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This is unrealistic for many ML applications
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Learning when Training and Test distributions differ

Examples:

◮ Spam filters – train on email arriving at one address, test on a
different mailbox.

◮ Natural Language Processing tasks- train on some content
domains, test on others.

There is rather little theoretical understanding so far.
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Why care about theoretical understanding?

◮ Know when to use (and when not to use) algorithmic
paradigms.

◮ Have some performance guarantees.

◮ Help choose appropriate algorithmic approach (based on prior
knowledge about the task at hand).

◮ The joy of understanding . . . . . .



Example: Domain adaptation for POS tagging

Structural Correspondence Learning(Blitzer, McDonald, Pereira
2005):

1. Choose a set of pivot words (determiners, prepositions,
connectors and frequently occurring verbs).

2. Represent every word in a text as a vector of its correlations
with each of the pivot words.

3. Train a linear separator on the (images of) the training data
coming from one domain and use it for tagging on the other.
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2005)

◮ Embed the original attribute space into some joint feature
space in which:

1. The two tasks look similar.
2. The source task can still be well classified.



Abstraction and analysis (BD, Blitzer, Crammer, Pereira

2005)

◮ Embed the original attribute space into some joint feature
space in which:

1. The two tasks look similar.
2. The source task can still be well classified.

◮ Then, treat the images of points from both distributions as if
they are coming from a single distribution.



Formalism

Domain: X
Label set: {0, 1}
Source Distribution: PS over X × {0, 1}
Target Distribution: PT over X × {0, 1}

A DA-learner gets a labeled sample S from the source and a (large)
unlabeled sample T from the target and outputs a label predictor

h : X → {0, 1}.

Goal: Learn a predictor with small target error

ErrPT
(h) := Pr

(x ,y)∼PT

[h(x) 6= y ] ≤ ǫ



The error bound supporting that paradigm

[BD, Blitzer, Crammer, Pereira 2006]
[Mansour, Mohri, Rostamizadeh 2009]
For all h ∈ H:

ErrT (h) ≤ ErrS(h) + A+ λ,

Where A is an additive measure of discrepancy between the
marginals and λ a measure of the discrepancy between the labels,
both depending on H.
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The error bound supporting that paradigm

[BD, Blitzer, Crammer, Pereira 2006]
[Mansour, Mohri, Rostamizadeh 2009]
For all h ∈ H:

ErrT (h) ≤ ErrS(h) + A+ λ,

Where A is an additive measure of discrepancy between the
marginals and λ a measure of the discrepancy between the labels,
both depending on H.

Namely,

A = dH∆H(PT ,PS )
def
= Sup{|PT (h∆h′)− PS (h∆h′)| : h, h′ ∈ H}

and
λ = Inf {ErrT (h) + ErrS (h) : h ∈ H}
(The Mansour et al result uses a variation of this -
ErrT (hS ) + ErrS(hT ), where hS and hT are minimum error
classifiers in H for PS and PT , respectively).
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From the bound to an algorithm

The bounds imply error guarantees for any algorithm that learns
well with respect to the source task.

For example, the simple empirical risk minimization ERM(H)
paradigms,
provided that H has limited capacity (say, finite VC-dimension).
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Three aspects determining a DA framework:

1. The type of training samples available to the learner.

2. The assumptions on the relationship between the source
(training) and target (test) data-generating distributions.

3. The prior knowledge about the task that the learner has.

Two types of algorithms:

1. Conservative: Learn the source task and apply the result to
the target.

2. Adaptive: Adapt the output classifier based on target
information.
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The training samples available to the learner

Types of “proxy data”

◮ labeled data from a different distribution (source distribution)

◮ (lots of) unlabeled data from the target distribution

Questions:

◮ Can we learn with solely with source generated labeled data?

◮ Can target-generated unlabeled data be beneficial or even
necessary?

◮ How can we utilize the proxy data if we are also given (little)
labeled data from the target distribution?



Relatedness assumptions

Relatedness of the unlabeled marginal distributions

◮ Multiplicative measure of distance (the ratio between the
source and target probabilities of domain subsets).

◮ Additive measure of distance (the difference between the
source and target probabilities of domain subsets, like the
dH∆H above)

(both with respect to some family of domain subsets)

Relatedness of the labeling functions

◮ Absolute (like the covariate shift assumption)

◮ Relative to a hypothesis class (like the λ parameter above)
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◮ Realizability by some class of predictors.

◮ Good approximation by some class

◮ Good kernel



Prior knowledge

Prior knowledge about either the source task or the target task.
For example:

◮ Realizability by some class of predictors.

◮ Good approximation by some class

◮ Good kernel

What are the differences between source and target prior
knowledge?



The downside of conservative algorithms

They can thus be viewed as indicating

”When is domain adaptation not needed?”

(the algorithm is just learning with respect to the source-generated
traing data)
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Adaptive algorithms:

A common adaptive paradigm is importance reweighing.

Namely, reweigh the source-generate labeled training sample, such
that it will look as if it was generated by the target task.

This is a rather common paradigm in practice.

However, for a theoretical justification of this paradigm, we need
some further assumptions.



Relatedness assumptions for the labeling: Covariate shift

The covariate- shift assumption: The labeling function is the same
for the source and target tasks.

(This is reasonable for some DA tasks, such as parts of speech
tagging, but may fail in others).



Relatedness assumptions for the amrginals: Weight Ratio

We define the weight ratio of the source distribution and the target
distribution with respect to some collection of subsets B ⊆ 2X as

CB(DS ,DT ) = inf
b∈B

DT (b)6=0

DS(b)

DT (b)

Rational: We want the source domain to be not-too-sparse in areas
that are dense from the target’s perspective.
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An observation using a point-wise weight ratio assumption

If C{{x}|x∈X}(PS ,PT ) > 0, we have for every h ∈ {0, 1}X

ErrT (h) ≤ 1

C{{x}|x∈X}(PS ,PT )
ErrS (h) .

Thus, any algorithm that (ǫ, δ)-learns the source for arbitrarily
small ǫ and δ also learns the target.

No unlabeled target data needed (if one ignores the issue of sample
sizes).



A first drawback of the point-wise weight ratio assumption

The result may become meaningless if there is a non-zero lower
bound on the error achievable (e.g. when the labeling rule is not
deterministic or due to non-zero approximation error of the class of
predictors that the algorithm considers).



Adaptive algorithms under the point-wise weight ratio

assumption

[Cortes, Mansour, Mohri 2010] prove guarantees for a paradigm
reweighing the training data based on covariate shift and
knowledge of the point-wise density ratio between source and
target.
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assumption

[Cortes, Mansour, Mohri 2010] prove guarantees for a paradigm
reweighing the training data based on covariate shift and
knowledge of the point-wise density ratio between source and
target.

[BD, Lu, Luu, Pal 2010] show necessity of the assumptions for
these results.
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A second drawback of the point-wise weight ratio

assumption

A bound on the point-wise weight ratio is a rather strong
assumption..

Furthermore, [BD, Urner 2012] show that learning that point-wise
density ratio may require unrealistically large target-generated
samples.

However under a new Lipschitzness assumption, this assumption
can be relaxed.



Lipschitzness of the labeling rule

The labeling rule satisfies a Lipschitzness assumption (if and) only
if the data splits into well-separated label-homogenous clusters,.

1
1

1

0

0

0

d
Lipschitz condition:
|l(x)− l(y)| ≤ 1/d ‖x − y‖

Assuming that natural learning tasks have such a property is
unrealistically optimistic.



A new property - Probabilistic Lipschitzness ([Urner,

Shalev-Shwartz, BD, 2011])

Definition
Let φ : R → R. We say that l : X → R is φ-Lipschitz w.r.t. a
distribution D over X if the following holds for all λ > 0:

Px∼D [∃y : |l(x)− l(y)| > λ ‖x − y‖] ≤ φ(λ)

Essentially, the condition asserts that the boundaries between
class-labels go through sparsely populated domain regions.

This may be viewed as a formalization of the, often loosely stated,
cluster assumption.



Nearest Neighbor for domain adaptation [BD, Urner,

Shalev-Swartz 2012]

Algorithm:
Given a labeled sample S from the source, label each test point t

from the target by its nearest neighbor in S.



Nearest Neighbor for domain adaptation [BD, Urner,

Shalev-Swartz 2012]

Algorithm:
Given a labeled sample S from the source, label each test point t

from the target by its nearest neighbor in S.

We provide finite sample size error guarantees for this algorithm
under our assumptions.



Nearest-Neighbor learning guarantee

Theorem
Let our domain X = [0, 1]d be the unit cube in R

d and let W be

the class of pairs (PS ,PT ) of source and target distributions over

X × {0, 1} with CB(DS ,DT ) = C > 0 satisfying the covariate shift

assumption and their common labeling function l : X → [0, 1]
satisfying the φ-probabilistic-Lipschitz property. Then, for all λ we

have

ES∼Pm
S
[ErrPT

(hNN)] ≤ 2opt(PT ) + φ(λ) + 4λ

√
d

C

(

1

m

)
1

d+1

.



Is the dependence on the Lipschitness necessary?

[BD, Urner 2012], show lower bounds on the needed training
sample sizes.

In particular, without the L assumption, any algorithm requires
sample sizes of the order of the full domain size! Details below.



The prior knowledge about the task that the learner has

The third aspect determining a DA problem is the nature of the
prior knowledge available to the earner.

We consider two such scenarios:

1. The learner knows some class of predictors, HS that has zero
approximation error w.r.t. the source data distribution.

2. The learner knows some class of predictors, HT that has zero
approximation error w.r.t. the target data distribution.



DA with learner’s prior knowledge

We show that in the first case, learning is possible without use of
unlabeled target-generated samples.



DA with learner’s prior knowledge

We show that in the first case, learning is possible without use of
unlabeled target-generated samples.

However, in the second scenario, there are provable benefits to
using (very large) unlabeled target-generated samples.



Source realizability

Knowing a class HS of finite VC-dimension that realizes the source
implies that ERM(HS) is a successful learning paradigm for the
source distribution that achieves arbitrarily small error.

In such a case, empirical risk minimization w.r.t. the
source-generated training sample yields arbitrarily PAC learning,
and, as mentioned above, if the point wise weight-ratio, C (PS ,PT ,
is non-zero, such an algorithm will also yield PAC learning of the
target task.



Source realizability

Knowing a class HS of finite VC-dimension that realizes the source
implies that ERM(HS) is a successful learning paradigm for the
source distribution that achieves arbitrarily small error.

In such a case, empirical risk minimization w.r.t. the
source-generated training sample yields arbitrarily PAC learning,
and, as mentioned above, if the point wise weight-ratio, C (PS ,PT ,
is non-zero, such an algorithm will also yield PAC learning of the
target task.

No target data is needed. (learning is possible from just
source-generated samples who’s sizes are only a constant times the
sizes needed for learning the source task).



A lower bound under target realizability [BD, Urner 2012]

Assume the learner knows a class HT that realizes the target
distribution.

Theorem
For every finite domain X there exists a class HT with

VCdim(HT ) = 1 such that for every ǫ and δ with ǫ+ δ < 1/2, no
algorithm can (ǫ, δ, s, t)-solve the realizable DA problem for the

class W of triples (PS ,PT , l) with C (PS ,PT ) ≥ 1/2 and

optlT (HT ) = 0 if s + t <
√

(1− 2(ǫ+ δ))|X |.
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A lower bound under target realizability [BD, Urner 2012]

Assume the learner knows a class HT that realizes the target
distribution.

Theorem
For every finite domain X there exists a class HT with

VCdim(HT ) = 1 such that for every ǫ and δ with ǫ+ δ < 1/2, no
algorithm can (ǫ, δ, s, t)-solve the realizable DA problem for the

class W of triples (PS ,PT , l) with C (PS ,PT ) ≥ 1/2 and

optlT (HT ) = 0 if s + t <
√

(1− 2(ǫ+ δ))|X |.

In other words, this assumption will not suffice to guarantee
meaningful learning with samples that are independent of the
domain size.

[BD, Urner 2012] also show a almost-matching upper bound on
the needed sample sizes.
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Is unlabeled target data unnecessary?

Does a (point-wise) weight ratio assumption always allow to
replace a target generated labeled sample solely by (possibly lots
of) source generated labeled examples?

Answer: No! There are situations, where even under these strong
assumptions, target-generated data is provably necessary for
successful learning.



Proper DA-learning [BD, Urner, Shalev-Swartz 2012]

Sometimes we want to learn a classifier from a specific class , e.g.

◮ a class of fast classifiers

◮ a class of functions that are readily interpretable

(e.g. halfspaces or small decision trees)



Proper DA-learning [BD, Urner, Shalev-Swartz 2012]

Sometimes we want to learn a classifier from a specific class , e.g.

◮ a class of fast classifiers

◮ a class of functions that are readily interpretable

(e.g. halfspaces or small decision trees)

Problem:

Given A hypothesis class H of interest

Input Source sample S and unlabeled target sample T

Output A member of the class H with low error



Algorithm

Algorithm:

◮ Use a DA-learner to learn a labeling function f for PT

◮ Use f to label an unlabeled sample T from the target

◮ Feed T to an agnostic learner to an agnostic learner for H

This algorithm DA-learns H.



Benefit of unlabeled data
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Domain: Unit cube

Source: Uniform

Target: Support in grey area

Labeling: As in image

Class H: Homogeneous halfspaces

Weight ratio: C > 0
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For the source, many classifiers are
equally good/bad.

Thus it becomes crucial to estimate,
which half of the grey area is heavier
according to the target distribution.

This can not be done without data
generated by the target.

We can first label the unlabeled
target-data with a nearest neighbor
algorithm and then feed this labeled
target data to an H-learner.



Summary

We investigated which assumptions allow which kind of
replacement of “perfect” data by “proxy” data:

◮ For some algorithms labeled source data suffices:
◮ Learners that achieve arbitrary small error on the source

(source realizability)
◮ Nearest Neighbor

◮ There are scenarios where (unlabeled) target data is provably
necessary and beneficial:

◮ Proper DA-learning.
◮ When there is prior knowledge about a class of predictors that

do well on the target task.



Many open questions

◮ Which assumptions make sense in practice?

◮ Are there adaptive algorithms that can guaranteed to succeed
based on realistic assumptions?

◮ Analyze the utility of (relatively few) labeled target-generated
examples.


