N
matrix W for FAR can be a daunting task if it is done by a hu-
man. In this work, we propose to learn W automatically from
unlabeled data, including test data. This approach has a few
benefits. First, information from unlabeled data is brought
into the training objective indirectly through W, thus it be-
comes semi-supervised. Second, deriving feature affinity in-
formation automatically from data makes it easy to apply to a
variety of tasks.

In this paper, we investigate a simple way to compute W,
that is, using feature co-occurrence. If feature i and feature
j co-occur many times on a sufficiently large data set, we
can conjecture that feature i and feature j are likely to have
similar predictive power; thus, the affinity value wij should
be high. Once FAR is applied to MaxEnt, it will push the
feature weights λi and λj closer.

We propose the following way to compute W.

wraw
ij =

{
C(fi, fj) if C(fi, fj) > θ

0 otherwise
,



whereC(fi, fj) is the number of unlabeled instances in which
fi and fj co-occur. Co-occurrence counts tend to have very
long tails, and the majority are small numbers. For large
datasets, this poses challenges to computation and storage. In
this case, setting a non-zero threshold θ is necessary, which
leads to a sparser W. We use the smallest θ that satisfies
our computational constraints. The impact of FAR to MaxEnt
learning is also controlled by the hyper-parameter γ, which
will be less dependent on the size of unlabeled data U , if we
compute W as

wnormalized
ij =

wraw
ij

|U|
,

in which the size of unlabeled data is taken into account.
Some degenerative cases further motivate FAR. Consider

the case where W only has two non-zero elements wuv and
wvu, u 6= v. That is to say, only feature u and feature v
are correlated. If only u is observed in the training data,
the model trained using FAR will have λuk = λvk, k =
1, 2, . . . ,K (ignoring the effect of l2 regularization for now).
In other words, the model will treat feature v the same as fea-
ture u, even though feature v does not appear in the training
data. This enables MaxEnt to extend the model to unseen fea-
tures. Conventional MaxEnt will have λvk = 0, effectively
ignoring unseen feature v.

If both feature u and feature v appear in the training data,
with FAR, the distance |λuk − λvk| will be less than that ob-
tained by conventional MaxEnt. How close they become de-
pends on the strength of the regularizer, controlled by γ. This
is effectively performing feature weight smoothing based on
feature affinity. With an appropriate way to derive W, this
smoothing effect can help improve model generalizability.

In practice, it is almost impossible to obtain a degenera-
tive W as mentioned above. There will usually be many more
non-zero elements. Each non-zero element corresponds to an
edge in the graph of all features. Most likely, a feature will
be connected to many other features. If we put the feature
weights into the corresponding graph nodes, FAR enforces
weight smoothness over the entire feature graph. Features
with more direct or indirect connections tend to have similar
weights in a MaxEnt model trained with FAR.

3. EXPERIMENTS

We carry out semi-supervised text classification experiments
on two tasks, including movie review classification and
newsgroups topic classification. We compare FAR with a
supervised baseline (l2 regularized MaxEnt) and two semi-
supervised baselines (MaxEnt with XR and MaxEnt with
self-training). Self-training [1] is an alternative to EM that
can be applied to a variety of models including MaxEnt. In
order to test the performance of semi-supervised learning
under different conditions, we downsample the training data
randomly using different sampling rates while maintaining

the original class prior. The unlabeled data used to learn fea-
ture affinity matrix include all the ones that are not sampled
for training, as well as all the development and evaluation
data with labels removed.

3.1. Movie Review Classification

The task of movie review classification was introduced in
[5] as an application of sentiment analysis. The authors
showed that MaxEnt with unigram features outperforms
other methods. In this paper, we use the movie review
data set described in [14]. This data set is comprised of
5000 positive and 5000 negative sentences extracted from
www.rottentomatoes.com reviews.

We use ten-fold cross validation in our experiments, and
we keep training-development-evaluation ratio to 8:1:1. The
results reported are classification accuracies.

Table 1. Movie review classification results
Downsampling l2 XR self FAR

1% 54.4% 54.7% 51.8% 56.2%
2% 57.6% 57.3% 54.2% 59.2%
5% 62.0% 61.8% 59.2% 63.7%

10% 65.6% 65.6% 64.2% 67.2%
20% 69.0% 69.0% 68.7% 70.4%
50% 72.9% 72.9% 72.9% 74.1%

3.2. Newsgroups Topic Classification

We use the 20 newsgroups data set [15], which is a collection
of approximately 20,000 newsgroup documents, partitioned
nearly evenly across 20 different newsgroups as classes. We
employ the “bydate” version of the data as recommended by
the author.

This data set has been divided into training and test sets.
When downsampling the training set for semi-supervised
learning, we also create a development set using the data not
sampled for training, and the size of the development set is
about 10% of the original training set.

TF-IDF feature is extracted from each document, as what
is typically done in the text categorization literature. We eval-
uate the performance using classification accuracy.

3.3. Results and Discussion

From the experimental results in Tables 1 and 2, we see that
FAR consistently outperforms other three baseline methods.
The experiments also show that FAR not only works on binary
features used in movie review classification, but also is able to
achieve improvements with real-valued TF-IDF features. XR
and self-training do not work well in these experiments. In
most cases, they obtain inferior results compared even to the
conventional l2 MaxEnt (supervised learning only).



Table 2. 20 newsgroups topic classification results
Downsampling l2 XR self FAR

1% 15.3% 15.2% 13.8% 15.4%
2% 34.5% 32.4% 32.4% 34.6%
5% 55.6% 54.6% 54.5% 57.4%

10% 66.9% 67.8% 66.7% 68.2%
20% 73.9% 73.8% 74.0% 75.6%
50% 80.2% 79.9% 79.9% 81.7%

In our experiments, the number of features N is on the
order of tens of thousands. In order to run FAR, we need to
store W which is N ×N and in most cases sparse. It is man-
ageable for the movie review data even if we do not do any
pruning (θ = 0), but we had to set θ = 10 for the newsgroups
data to reduce storage and computation burden. We will face
a bigger problem when we use millions of features, which is
not uncommon for some tasks. Setting a greater θ increases
the sparsity of W, but we lose more feature affinity informa-
tion. We are working on a more compressed representation of
W to be able to use more features. In this paper, we use uni-
versal feature co-occurrence to compute feature affinity, but it
may not be optimal for all tasks. Users may tailor the method
such that W captures the most important feature affinity in-
formation with regard to their task at hand.

4. CONCLUSIONS

We have introduced a novel semi-supervised learning method
named FAR for text classification. A feature affinity ma-
trix is learned from unlabeled data, typically from feature co-
occurrence statistics. Then a regularization term is added to
the supervised MaxEnt training objective, measuring the sum
of distances between pairs of feature weights weighted by fea-
ture affinity values. The overall effect of FAR on MaxEnt is
that it favors models that assign similar weights to correlated
features, therefore smooths the weights over all features. We
have shown that FAR can extend the model to features that
are unseen in the training data, and can also improve the gen-
eralizability of the model. Experiments on text classification
have been carried out, and we have observed consistent im-
provement from FAR over other semi-supervised learning ap-
proaches for MaxEnt models.

There are several avenues for future work. Improving the
efficiency of FAR would facilitate use with more feature, such
as n-grams. There are other possibilities for computing the
affinity matrix, e.g. using general quantities such as mutual
information. It would also be of interest to compare FAR to
other baselines, including weight tying determined by auto-
matic clustering, other variations of network regularization in
[11], and label posterior regularization. Although we have
only tested FAR on text classification, the same principle can
be applied to other classification problems. For problems in

domains with real-valued (vs. symbolic) observations, com-
puting feature affinity from feature correlation may be a vi-
able approach.
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