Part I

Transfer Learning in Language

Part II

Hal Daumé III

Typical NLP pipeline

Pipeline models break down (sorta)

- > Tagging + Parsing + 0% / + 3%
- Parsing + Named Entities + 0.5% / + 4%
- Parsing + Role Identification + 0% / 0.3% (upper bound: + 13%)
- Named Entities + Coreference + 0.3% / + 1.3% (upper bound: + 8%)

Why? Maybe simpler model already has a lot of the fancier information? Maybe some of these tasks are more related than others?

Tree-based model of task relatedness

A probabilistic model for trees

- Kingman's coalescent is the standard model for the genealogical history of populations.
- It is assumed that each organism has exactly one parent (haploid).
- Thus the genealogy of a population of organisms is a tree.
- Kingman's coalescent is a particularly elegant and simple distribution over genealogical trees of the population.

From trees to priors...

Place a simple Markov process defined on the tree for p(X|T) which evolves forward in time

Inference

Inference by EM:

- E: Compute expectations over **w**s
- M: Maximize (π, δ, Λ) , integrating out internal nodes
- 1. Choose global params: $(\boldsymbol{\mu}^{(0)}, \boldsymbol{\Lambda}) \sim \mathcal{N}or\mathcal{IW}(0, \sigma^2 \mathbf{I}, D+1)$ Choose a tree structure: $(\pi, \delta) \sim Coalescent$ **3**. For each non-root $i \in \pi$: 3.1 Choose $\mu^{(i)} \sim \mathcal{N}or(\mu^{(p_{\pi}(i))}, \delta_i \Lambda)$, where $p_{\pi}(i)$ is the parent of *i* 4. For each domain $k \in [K]$: 4.1 Denote by $\boldsymbol{w}^{(k)} = \boldsymbol{\mu}^{(i)}$ where *i* is the leaf corresponding k.
 - 4.2 For each example $n \in [N_k]$:
 - 4.2.1 Choose $\mathbf{x}_{n}^{(k)} \sim \mathcal{D}^{(k)}$. 4.2.2 Choose $y_{n}^{(k)}$ by $F(\mathbf{w}^{(k)\top}\mathbf{x}_{n}^{(k)})$

Experiments (selected)

			1.4 -
			1.2
Model	N=100	N=6400	
Indp	62.1%	75.8%	- 8.0
Pool	67.3%	74.5%	0.4
FEDA	63.6%	75.7%	0.2
YaXue	67.8%	72.3%	app kitchen elec other musicbooks dvd video
Bickel	68.0%	72.5%	1
Coal:			
Full	72.2%	80.5%	0.0
Diag	71.9%	80.4%	0.6
Data	70.1%	75.8%	0.4
Data	70.170	10.070	0.2

I

dmbveoak

Learning task relationships

Task Relationship Learning

• multitask instance
$$\phi_t(x) \in \mathbb{R}^{kd} = (\underbrace{0, \dots, 0}_{d(i_t-1)times} x_t \underbrace{0, \dots, 0}_{d(K-i_t)times})$$

• compound weight vector $\boldsymbol{w}_s^T = (\boldsymbol{w}_1^T, \boldsymbol{w}_2^T, \dots, \boldsymbol{w}_K^T) \in \mathbb{R}^{Kd}$

• update rules: $\boldsymbol{w}_s = \boldsymbol{w}_{s-1} + y_t (A \otimes I_d)^{-1} \phi_t$ and s denotes the

Cask Relationship Learning *multitask instance* $\phi_t(x) \in \mathbb{R}^{k} = (\underbrace{0, \dots, 0}_{d(i_t-1)times} x_t \underbrace{0, \dots, 0}_{d(K-i_t)times})$ compound weight vector $w_s^T = (w_1^T, w_2^T, \dots, w_K^T) \in \mathbb{R}^{Kd}$ update rules: $w_s = w_{s-1} + y_t(A \otimes I_d)^{-1}\phi_t$ and s denotes the update number (s < t)where $A = \begin{bmatrix} K - 1 \dots - 1 \\ -1 K \dots - 1 \\ \dots \dots \dots \\ -1 - 1 \dots K \end{bmatrix}$ and $A^{-1} = \frac{1}{K+1} \begin{bmatrix} 2 & 1 \dots & 1 \\ 1 & 2 \dots & 1 \\ \dots & \dots & 1 \\ 1 & 1 \dots & 2 \end{bmatrix}$ $K \times K$ interaction matrix A controls the updates update scheme: o fixed full update for the current task i_t o fixed half update for the remaining (K - 1) tasks

- $K \times K$ interaction matrix A controls the updates
- update scheme:

Joint learning of relationships

- key idea: joint minimization of A and w $\arg\min_{w\in\mathbb{R}^{Kd},A\succ 0} \left[D_w(w||w_s) + D_A(A||A_s) + \sum_{1}^{t} l_t(w) \right]$
- in this work: hinge loss for $l_t(w)$, mahalanobis distance for $D_w(\cdot || \cdot)$, log-det divergence and von-neumann divergence for $D_A(\cdot || \cdot)$
- update rules after alternating minimization:

$$\circ \boldsymbol{w}_{s} = \boldsymbol{w}_{s-1} + y_{t}(\boldsymbol{A}_{s-1} \otimes \boldsymbol{I}_{d})^{-1}\phi_{t}$$

$$\circ \boldsymbol{A}_{s} = \boldsymbol{f}^{-1} \left(\boldsymbol{f}(\boldsymbol{A}_{s-1}) - \eta \operatorname{sym} \left(\nabla_{\boldsymbol{A}_{2}} tr(\boldsymbol{W}_{s-1} \boldsymbol{A} \boldsymbol{W}_{s-1}^{T}) \right) \right)$$

where, $tr(\boldsymbol{W}_{s-1} \boldsymbol{A} \boldsymbol{W}_{s-1}^{T}) = \boldsymbol{w}_{s-1}^{T} (\boldsymbol{A} \otimes I_{d}) \boldsymbol{w}_{s-1}$, and

$$\boldsymbol{W} = [\boldsymbol{w}_{1}, \boldsymbol{w}_{2}, \dots, \boldsymbol{w}_{K}] \in \mathbb{R}^{d \times K}$$

• issue: when to start updating A ? our approach: \circ initially learn K independent classifiers \circ start updating A after reaching *priming duration* (EPOCH)

Experimental Results (sample)

Method	Accuracy (Standard Deviation)				
	20newsgroups	Sentiment	Spam		
Stl	56.94(±3.32)	66.31(±2.14)	$76.45(\pm 1.56)$		
Ipl	75.20(±2.35)	67.24(±1.40)	$91.02(\pm 0.77)$		
$\mathbf{C}_{\mathbf{MTL}}$	73.14(±2.35)	$67.38(\pm 1.82)$	$90.17(\pm 0.66)$		
OmtlLog	$81.83(\pm 0.46)$	$73.49 (\pm 0.53)$	$91.35(\pm 1.12)$		
OMTLVON	$76.51(\pm 1.54)$	$67.60(\pm 0.83)$	$91.05(\pm 1.05)$		

Accuracy for full training data (EPOCH = 0.5).

Transfer Learning

Language

aka: why everything I've told you so far isn't useful for some problems...

Domains really are different

- Can you guess what domain each of these sentences is drawn from?
 - News Many factors contributed to the French and Dutch objections to the proposed EU constitution

Parliament Please rise, then, for this minute's silence

- MedicalLatent diabetes mellitus may become manifest during thiazide
therapy
- Science Statistical machine translation is based on sets of text to build a translation model
- Step-
motherI forgot to mention in yesterdays post that I also trimmed an
overgrown HUGE hedge that spams the entire length of the
front of my house and is about 3' accrossed.

S⁴ ontology of adaptation effects

- Seen: Never seen this word before
 - News to medical: "diabetes mellitus"
- Sense: Never seen this word used in this way
 - News to technical: "monitor"
- Score: The wrong output is scored higher
 - News to medical: "manifest"
- Search: Decoding/search erred (ignored)

(inside=old domain outside=new domain)

Translating across domains is hard

	Old Domain (Parliament)			
Original	monsieur le président, les pêcheurs de homard de la région de l'atlantique sont dans une situation catastrophique.			
Reference	mr. speaker, lobster fishers in atlantic canada are facing a disaster.			
System	mr. speaker, the lobster fishers in atlantic canada are in a mess.			
	New Domain			
Original	comprimés pelliculés blancs pour voie orale.			
Reference	white film-coated tablets for oral use.			
System	white pelliculés tablets to oral.			
	New Domain			
Original	mode et voie(s) d'administration			
Reference	method and route(s) of administration			
System	fashion and voie(s) of directors			

Key Question: What went wrong?

Adaptation effects in MT

- Quick observations:
 - New D language model helps (10%-63% impro
 - Tuning on new D data helps (10%-90% improve
 - Weighting new D data helps (4%-150% improv
- Identifying errors in MT (w/o parallel ne
 - Seen: old-only model + unseen input word pairs
 - Sense: old-only model + seen input/unseen out _it pairs
 - Score: intersect old and mixed model, score from old

	News	Medical
Seen	Little effect	~ 40% of error
Sense	Little effect	~ 40% of error
Score	~ 90% of error	~ 20% of error

(as measured by Bleu score)

Consistent in: * movie subtitles * scientific pubs * PHP tech docs

data):

Translating across domains is hard

Dom Most frequent OOV Words

News (17%)	behavior neighboring favorable favorite	favor abe zhao phelps	neighbors wwii ahmedinejad ccp	fueled favored bernanke skeptical
Medical (49%)	renal ribavirin dl ritonavir	hepatic olanzapine eine hydrochlorothiazide	subcutaneous serum sie erythropoietin	irbesartan patienten pharmacokinetics efavirenz
Movies (44%)	gonna b**** f ^{*****} g uh	yeah daddy f ^{****} namely	mom s*** gotta bye	hi later wanna dude

[Daumé III & Jagarlamudi, 2011]

Dictionary mining for "seen" errors

[Haghighi, Liang & Klein, 2009; Daumé III & Jagarlamudi, 2011]

- Find frequent terms in new domain
- Use those that exist in old domain as "training data"
- Extract context and orthographic features
- Find low-dimensional subspace on training data (CCA)

- Pair input words with <=5 output words
- Add four features to SMT model
- Rerun parameter tuning

DEFRNews+0.80+0.36Emea+1.44+1.51Subs+0.13+0.61PHP+0.28+0.68

(Bleu score improvements)

Senses are domain/language specific

Automatically identifying new senses

 Context + existence of translations in comparable data

is a window of opportunity have a window of opportunity in the run up to , we run the risk
via une fenêtre insérée . vers ma fenêtre ou vers voulons pas courir le risque , sans courir le risque

the browser window ' s
 in the window to give
 time to run when applied
 or have run vcvars.bat ,

dans la **fenêtre** . cet dans la **fenêtre** . </s>

courir not found

ne pouvez éxécuter que les
 pour l' éxécuter elle va

Spotting New Ser

- Binary classification
 - +ve: French token
 - -ve: French token

Given:

• A joint p(x,y) in the old domain • Marginals q(x) and q(y) in the new domain

Recover:

Lots of features con
 Joint q(x,y) in the new domain

- Frequency of words
- Language model pg
- Topic model "misr

Marginal matching Easier alternative: we have

Translation "flow" in many such q(x) and q(y)s

We formulate as a LI-regularized linear program

Experimental Results

Conclusions

• Transfer Learning...

- Assuming fixed task/domain relatedness is a bad idea
- Key question: what type of representation is "right"?
- Can do subspaces, trees, clusters, etc. etc. etc.

• In Language...

- ML addresses only part of the adaptation picture
- So far, specialized approaches for addressing other parts
 - Mining translations from comparable data
 - Automatically spotting new word senses

Thanks! Questions?