Inderjit S. Dhillon
Dept of Computer Science
UT Austin

MLSLP Symposium
Portland, Oregon

Sept 14, 2012

Joint work with C. Hsieh, M. Sustik and P. Ravikumar

Inderjit S. Dhillon Dept of Computer Science UT Austin



e Given: ni.id. samples {yq,...,¥n} ¥i ~ N (i, ¥),
@ Goal: Estimate the inverse covariance © = ¥ 1.

@ The sample mean and covariance are defined by

n

L 1 . T
u—n;yi and S==-3 (yi—a)yi—-n"

i=1
@ Given the n samples, the likelihood is
X : 1o . X
P(Y1:- - Yni f1,©) o [ [(det ©)1/2 exp (_E(Yi — )7 e(y; - u))
i=1
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@ The log likelihood can be written as
log(P(Y1,---,¥ni 1,©)) = g log(det©) — gtr(@S) + constant.
@ The maximum likelihood estimator of © is

= in{—logdet X 4 tr(SX)}.
O arg)rp;%{ ogdet X + tr(5X)}

@ In high-dimensions (p < n), the sample covariance matrix S is singular.

@ Want O to be sparse.
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@ The nonzero pattern of © is important:

@ Each Gaussian distribution can be represented by a pairwise Gaussian
Markov Random Field (GMRF)

e Conditional independence is reflected as zeros in ©:
©j =0 < y; and y; are conditional independent given other variables.

e In a GMRF G = (V, E), each node corresponds to a variable, and each
edge corresponds to a non-zero entry in ©.
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@ An example — Chain graph: y; = py;—1 + N(0,1)

1 -9
-9 1+¢? —p
o= oo oo
—p 1+¢* —p
—p 1

@ Real world example: graphical model which reveals the relationships
between Senators: (Figure from Banerjee et al, 2008)
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o COVSEL: Block coordinate descent method with interior point solver
for each block (Banerjee et al, 2007).

@ GLASSO : Block coordinate descent method with coordinate descent
solver for each block (Friedman et al, 2007).

e VSM: Nesterov's algorithm (Lu, 2009).
e PSM : Projected Subgradient Method (Duchi et al, 2008).

@ SINCO : Greedy coordinate descent method (Scheinberg and Rish,
2009).

e ALM : Alternating Linearization Method (Scheinberg et al, 2010).
e IPM : Inexact interior point method (Li and Toh, 2010).

@ PQN : Projected Quasi-Newton method to solve the dual problem
(Schmidt et al, 2009).
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@ A sparse inverse covariance matrix is preferred —
add /7 regularization to promote sparsity.

@ The resulting optimization problem:

0= arg)rp;r(l]{ — logdet X + tr(SX) + A|| X1} = arg min f(X),

where || X1 =7

ij=1 |XU|

@ Regularization parameter A > 0 controls the sparsity.

@ Can be extended to a more general regularization term:
H/\OXHI = ZIJ 1)\U|XU‘
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@ Newton method for twice differentiable function:
x — x — n(V2f(x))"1VF(x)
@ However, the sparse inverse covariance estimation objective
f(X) = —logdet X + tr(SX) + X[ X|1

is not differentiable.
@ Most current solvers are first-order methods:

Block Coordinate Descent (GLASSO), projected gradient descent
(PSM), greedy coordinate descent (SINCO), alternating linearization
method (ALM).
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o Write objective as 7(X) = g(X) + h(X), where
g(X) = —logdet X + tr(SX) and h(X) = A|| X]|1.

e g(X) is twice differentiable while h(X) is convex but non-differentiable
— we can only form quadratic approximation for g(X).

@ The quadratic approximation of g(X; + A) is
gx,(A) =tr((S — Wi)A) + (1/2) tr(W AW, A) — log det X; + tr(SX:),

where W; = (X)L
o Note that

tr(W: AW, A) = vec(A) T (W; @ W) vec(A)
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@ Define the generalized Newton direction:
D =arg mAin gx.(A) + M| X + Allg,
where gx,(A) = g(X; + A) = tr((S — We)A) + S tr(W,AW,A) .
@ Can be rewritten as a Lasso type problem with p(p + 1)/2 variables:
1vec(A)T(Wt @ W;) vec(A) + vec(S — W;) T vec(A) + M| vec(A)]]:.

2

o Coordinate descent method is efficient at solving Lasso type problems.
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e Can use cyclic coordinate descent to solve arg mina{gx,(A) + A||Alj1}:

o Generate a sequence D, D;..., where D; is updated from D;_; by only
changing one variable.
e Variables are selected by cyclic order.

e Naive approach has an update cost of O(p?) because
Vig(A) = (Wr @ Wi)vec(A) + vec(S — Wy));

@ Next we show how to reduce the cost from O(p?) to O(p).
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@ Each coordinate descent update:
o= arg muin g(D+ ,u(e,-ejT +ejel)) +2)\|X; + Dy + pf
Djj — Djj + jx
@ The one-variable problem can be simplified as
1
E(Wff- + WiWy)u® + (S — Wi +w] Dw;)p + AIX; + Dy + g

@ Quadratic form with L1 regularization — soft thresholding gives the
exact solution.
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o If we introduce a = WU2 + W;Wj;, b=5; — W + w,.TDwJ-, and
¢ = Xjj + Dj;, then the minimum is achieved for:

p=—c+S(c—b/a, N\ a),

where S(z, r) = sign(z) max{|z| — r, 0} is the soft-thresholding
function.

@ The main cost arises while computing w; Dw;: direct computation
requires O(p?) flops.

@ Instead, we maintain U = DW after each coordinate updates, and then
compute w; u; — only O(p) flops per updates.
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e Adopt Armijo’s rule — try step-sizes o € {3°, 3%, 3%,...} until
Xt + CYDtZ
@ is positive definite
@ satisfies a sufficient decrease condition

f(Xt + OéDt) S f(Xt) + OéO'At

Where At = tr(vg(Xt)Dt) + )\”Xt + DtHl - )\HXI’H].

@ Both conditions can be checked by performing Cholesky factorization
— O(p®) flops per line search iteration.

o Can possibly do better by using Lanczos [K.C.Toh]
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@ Recall the time cost for finding descent direction:
O(p?) variables, each update needs O(p) flops — total O(p3) flops per
sweep.

o Our goal: Reduce the number of variables from O(p?) to || X¢||o.

o ||X¢|lo can be much smaller than O(p?) as the suitable A should give a
sparse solution.

o Our strategy: before solving the Newton direction, make a guess on
which variables to update.
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@ (X;); belongs to fixed set if and only if
IVig(Xe)| < A, and (Xy);; = 0.

@ The remaining variables constitute the free set.

@ We then perform the coordinate descent updates only on free set.
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@ In practice, the size of free set is small.

@ Take Hereditary dataset as an example:

p = 1869, number of variables = p? = 3.49 million. The size of free set
drops to 20,000 at the end.

& objective valus
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@ Recently, (Mazumder and Hastie, 2012) and (Witten et al, 2011)
proposed a block decomposition approach.

o Consider the thresholded covariance matrix E; = max(|S;| — A, 0).

@ When E is block-diagonal, the solution is also block-diagonal:

EE 0 ... 0 e 0 ... 0
0 E ... 0 0 6 ... 0
E={. . . A N C e .
0 0 0 E, o 0 0 ©;

@ Based on this approach, the original problem can be decomposed into n
sub-problems.
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@ Our method automatically discovers the block-diagonal structure too.
o Key observation: off-diagonal blocks are always in the fixed set.
@ Recall the definition of fixed set: |V;g(X¢)| < A and (X;); = 0.
e For (i,j) in off-diagonal blocks:
1. Initialize from the identity matrix, so (Xp); = 0.
2. Vig(Xe) = Sj — (Xo);* = Sij.
3. Ej = max(|Sj| — A,0) = 0 implies |V;;g(X¢)| < X. So (i,)) is
always in the fixed set.

o Off-diagonal blocks are always 0, so QUIC gets the speedup for free.
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QUIC: QUadratic approximation for sparse Inverse Covariance estimation

Input: Empirical covariance matrix S, scalar J, initial Xp.
Fort=0,1,...

Compute W, = X; 1.

Form the second order approximation gx,(X) to g(X) around X;.
Partition variables into free and fixed sets

Use coordinate descent to find descent direction:

D; = arg mina fx,(X; + A) over the free variable set, (A Lasso problem.)
Use an Armijo-rule based step-size selection to get « s.t.

Xiy1 = Xt + aD; is positive definite and objective sufficiently decreases.
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QUIC: Proposed method.

ALM : Alternating Linearization Method (Scheinberg et al, 2010).
GLASSO : Block coordinate descent method (Friedman et al, 2007).
PSM : Projected Subgradient Method (Duchi et al, 2008).

SINCO : Greedy coordinate descent method (Scheinberg and Rish,
2009).

e IPM : Inexact interior point method (Li and Toh, 2010).
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@ US senate voting records data from the 109th congress (2004-2006).
@ 100 Senators (p = 100) and 542 bill votes (either +1 or —1).

@ Solve the sparse inverse covariance problem.

| R\cll 7
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Figure from Banerjee et al, 2008
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We generate the two following types of graph structures for GMRF:
e Chain graphs: The ground truth inverse covariance matrix ¥ =1 is set to
be ¥; !, =—05and X;} =125,
@ Graphs with Random Sparsity Structures:

o First, generate a sparse matrix U with nonzero elements equal to +1,
o Set Y 1tobe UTU
o Add a diagonal term to ensure X! is positive definite.

Control the number of nonzeros in U so that the resulting ¥ 1 has
approximately 10p nonzero elements.
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@ Test under two values of \: one discovers correct number of nonzeros,
and one discovers 5 times the number of nonzeros.

@ For each distribution we draw n = p/2 i.i.d. samples as input.

@ We report the time for each algorithm to achieve e-accurate solution:
f(Xe) — F(X*) < ef (X¥).

@ * indicates the run time exceeded 30,000 seconds (8.3 hours).
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Dataset setting Time (in seconds)
pattern p A €| QUIC | ALM | Glasso| PSM | IPM | Sinco
1072| 0.30] 18.89| 23.28] 15.59(86.32[120.0
107 2.26| 41.85| 45.1| 34.91|151.2(520.8
10~2| 216.7|13820 *| 8450 * *
107°| 986.6 | 28190 *119251 * *
1072| 0.52| 42.34| 10.31| 20.16|71.62(60.75

chain 1000 0.4

chain | 10000 0.4

candom | 1000 0.12 10-° 1.2(28250| 20.43| 59.89|116.7 | 683.3
0.075 107 2| 1.17] 65.64| 17.96| 23.53|78.27|576.0
: 107°| 6.87 *| 60.61| 91.7|145.8| 4449
10-2| 337.7]26270] 21298 * * *
0-08|10-6| 1125 * * * * *
random | 10000 —
10 803.5 * * * * *
004110-6] 2051|  *| x| x| x| o«
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Figure: Comparison of algorithms on real datasets. The results show
QUIC converges faster than other methods.
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@ Proposed a quadratic approximation method for sparse inverse
covariance learning (QUIC).
@ Three key ingredients:
e Exploit structure of Hessian

@ we have done this in the context of coordinate descent
o Nocedal & colleagues(2012) have recently developed other methods to
exploit structure of Hessian, e.g., Newton-CG

e Armijo-type stepsize rule
e Division into free and fixed sets

@ Initial paper published in NIPS 2011:

e "“Sparse Inverse Covariance Matrix Estimation using Quadratic
Approximation”, NIPS, 2011.

@ Journal version coming soon......

@ Question: How can we solve problems with 100,000 variables?
Answer: QUIC-2
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