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Structured Discriminative Models for Speech Recognition

Overview

• Acoustic Models for Speech Recognition

– generative and discriminative models

• Sequence (dynamic) kernels

– discrete and continuous observation forms

• Combining Generative and Discriminative Models

– generative score-spaces and log-linear models
– efficient feature extraction

• Training Criteria

– large-margin-based training

• Initial Evaluation on Noise Robust Speech Recognition

– AURORA-2 and AURORA-4 experimental results

Cambridge University
Engineering Department

MLSLP 2012 1



Structured Discriminative Models for Speech Recognition

Acoustic Models
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Hidden Markov Model - a Generative Model
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(a) Standard HMM phone topology
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(b) HMM Dynamic Bayesian Network

• Conditional independence assumption:

– observations conditionally independent of other observations given state.
– states conditionally independent of other states given previous states.

p(O;λ) =
∑

q

T∏

t=1

P (qt|qt−1)p(ot|qt;λ)

• Sentence models formed by “glueing” sub-sentence models together
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Discriminative Models
• Classification requires class posteriors P (w|O)

– Generative model classification use Bayes’ rule e.g. for HMMs

P (w|O;λ) =
p(O|w;λ)P (w)

∑

w̃ p(O|w̃;λ)P (w̃)

• Discriminative model - directly model posterior [1] e.g. Log-Linear Model

P (w|O;α) =
1

Z
exp

(
αTφ(O,w)

)

– normalisation term Z (simpler to compute than generative model)

Z =
∑

w̃

exp
(
αTφ(O, w̃)

)

• BUT still need to decide form of features φ(O,w)
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Example Standard Sequence Models
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• The segmentation, a, determines the state-sequence q

– maximum entropy Markov model [4]

P (q|O) =
T∏

t=1

1

Zt

exp
(
αTφ(qt, qt−1,ot)

)

– hidden conditional random field (simplified linear form only) [5]

P (q|O) =
1

Z

T∏

t=1

exp
(
αTφ(qt, qt−1,ot)

)

Cambridge University
Engineering Department

MLSLP 2012 5



Structured Discriminative Models for Speech Recognition

Sequence Discriminative Models

• “Standard” models represent state sequences P (q|O)

– actually want word posteriors P (w|O)

• Applying discriminative models directly to speech recognition:

1. Number of possible classes is vast
– motivates the use of structured discriminative models

2. Length of observation O varies from utterance to utterance
– motivates the use of sequence kernels to obtain features

3. Number of labels (words) and observations (frames) differ
– addressed by combining solutions to (1) and (2)
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Code-Breaking Style

• Rather than handle complete sequence - split into segments

– perform simpler classification for each segment
– complexity determined by segment (simplest word)

ONE

ZERO
SIL

ONE

ZERO
SIL

ONE

ZERO
SIL

FOUR ONE SEVEN

1. Using HMM-based hypothesis

– word start/end

2. Foreach segment of a:

– binary SVMs voting

– argmax
ω∈{ONE,...,SIL}

α(ω)Tφ(O{ai}, ω)

• Limitations of code-breaking approach [3]

– each segment is treated independently
– restrict to one segmentation, generated by HMMs
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Flat Direct Models

o

<s> the dog chased the cat </s>

oo1 t−1o t ot+1 T... ...

• Log-linear model for complete sentence [7]

P (w|O) =
1

Z
exp

(
αTφ(O,w)

)

• Simple model, but lack of structure may cause problems

– extracted feature-space becomes vast (number of possible sentences)
– associated parameter vector is vast
– (possibly) large number of unseen examples
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Structured Discriminative Models

o o
i+2

o o
j+1

o
j+2 τo

dog chased...

...

...

...
ji+1

• Introduce structure into observation sequence [8] - segmentation a

– comprises: segmentation identity ai, set of observations O{a}

P (w|O) =
1

Z

∑

a

exp



αT





|a|
∑

τ=1

φ(O{aτ}, a
i
τ)









– segmentation may be at word, (context-dependent) phone, etc etc

• What form should φ(O{aτ}, a
i
τ) have?

– must be able to handle variable length O{aτ}
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Features
• Discriminative models performance highly dependent on the features

– basic features - second-order statistics (almost) a discriminative HMM
– simplest approach extend frame features (for each unit w(k)) [6]

φ(O{aτ}, a
i
τ) =










...
∑

t∈{aτ}
δ(aiτ , w

(k))ot
∑

t∈{aτ}
δ(aiτ , w

(k))ot ⊗ ot
∑

t∈{aτ}
δ(aiτ , w

(k))ot ⊗ ot ⊗ ot
...










– features have same conditional independence assumption as HMM

How to extend range of features?

• Consider extracting features for a complete segment of speech

– number of frames will vary from segment to segment
– need to map to a fixed dimensionality independent of number of frames
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Sequence Kernels

Cambridge University
Engineering Department

MLSLP 2012 11



Structured Discriminative Models for Speech Recognition

Sequence Kernel

• Sequence kernels are a class of kernel that handles sequence data

– also applied in a range of biological applications, text processing, speech
– these kernels may be partitioned into three broad classes

• Discrete-observation kernels

– appropriate for text data
– string kernels simplest form

• Distributional kernels (not discussed in this talk)

– distances between distributions trained on sequences

• Generative kernels:

– parametric form: use the parameters of the generative model
– derivative form: use the derivatives with respect to the model parameters
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String Kernel

• For speech and text processing input space has variable dimension:

– use a kernel to map from variable to a fixed length;
– string kernels are an example for text [9].

• Consider the words cat, cart, bar and a character string kernel

c-a c-t c-r a-r r-t b-a b-r

φ(cat) 1 λ 0 0 0 0 0
φ(cart) 1 λ2 λ 1 1 0 0
φ(bar) 0 0 0 1 0 1 λ

K(cat, cart) = 1 + λ3, K(cat, bar) = 0, K(cart, bar) = 1

• Successfully applied to various text classification tasks:

– how to make process efficient (and more general)?
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Rational Kernels

• Rational kernels [10] encompass various standard feature-spaces and kernels:

– bag-of-words and N-gram counts, gappy N-grams (string Kernel),

• A transducer, T , for the string kernel (gappy bigram) (vocab {a, b})

a:a/1

b:b/1

a:a/1

b:b/1

a:  /1ε

b:  /1ε

a:  /1ε

b:  /1ε

a:ε/λ

b:ε/λ

21 3/1

The kernel is: K(Oi,Oj) = w
[
Oi ◦ (T ◦ T−1) ◦Oj

]

• This form can also handle uncertainty in decoding:

– lattices can be used rather than the 1-best output (Oi).

• Can also be applied for continuous data kernels [11].
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Generative Score-Spaces
• Generative kernels use scores of the following form [12]

φ(O;λ) = [log(p(O;λ))]

– simplest form maps sequence to 1-dimensional score-space

• Parametric score-space increase the score-space size

φ(O;λ) =





λ̂(1)

...

λ̂(K)





– parameters estimated on O : related to the mean-supervector kernel

• Derivative score-space take the following form

φ (O;λ) = [∇λ log (p(O;λ))]

– using the appropriate metric this is the Fisher kernel [13]
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Combining Generative &
Discriminative Models
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Combining Discriminative and Generative Models

Test
Data

ϕ(   ,  )O λ

λ
Compensation

Adaptation/

Generative Discriminative
HMM

Canonical

O

Hypothesesλ

λ

Hypotheses

Score−Space

Recognition

O
Hypotheses
Final

O

Classifier

• Use generative model to extract features [13, 12] (we do like HMMs!)

– adapt generative model - speaker/noise independent discriminative model

• Use favourite form of discriminative classifier for example

– log-linear model/logistic regression
– binary/multi-class support vector machines
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Derivative Score-Spaces

• Need a systematic approach to extracting sufficient statistics

– what about using the sequence-kernel score-spaces?

φ(O) = φ(O;λ)

– does this help with the dependencies?

• For an HMM the mean derivative elements become

∇µ(jm) log(p(O;λ)) =
T∑

t=1

P (qt = {θj,m}|O;λ)Σ(jm)-1(ot − µ(jm))

– state/component posterior a function of complete sequence O

– introduces longer term dependencies
– different conditional-independence assumptions than generative model
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Score-Space Dependencies

• Consider a simple 2-class, 2-symbol {A, B} problem:

– Class ω1: AAAA, BBBB
– Class ω2: AABB, BBAA

42 31

0.50.5

0.51.0 0.5

P(B)=0.5 P(B)=0.5
P(A)=0.5P(A)=0.5

Feature
Class ω1 Class ω2

AAAA BBBB AABB BBAA

Log-Lik -1.11 -1.11 -1.11 -1.11
∇2A 0.50 -0.50 0.33 -0.33

∇2A∇T
2A -3.83 0.17 -3.28 -0.61

∇2A∇T
3A -0.17 -0.17 -0.06 -0.06

• ML-trained HMMs are the same for both classes

• First derivative classes separable, but not linearly separable

– also true of second derivative within a state

• Second derivative across state linearly separable
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Score-Spaces for ASR
• Forms of score-space used in the experiments:

φa
0(O;λ) =





log
(
p(O;λ(1))

)

...
log
(
p(O;λ(K))

)



 ; φb
1µ(O;λ) =

[
log
(
p(O;λ(i))

)

∇µ(i) log
(
p(O;λ(i))

)

]

– appended log-likelihood: φa
0(O;λ)

– derivative (means only for class ωi): φ
b
1µ(O;λ)

– log-likelihood (for class ωi): φ
b
0(O;λ) =

[
log
(
p(O;λ(i))

)]

• In common with most discriminative models Joint Feature Spaces,

φ(O,a;λ) =






∑|a|
τ=1 δ(a

i
τ , w

(1))φ(O{aτ};λ)
...

∑|a|
τ=1 δ(a

i
τ , w

(P ))φ(O{aτ};λ)






for α-tied yielding “units” {w(1), . . . , w(P )}, underlying score-space φ(O;λ).
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General Feature Extraction

time
dog

chased

the

tτ

• General features depend on all elements of the observation sequence

– Consider φ (Oτ :t, wl) for all possible start/end times – T 2 feature evaluations
– general complexity O(T 3) – assuming each evaluation O(T )

Computationally expensive!
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Efficient Extraction using Expectation Semiring

∆

t (j)

α t (j)

∆

α t (j)

α t (j)

∆

α t−1    (k)

α t−1    (k)

α t−1    (i)

α t−1    (i)

j

t

∆

α

• Efficient calculate derivative features using expectation semirings [20, 14]

– extend statistics propagated/combined in forward pass
– scalar summation extended to vector summation

• Expectation semirings allows to accumulate statistics in one pass

– derivative features can be computed for any node in the trellis - O(T 2)
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Handling Speaker/Noise Differences

• A standard problem with discriminatve approaches is adaptation/robustness

– not a problem with generative kernels/score-spaces
– adapt generative models using model-based adaptation

• Standard approaches for speaker/environment adaptation

– (Constrained) Maximum Likelihood Linear Regression [15]

xt = Aot + b; µ(m) = Aµ(m)
x + b

– Vector Taylor Series Compensation [16] (used in this work)

µ(m) = C log
(

exp(C-1(µ(m)
x + µ

(m)
h )) + exp(C-1µ(m)

n )
)

• Discriminative model parameters speaker/noise independent.
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Training Criteria
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Simple MMIE Example

• HMMs are not the correct model - discriminative criteria a possibility

−4 −2 0 2 4 6 8
−1

−0.5

0

0.5

1

1.5

2

2.5

3
MLE SOLUTION (DIAGONAL)

−4 −2 0 2 4 6 8
−1

−0.5

0

0.5

1

1.5

2

2.5

3
MMIE SOLUTION

• Discriminative criteria a function of posteriors P (w|O;λ)

– use to train the discriminative model parameters α
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Discriminative Training Criteria

• Apply discriminative criteria to train discriminative model parametersα

– Conditional Maximum Likelihood (CML) [21, 22]: maximise

Fcml(α) =
1

R

R∑

r=1

log(P (w
(r)
ref|O

(r);α))

– Minimum Classification Error (MCE) [23]: minimise

Fmce(α) =
1

R

R∑

r=1



1 +




P (w

(r)
ref|O

(r);α)
∑

w 6=w
(r)
ref

P (w|O(r);α)





̺



−1

– Minimum Bayes’ Risk (MBR) [24, 25]: minimise

Fmbr(α) =
1

R

R∑

r=1

∑

w

P (w|O(r);α)L(w,w
(r)
ref)
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Large Margin Based Criteria
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margin

0
ERROR

lo
g−

po
st

er
io

r−
ra

tio

cost
cost

cost

BEYOND MARGIN

CORRECT

• Standard criterion for SVMs

– improves generalisation

• Require log-posterior-ratio

min
w 6=wref

{

log

(
P (wref|O;α)

P (w|O;α)

)}

to be beyond margin

• As sequences being used can make margin function of the “loss” - minimise

Flm(α) =
1

R

R∑

r=1

[

max
w 6=w

(r)
ref

{

L(w,w
(r)
ref)− log

(

P (w
(r)
ref|O

(r);α)

P (w|O(r);α)

)}]

+

use hinge-loss [f(x)]+. Many variants possible [26, 27, 28, 29]
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Relationship to (Structured) SVM

• Commonly add a Gaussian prior for regularisation

F(α) = log (N (α;µα;Σα)) + Flm(α)

• Make the posteriors a log-linear model (α) with generative score-space (λ) [30]

– restrict parameters of the prior: N (α;µα;Σα) = N (α;0, CI)

F(α) =
1

2
||α||2 +

C

R

R∑

r=1

[

max
w 6=w

(r)
ref

{

L(w,w
(r)
ref)− log

(

αTφ(O(r),w
(r)
ref;λ)

αTφ(O(r),w;λ)

)}]

+

• Standard result - it’s a structured SVM [31, 30]
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Structured SVM Training
• Training α, so that αTφ(O,w) is max for correct reference wref:

Training Sample 1, “1 2 3” , “0 0 0” Training Sample 1, , 0 0 0

(1)
O

, “1 2 3” , “9 9 9” “1 2 3”

,O
(1)

refw… …

Training Sample n, “4 5 6” , “0 0 0”
Training Sample n, 4 5 6 ,

( )n
O

, “4 5 6” , “9 9 9”
“4 5 6”

( ) ,nO
( )

ref

n
w4 5 6 refw

“ ”,

“B A A”“A B C”

, “A A A”

, B A A …, “A B C”

(1) (1)( )O

…

“A B C”,

(1) (1)

ref( , )O w

“A…

“A A A” …, A A A, …

,
( ) ( )

ref( , )R R

• General unconstrained form: use cutting plane algorithm to solve [32, 33]

1

2
||α||2 +

C

R

n∑

r=1

[

−

linear
︷ ︸︸ ︷

αTφ(O(r),w
(r)
ref)+

convex
︷ ︸︸ ︷

max
w 6=w

(r)
ref

{

L(w,w
(r)
ref) +αTφ(O(r),w)

}]

+
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Handling Latent Variables
• Ignored the issue of alignment so far

– for SSVM necessary to use the “best” segmentation

• Simplest solution is to use the single segmentation from the original HMM

âhmm = argmax
a

{log (P (a|O,w;λ))} = argmax
a

{log (P (O|a,w;λ)P (a|w;λ))}

– equivalent of phone/word-marking lattices
– BUT underlying model changes: would like

â = argmax
a

{log (P (O|a,w;λ,α)) + log (P (a|w;λ,α))}

Maps into a Concave-Convex Procedure (CCCP) [34]

[
concave

︷ ︸︸ ︷

−max
a

αTφ(O(i),w
(i)
ref,a)+

convex
︷ ︸︸ ︷

max
w 6=wref,a

{

L(w,w
(i)
ref) +αTφ(O(i),w,a)

}]

+
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Evaluation Tasks

Cambridge University
Engineering Department

MLSLP 2012 31



Structured Discriminative Models for Speech Recognition

Preliminary Evaluation Tasks

• AURORA-2 small vocabulary digit string recognition task

– whole-word models, 16 emitting-states with 3 components per state
– clean training data for HMM training - HTK parametrisation SNR
– Set B and Set C unseen noise conditions even for multi-style data
– Noise estimated in a ML-fashion for each utterance

• AURORA-4 medium vocabulary speech recognition

– training data from WSJ0 SI84 to train clean acoustic models
– state-clustered states, cross-word triphones (≈3K states ≈50k components)
– 5-15dB SNR range of noises added
– Noise estimated in a ML-fashion for each utterance

• WARNING: optimisation techniques improved over time

– don’t compare results cross-tables!

Cambridge University
Engineering Department

MLSLP 2012 32



Structured Discriminative Models for Speech Recognition

AURORA-2 - Training Criterion

Model Criterion
Test set

Avg
A B C

HMM — 9.8 9.1 9.5 9.5

LLM
CML 8.1 7.7 8.3 8.1

(φa
0)

MWE 7.9 7.4 8.2 7.9
LM 7.8 7.3 8.0 7.6

• All approaches yield gains over the baseline VTS system

– very few additional parameters added (12× 12 = 144) for log-linear models
(though these parameters are discriminatively trained

• Large-margin log-linear model will be referred to as Structured SVM
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AURORA-2 - Support Vector Machines

Model
Features Test set

Avg
A B C

HMM — 9.8 9.1 9.5 9.5

SVM
φa

0

9.1 8.7 9.2 9.0
MSVM 8.3 8.1 8.6 8.3
SSVM 7.8 7.3 8.0 7.6

• Possible to compare SSVM with more standard SVMs

– segmentation for SVMs and multi-class SVMs (MSVMs) obtained from
HMM

– majority voting (HMM decision for ties on standard SVM)

• The difference between the MSVM and SSVM is the fixed HMM segmentation

– does have an important on the performance
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AURORA-2 - Derivative Score-Spaces - MWE Criterion

HMM SDM â
Test set

Avg
A B C

VTS
– – 9.8 9.1 9.5 9.5

φb
1µ

âhmm 7.0 6.6 7.6 7.0
â 6.8 6.4 7.3 6.7

VAT
– – 8.9 8.3 8.8 8.6

φb
1µ

âhmm 6.6 6.5 7.0 6.6
â 6.2 6.1 6.8 6.3

DVAT
– – 6.7 6.6 7.0 6.7

φb
1µ

âhmm 6.1 6.2 6.7 6.3
â 6.1 6.1 6.6 6.2

• Derivative score-spaces (φb
1µ) consistent gains over all baseline HMM systems

– derivative score-space larger (1873 dimensions for each base score-space)
– adds approximately 50% more parameters to the system
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AURORA-4 - Derivative Score-Space - MPE Criterion

System
Test set

Avg
A B C D

VTS 7.1 15.3 12.1 23.1 17.9
VAT 8.6 13.8 12.0 20.1 16.0
DVAT 7.2 12.8 11.5 19.7 15.3

VAT+φb
0 7.7 13.1 11.0 19.5 15.3

VAT+φb
1µ 7.4 12.6 10.7 19.0 14.8

• Contrast of DVAT system with log-linear system (4020 classes)

– single dimension space (φb
0) with VAT system yields DVAT performance

• Gains from derivative score-space disappointing (limited training data)

– need to look at DVAT+φb
1µ (need to try on more data)
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Conclusions

• Combination of generative and discriminative models

– use generative models to derive features for discriminative model
– robustness and adaptation achieved by adapting underlying acoustic model

• Derivative features of generative models

– different conditional independence assumptions to underlying model
– systematic way to incorporate different dependencies into model

• Large margin training criterion

– yields structured SVM (use standard optimisation code)
– still an issue scaling to large tasks/score-spaces

Interesting classifier options - without throwing away HMMs
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Distributional Kernels

• General family of kernel that operates on distances between distributions

– using the available estimate a distribution given the sequence

λ(i) = argmax
λ

{log(p(Oi;λ))}

• Forms of kernel normally based (fi distribution with parameters λ(i))

– Kullback-Leibler divergence:

KL(fi||fj) =

∫

fi(O) log

(
fi(O)

fj(O)

)

dO

– Bhattacharyya affinity measure:

B(fi||fj) =

∫ √

fi(O)fj(O) dO
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Joint Feature-Space Example
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• Size of joint feature-space is the product of

1. feature-space size (K)- determined by generative model
2. number of α classes (P) - determined by discriminative model

• Segmentation of the sentence will alter scores
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GMM Mean-Supervector Kernel

• GMM-mean supervector derived from a range of approximations [35]

– use symmetric KL-divergence: KL(fi||fj) +KL(fj||fi)
– use matched pair KL-divergence approximation
– GMM distributions only differ in terms of the means
– use polarisation identity

• Form of kernel is

K(Oi,Oj;λ) =
M∑

m=1

cmµ(im)TΣ(m)-1µ(jm)

– µ(im) is the mean (ML or MAP) for component m using sequence Oi

• Used in a range of speaker verification applications

– BUT required to explicitly operate in feature-space
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AURORA-2 - Optimising Segmentation

Model Training
Segmentation Test set

Avg
{trn, tst} A B C

HMM — — 9.8 9.1 9.5 9.5

SSVM n-slack
{âhmm, âhmm} 7.8 7.3 8.0 7.6
{âhmm, â} 7.6 7.2 8.0 7.5

SSVM
n-slack

{âhmm, âhmm} 7.9 7.4 8.2 7.8

batch
{âhmm, â} 7.8 7.2 8.0 7.6
{â, â} 7.6 7.1 7.8 7.4

SSVM 1-slack {âhmm, â} 7.6 7.3 7.9 7.5

• Just using the HMM segmentation is suboptimal in terms of WER

– n-slack batch and 1-slack schemes similar to full approach
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AURORA-4 - Structured SVM Results

• SSVM training configuration:

– 1-slack variable training
– prior distribution matched to score-space φa

0, mean set to 1/LM− scale

– α tied at the monophone-level (47-classes)

Model
Segmentation Test set

Avg
{trn, tst} A B C D

HMM — 7.1 15.3 12.1 23.1 17.9

SSVM
{âhmm, âhmm} 7.5 14.3 11.4 21.9 16.9
{âhmm, â} 7.4 14.2 11.3 21.9 16.8

• SSVM gains over baseline HMM-VTS system

– disappointing gain from segmentation - though only in test at the moment
– working on optimal training segmentation as well
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AURORA-4 - Derivative Score-Space

Classes System
Comp Test set

Avg
tied α A B C D

VTS 7.1 15.3 12.1 23.1 17.9

47 φb
1µ

yes 7.5 14.1 11.3 21.6 16.6
no 7.4 14.3 11.7 21.9 16.9

4020 φb
1µ

yes 6.8 13.7 10.6 21.3 16.2
no 6.7 13.5 10.2 21.1 16.0

• MPE training for the log-linear model parameters

– derivative score-spaces give large gains over (ML VTS) baseline

• Component tying important for heavily tied α (47 monophone classes)
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Efficient Feature Extraction
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Standard HMM Algorithms
S

ta
te

Time

j

t

• Efficient training and inference

– based on forward-backward/Viterbi algorithms

γ
(j)
t = P (q

(j)
t |O1:T ;λ) =

1

p(O1:T ;λ)
· p(O1:t, q

(j)
t ;λ) · p(Ot+1:T |q

(j)
t ;λ)

– time/memory requirement O(T ) +O(T )
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Structured Discriminative Models

dog

o

chased the

o o1o 2o ot t+1 t+2 Toτ−1τo oτ+1

• Relate speech segments to words [17, 18, 19]

P (w1:L|O1:T ;α) =
1

Z

∑

a

exp



αT

|a|
∑

τ=1

φ
(
O{aτ}, a

i
τ

)





– alignment unknown marginalised over in training (or 1-best taken)

• Features extracted from variable length observation sequence O{aτ}

– need to use sequence kernel or score-space
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Forward/Backward Caching

...
• Cache all state-level forward probabilities – O(T ) forward passes

• For each of the possible O(T ) start-times

– compute backward probabilities – O(T ) possible backward passes
– intersect of forward/backward yields required posterior

• BUT need to accumulate statistics for each start/end time – total O(T 3)
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Segmentation
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• Segmentation can be viewed at multiple levels

– sentence: yields flat direct model - standard problems
– word: easy implementation for small vocab, sparsity issues
– phone: may be context-dependent
– state: very flexible, but large number of segments

• Multiple levels of segmentation can be used/combined

– multiple segmentations can be used to derive features

• Training/inference either marginalise or pick best segmentation
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Approximate Training/Inference Schemes

• If HMMs are being used anyway - use for segmentation O(T )

– simplest approach use Viterbi (1-best) segmentation from HMM, âhmm

– use fixed segmentation in training and test - highly efficient

P (w|O) ≈
1

Z

|âhmm|∏

τ=1

exp
(
αTφ(O{âhmmτ}, â

i
hmmτ)

)

âhmm = argmax
a

{p(O|a,λ)P (a)}

• Assumption: segmentation not dependent on discriminative model parameters

– unclear how accurate/appropriate this is for ASR

• Efficient inference feature extraction will be described later [14]

Cambridge University
Engineering Department

MLSLP 2012 53


