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Introduction

Deep neural net (*“modern” multilayer perceptron)
Hard to parallelize in learning -
Deep Convex Net (Deep Stacking Net)

Limited hidden-layer size and part of parameters
not convex in learning =

(Tensor DSN/DCN) and Kernel DCN

K-DCN: combines elegance of kernel methods
and high performance of deep learning

Linearity of pattern functions (kernel) and
nonlinearity in deep nets
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[FIG1] The sequence of operations used to create a DBN with three hidden layers and to convert it to a pretrained DBN-DNN. First, a
GRBM is trained to model a window of frames of real-valued acoustic coefficients. Then the states of the hinary hidden units of the
GRBM are used as data for training an RBM. This is repeated to create as many hidden layers as desired. Then the stack of RBMs is
converted to a single generative model, a DBN, by replacing the undirected connections of the lower level RBMs by top-down, directed
connections. Finally, a pretrained DBN-DNN is created by adding a “softmax” output layer that contains one unit for each possible state
of each HMIM. The DBN-DNN is then BFto predict the HMM state corresponding to the central frame of the input window in a forced

alignment.
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[TABLE 3] A COMPARISON OF THE PERCENTAGE WERs USING DNN-HMMs AND GMM-

HMMs ON FIVE DIFFERENT LARGE VOCABULARY TASKS.

HOURS OF GMM-HMM GMM-HMM
TASK TRAINING DATA DNN-HMM WITH SAME DATA WITH MORE DATA
SWITCHBOARD (TEST SET 1) 309 18.5 274 18.6 (2,000 H)
SWITCHBOARD (TEST SET 2) 309 16.1 23.6 17.1 (2,000 H)
ENGLISH BROADCAST NEWS 50 17.5 18.8
BING VOICE SEARCH
(SENTENCE ERROR RATES) 24 304 36.2
GOOGLE VOICE INPUT 5,870 12.3 16.0 (>> 5,870 H)
YOUTUBE 1,400 47.6 52.3

CURRENTLY, THE BIGGEST DISADVANTAGE
OF DNNs COMPARED WITH GMMs IS THAT IT
IS MUCH HARDER TO MAKE GOOD USE OF
LARGE CLUSTER MACHINES TO TRAIN THEM
ON MASSIVE DATA SETS.



Deep Stacking Network (DSN)

« “Stacked generalization” in machine
learning:
— Use a high-level model to combine low-level
models

— Aim to achieve greater predictive accuracy

* This principle has been reduced to practice:

— Learning parameters in DSN/DCN (peng & Yu, Interspeech-
2011; Deng, Yu, Platt, ICASSP-2012)

— Parallelizable, scalable learning (peng, Hutchinson, Yu,
Interspeech-2012)
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Example: L

DSN/DCN Architecture

image recognition (10 classes)

Still easily trainable
Alternating linear & nonlinear
sub-layers

Actual architecture for digit
MNIST: 0.83% error rate
(LeCun’s MNIST site)

Many modules
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Anatomy of a Module in DCN

targets

10 linear units
X | >

784 linear units




From DCN to Kernel-DCN
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Kernel-DCN

- Replace each DCN module by kernel ridge regression

- f(x) =Y, a%K(xy,x) = Ka, where a = (AI + K)~T

K= G([X| vy EDLyODET([x]| vy D]y ]

- Symmetric kernel matrix in the kernel-feature space G
typically in infinite dimension (e.g., Gaussian kernel)

- Kernel trick: no need to compute G directly

- Problem: expensive inverse when training size is large

- Solutions:
- Nystrom Woodbury approximation
- Reduced rank kernel regression - Feature vector selection



Nystrom Woodbury Approximation

- Kernel ridge regression
- f(x) =Y, a%K(x,,x) = Ka, where a = (Al + K)~'T
- K is large when number of training samples is large
- Nystrom Woodbury Approximation .

i m m k= W K"
» Sampling [ columns from K->C: K = n
KEI KZZ

[
- Approximation K = CW, " CT
I+ KT =21 - c[Ar + W teTe] T w e
. SVD of W: O(13)

- Computation of K: O(nlk)
- (with P-S. Huang on ASR confidence measure)



K-DSN Using Reduced Rank Kernel
Regression

- Solution: feature vector selection
- To identify a subset {x;}jes © D
c () = ps(x) ~ Tieséip(x;), VX €D
- Kernel can be written as a sparse kernel expansion
involving only terms corresponding to the subset of the
training data forming an approximate basis in the
feature space.
c f(0) = Xies Bid(x)p(x) = Xies BiK (x4, %)
- Feature vector selection algorithm from “Feature vector
selection and projection using kernels” (G. Baudat
and F. Anouar)



K-DCN: Layer-Wise Regularization

c®

Input Data X

Two hyper-parameters in each module
Tuning them using cross validation data
Relaxation at lower modules

Special regularization procedures
Lower-modules vs. higher modules



USE OF KERNEL DEEP CONVEX
NETWORKS AND END-TO-END

= LEARNING FOR SPOKEN LANGUAGE
— p a p e r . UNDERSTANDING

Li Deng’, Gokhan Tur'?, Xiaodong He', and
Dilek Hakkani-Tur"?

'Microsoft Research, Redmond, WA, USA
Conversational Systems Lab, Microsoft,
Sunnyvale, CA, USA

Table 2. Comparisons of the domain classification error rates
among the boosting-based baseline system, DCN system, and K-
DCN system for a domain classification task. Three types of raw
features (lexical, query clicks, and name entities) and four ways
of their combinations are used for the evaluation as shown in
four rows of the table.

Feature Sets Baseline DCN K-DCN
lexical features 10.40% 10.09% 9.52%
lexical features 9.40% 9.32% 8.88%
+ Named Entities

lexical features 8.50% 7.43% 5.94%
+ Query clicks

lexical features 10.10% 7.26% 5.89%
+ Query clicks

+ Named Entities




Table 3. More detailed results of K-DCN in Table 2 with
Lexical+QueryClick features. Domain classification error rates

(percent) on Train set, Dev set, and Test set as a function of the
depth of the K-DCN.

DeEth Train Err% Dev Error% Test Err%
1 9.54 12.90 12.20
2 6.36 10.50 9.99
3 4.12 9.25 8.25
4 1.39 7.00 7.20
5 0.28 6.50 5.94
6 0.26 6.45 5.94
7 0.26 6.55 6.26
8 0.27 6.60 6.20
9 0.28 6.55 6.26
10 0.26 7.00 6.47
11 0.28 6.85 6.41
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