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Motivation

● Todays' speech recognition systems based on 
hidden Markov models (HMM)

● Potential limitation:

“conditional frame 

synchronous 

independence”

● Possible solution: HMMs with richer topology
● Here: kNN/non-parametric approach

worldhello

Distribution for pooled observations



  

Challenges

● Exemplar-based approaches require large 
amounts of data and computing power:
– Store/access data: distributed memory

– Process (all) training data: distributed computing

● Coverage ↔ context/efficiency
● Massive but noisy data



  

Objectives

● Investigate word templates in the domain of 
massive, noisy data

● Within re-scoring framework based on CRFs
● Motivated by: G. Zweig et al., “Speech Recognition 

with Segmental Conditional Random Fields: A 
Summary of the JHU CLSP 2010 Summer 
Workshop,” in ICASSP 2011, IEEE, 2011.



  

Data

Voice Search
● Search by voice: “How heavy is a rhinoceros?”

YouTube
● Audio transcriptions of videos
● Transcripts: confidence-filtered captions 

uploaded by users

[h] #Utt. #Words Manual transcriptions
Voice Search 3k 3.3M 11.2M 70%
YouTube 4k 4.4M 40M 0%



  

Hypothesis Space

● Sequence of feature vectors 
● Hypothesis = sequence of words with 

segmentation

● Assume word-segmentations from first pass

X=x1 , ... , xT

Ω=[w1 , t0=0, t1] ,[w2 , t1 , t 2] , ... ,[wN , t N−1 , t N=T ]

t0=0 t1 t 2=T
hello world



  

Model

Segmental Conditional Random Field

● Features                      (find good ones)
● Weights                       (estimate)
● Normalization constant
● Marginalize over segmentations (only training)

● G. Zweig & P. Nguyen, “From Flat Direct Models to 
Segmental CRF Models,” in ICASSP, IEEE, 2010. 

p(Ω∣X )=exp(λ∑
n

f ([wn−1 , t n−2 , tn−1] ;[wn , tn−1 , t n] , X ))/Z

f = f 1 , f 2 , ...

λ=λ1 , λ2 , ...

Z

p(W∣X )= ∑
Ω∈W

p(Ω∣X )



  

Training

Criterion: Conditional Maximum Likelihood

● Including l1-regularization               (sparsity) 
and l2-regularization   

● Optimization problem: 
● Optimization by L-BFGS or Rprop
● Manual or automatic transcripts used as truth 

for supervised training

F (λ)=log p λ(W∣X )

−C1∥λ∥1−C1∥λ∥1

−C 2∥λ∥2
2

maxλ F (λ)



  

Rescoring

Re-scored word sequence = word sequence 
associated with Ω̂=argmaxΩ p(Ω∣X )



  

Transducer-Based Representation

● Hypothesis space limited word lattice from first 
pass

● Features: 
● Standard lattice-/transducer-based training 

algorithms can be used
● B. Hoffmeister et al., “WFST Enabled Solutions to 

ASR Problems: Beyond HMM Decoding,” TASLP 
2012.

h h'[w,t,t']
f (h ;[w , t , t ' ] , x t

t ' )



  

Features: An Example

● Acoustic and language model scores from 
first-pass GMM/HMM (two features / weights)

● Why should we use them? 
– “Guaranteed” baseline performance at no 

additional cost

– Backoff for words with little or no data

– Add complementary but imperfect information 
without building full, stand-alone system



  

Dynamic Time Warping (DTW)

● “k-nearest neighbors for speech recognition”
● Metric: DTW distance 
● DTW distance: Euclidean distance between 

two sequences of vectors                   
● Use dynamic

programming
● Literature: Dirk 

Van Compernolle,

etc. x1 x2 x3 x 4 x5

y1

y2

y3 ∥x4− y3∥
2

X=x1 , ... , xT ,Y= y1 , ... , yS

DTW (X ,Y )



  

“1 feature / word”

● Hypothesis                , templates   
●                : k-nearest templates to    associated 

with word      

● One feature and weight per word, one active 
feature per word hypothesis

Yw , X

f v(w , X )=
δ (v ,w)

∣kNN v (X )∣ ∑
Y∈kNN v(X )

DTW (X ,Y )

v
kNN v (X ) X

average distance between X and k-
nearest templates Y



  

Templates

● Templates: instances of feature vector 
sequences representing a word

● Here: PLPs including HDA (and CMLLR)
● Extract from training data using forced 

alignment
● Ignore templates not in lattice or silence
● Imperfect because:

– Incorrect word boundaries: 10-20%

– Incorrect word labeling: 10-20%

– Worse for short words like 'a', 'the',...



  

“1 feature / template”

● Hypothesis                , templates  , scaling factor

● Reduce complexity by considering word-

dependent subsets of templates, e.g., templates 
assigned to

● One feature / weight per template 
● Non-linearity needed for arbitrary, non-quadratic 

decision boundaries

f Y (w , X )=exp(−β DTW (X ,Y ))

w

βYw , X



  

“1 feature / template”

● Properties:
– Doesn't assume correct labeling of templates 

– Learn relevance/complementarity of each template

– Is sparse representation

● Similar to SVMs with Gaussian kernel, in 
particular if using margin-based MMI



  

“1 feature / word” vs. “1 feature / 
template”

Features WER [%]
Voice Search YouTube

AMLM 14.7 57.0
  + “1 feature / word” 14.3 56.7
  + “1 feature / template” 14.1 55.9



  

Adding More Context

● (Hopefully) better modeling by relaxing frame 
independence assumption

● More structured search space → more 
efficient search

● So far: acoustic unit = context
● Context may be: + preceding word, + left/right 

phones, + speaker information, etc.
● But: number of contexts ↔ coverage



  

Bigram Word Templates (YouTube)

● More templates don't help and are inefficient
● Short filler words with little context dominate  

‘the’, ‘to’, ‘and’, ‘a’, ‘of’, ‘that’, ‘is’, ‘in’, ‘it’ make up 30% of words

● Consider word template in context of 
preceding word

● Gain from bigram discriminative LM: ~0.2%

Features Context WER [%]
AMLM N/A 57.0
    + “1 feature / word”
    

unigram 55.9
bigram 55.0



  

Distributed Templates / DTW

● T. Brants et al., “Large Language Models in 
Machine Translation.”

serve rtemplates DTW



  

Scalability

#Templates [M] Audio [h] Memory [GB]
Phone 0.5 30 1
Triphone 25 1,500 45
Word 10 1,000 30
Word / bigram 20 2,000 60
Debugging 20 2,000 500

● Computation time and WER decrease from top 
to bottom



  

Sparsity

● Impose sparsity by l1-regularization (cf. 
template selection)

● Active word templates similar to support 
vectors in SVMs

● Inactive templates don't need to be processed 
in decoding

Active templates Standalone With AMLM
Voice Search >90% <1%
YouTube >90% 1%



  

Data Sharpening

● Standard method for outlier 
detection, smoothing

● Replace original vector x 
aligned with some HMM state 
by average over k-nearest 
feature vectors aligned to 
same HMM state

● But: breaks long-span 
acoustic context if on frame-
level

HMM state s



  

Data Sharpening (YouTube)

1 Classification limited to reference word with hypothesis 
in lattice
2 Ditto but including all reference words
3 Re-scoring on top of first-pass

Setup
WER [%]

Data sharpening

No Yes

kNN, with oracle1 26.1 20.4

kNN, all2 62.4 59.5

AMLM + word templates3 56.4 55.9

AMLM + bigram word templates3 56.3 55.0



  

DTW vs. HMM Scores

● Replace DTW by HMM scores for check
● Voice Search, triphone templates

● Similar results in: G. Heigold et al., “A flat direct 
model for speech recognition,” ICASSP 2009.

AMLM + HMM scores + DTW scores
WER [%] 14.7 14.2 14.0



  

Summary

● Experiments for large-scale, exemplar-based 
speech recognition

Up to 20 M word templates = 2,000 h waveforms = 60 GB data

● Additional context helps, data sharpening also 
helps...

● Only small fraction (say, 1%) of all templates 
needed → efficient decoding

● Modest gains: hard but realistic data conditions? 
unsupervised training? estimation?
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