
Rating systems with multiple factors

Marius Stănescu
T

H
E

U N I V E R S

I T
Y

O
F

E
D I N B U

R
G

H

Master of Science

Artificial Intelligence

School of Informatics

University of Edinburgh

2011

Abstract

Rating systems have been receiving increasing attention recently, especially after

TrueSkillTM was introduced (Herbrich et al., 2007). Most existing models are

based upon one latent variable associated with each player; the purpose of my

project is to construct a multiple-feature model for rating players. Such a model

associates more characteristics to a competitor and could – besides telling your

skill and being used for matching players – provide insight into the characteristics

of one’s play and strategy.

We found that simply fitting the models through maximum likelihood has

low generalising capacity, and also requires massive amounts of data in order to

yield high accuracy. We turned towards a Bayesian approach and used Assumed

density filtering and Expectation Propagation algorithms (Minka, 2001). They

bring a significant accuracy bonus, even without a time series model to keep track

of how players’ skills evolve. We have also implemented a version of TrueSkillTM

adapted to our problem (game of Go) and use it for comparing our models.

We present experimental evidence on the increased performance of the mul-

tiple factors models; they significantly raise the accuracy of Expectation Prop-

agation model, and with enough data, more factors improve also the Assumed

density filtering model. On small datasets, we discovered that an iterative method

brings a significant advantage for Assumed density filtering, greatly surpassing

even the TrueSkillTM algorithm. There are some additional benefits for the multi-

ple factors approach, including higher accuracy for predicting results of balanced

games.

i

Acknowledgements

Save your explanations, I got some questions for you first and you’d better

answer them! slurred Hellian.

With what? Banaschar sneered. Explanations?

No. Answers. There’s a difference–

Really? How? What difference?

Explanations are what people use when they need to lie. Y’can always tell

those,’cause those don’t explain nothing and then they look at you like they just

cleared things up when really they did the opposite and they know it and you know

it and they know you know and you know they know that you know and they know

you and you know them and maybe you go out for a pitcher later but who picks

up the tab? That’s what I want to know.

Right, and answers?

Answers is what I get when I ask questions. Answers is when you got no

choice. I ask, you tell. I ask again, you tell some more. Then I break your

fingers, ’cause I don’t like what you’re telling me, because those answers don’t

explain nothing!

Steven Erikson (The Bonehunters)

I would like to express my gratitude to my supervisor Iain Murray for always

having the right answer at hand (at which, alas, he gets to keep all his fingers).

However, I’ll keep the many insightful comments on all stages of my work, the

excellent advice and a significant slice of his time and ideas. I thank him for

his continued guidance, which he offered in an always helpful attitude and with

seemingly endless supplies of patience. It has truly been a pleasure.

I am unbearably in debt to my mother, Monica, for her invaluable effort in

raising me. She and my cat have been providing support and encouragement

throughout the entire MSc.

Thanks a lot to my cousins Răzvan and Florin for their support and joint

funding of my MSc course.

This dissertation came to light despite the total lack of help from durere,

loctarar, Tibos and y4nk, who refused to acknowledge my increasingly desperate

pleas against playing every night. Let them be forgiven.

ii

Thanks to my Girlfriend for being so patient, loving and caring.

I would like to also thank my flatmates for helping me discover my latent

ability of listening to myself. The eerie silence has worked wonders for getting

my thoughts in order and making this project realizable.

Special thanks to Steven Erickson who – along with Matthew Stover and Joe

Abercrombie – has saved me again and again from my hard times and kept me

sane. Nothing better than epic fantasy to keep gradients out of your dreams.

Thanks also go to all my new friends, for being great company this past year.

They are too many to mention, but the special prize goes to Mark. You can

admire his ‘best buddies’ smile in the picture.

iii

Declaration

I declare that this thesis was composed by myself, that the work contained herein

is my own except where explicitly stated otherwise in the text, and that this work

has not been submitted for any other degree or professional qualification except

as specified.

(Marius Stănescu)

iv

To Miau.

v

Table of Contents

1 Introduction 1

1.1 Rating systems . 1

1.2 Purpose . 1

1.3 Motivation . 2

1.4 Objectives . 2

1.5 Project outline . 3

2 Background 5

2.1 Evolution of rating systems . 5

2.2 Related work . 6

2.2.1 Recommender systems . 6

3 Data 8

3.1 Data format . 8

3.2 Data restrictions . 9

3.3 Komi and handicaps . 10

4 Maximum Likelihood fitting of models 12

4.1 Standard Bradley–Terry and Elo models 12

4.2 Fitting the models . 13

4.3 Regularization . 14

4.4 Extending the system with more factors 15

4.5 Evaluation and results . 16

4.5.1 Number of factors . 17

4.5.2 Time variability . 18

4.5.3 Generalising capacity . 19

4.5.4 Calibration . 21

vi

5 Bayesian Approach 23

5.1 True SkillTM . 23

5.1.1 TrueSkillTM description 24

5.1.2 Modifications . 27

5.2 Assumed-density filtering . 30

5.2.1 Algorithm description . 31

5.2.2 Applying ADF to rating 32

5.2.3 One factor ADF model . 34

5.2.4 ADF with more factors . 35

5.2.5 Problems . 36

5.3 Expectation Propagation . 37

5.3.1 Implementation . 38

5.4 Evaluation . 41

5.4.1 Making predictions . 41

5.4.2 Model initialisation . 41

5.4.3 Dealing with negative variances 42

5.4.4 Factor restrictions . 43

5.5 Accuracy experiments and results 44

5.5.1 Comparing ADF models with different number of factors . 44

5.5.2 Extra iterations of ADF algorithms 45

5.5.3 Combining multiple factors and extra iterations 46

5.5.4 Expectation Propagation 47

5.5.5 Increasing the size of the dataset 49

5.6 One factor vs. more factors . 50

5.6.1 Metrics . 50

5.6.2 Combining the metrics . 53

5.6.3 Benefit of extra term in prediction performance 54

5.6.4 Players with close skill values 55

5.6.5 Highly skilled players . 57

6 Conclusions 60

6.1 Goals and results . 60

6.2 Future work . 62

vii

A 64

A.1 Reducing the ADF update to two players 64

A.2 Reducing the EP update to two players 65

Bibliography 66

viii

Chapter 1

Introduction

1.1 Rating systems

Generally speaking, rating can be defined as the task of assigning some properties

to a subject. Additionally, ranking deals with arranging the subjects in the right

order, consistent with some of these properties.

In some circumstances, the term rating is encountered when working with

systems that have individual users’ choices and preferences as input. A good

example can be found in movie rating systems. These are not addressed in our

project, and we will use the term rating system for denoting a framework that

processes a number of recorded performances into rankings and ratings of the

antagonists’ skill.

1.2 Purpose

During the past years many have aimed at defining and devising the concept of

a rating system. Competition is embedded in our character, and as long as we

strive to do better than others, the necessity of rating and ranking contenders

emerges. We need to be able to establish who is the best, and to contrast.

Usually, direct measurements of the abilities are unavailable. The only infor-

mation we possess is structured as a quantity of outcomes – who won – which

are affected by these underlying abilities. A rating system is designed to use this

available information and to make valid estimations about the unknown param-

eters – the skills of the competitors.

Rating systems are also used for predicting future encounters, and are prof-

1

Chapter 1. Introduction 2

itable when correct predictions are rewarded – like betting on the winner of a

tennis match. An accurate rating system that can foresee better than other par-

ties can surely make profit. This need for rating is present in the tennis system,

for example, and is often encountered in many other areas, from educational

systems to ranking web pages.

1.3 Motivation

A rating system should provide fun, exciting matches for the players. And a game

is most fun when the outcome is most uncertain. Why is this the case? Because if

the apriori chances of winning are close to 50%, the player has to go for that extra

mile, has to exert some extra effort, in order to really have a favourable impact

upon the game outcome. Succeeding in a challenging game feels very rewarding

when playing, and some individuals may even find joy in playing against slightly

better opponents.

If we would have a situation where one player dominates the other, it will

probably be boring for both of them, because the outcome would be clear from

the beginning. In other words, from the players’ perspective, the perceived quality

of the system is better explained by their winning ratio. If this is too high, then

the player was assigned to fight against opponents that are too weak, and the

other way around. Ideally we would like the number of wins to be close to the

number of losses, and a good ranking system is able to make this possible.

We also aim to try to understand and give a meaningful explanation for the

features that emerge from the use of the ranking system. Current systems as-

sociate a single latent variable to each person; we are interested in the possible

advantages of learning multiple latent features about every player. Such a more

complex system could – besides telling your skill and being used for matching

players – provide insight into the characteristics of your play and strategy. Each

feature could have a meaningful interpretation, and one can see why, for example,

one would be likely to be defeated by a lower-ranking opponent and improve his

strategies accordingly.

1.4 Objectives

In this project we are interested in fulfilling the following goals:

Chapter 1. Introduction 3

Model Choosing a simple existing model for expressing the skills of the players

(such as the ones employed in chess) and extending it to include different

numbers of factors.

Data Acquiring a suitable dataset for evaluation; it should contain a large num-

ber of matches, and for simplicity we would like to chose a two player game

(as team support would lead to more complicated models). Ideally only

wins and losses should be possible, without possibility of draw. Basic un-

derstanding of the game and any specific mechanisms (such as handicap

systems) is required.

Rating systems Implementing appropriate algorithms for fitting the parameters in the mod-

els devised, in order to obtain comparable (preferably better) performance

than current rating systems. Choosing a suitable and representative system

to compare against.

More factors Identifying what advantages an approach with more factors brings, and

what disadvantages. Contrasting predictions made using a system with one

or more parameters. More factors might increase accuracy for very skilled

players, or for balanced matches, for example.

1.5 Project outline

The structure of the project comes from the list of goals presented above, and

the thesis is organised in chapters as follows:

Chapter 2 The next chapter briefly mentions the evolution or rating systems, and

related work in the recommender system areas which helps us come up

with ideas for extending a model to multiple factors.

Chapter 3 The game of Go is introduced, and we describe the format of the dataset,

along with its analysis (cleaning, handicap system, choosing appropriate

subsets for experiments).

Chapter 4 The standard model is presented, and how we extend it with additional

factors. We then proceed to fit it using maximum likelihood, and make

concluding remarks from the results obtained.

Chapter 1. Introduction 4

Chapter 5 We switch to a Bayesian approach, and we start with describing TrueSkillTM

(Herbrich et al., 2007) which stands as our source of inspiration. It will

be used in the evaluation to compare against the two rating systems we

implemented using Assumed density filtering and Expectation Propagation.

Both algorithms are presented in this chapter, along with all the ensuing

evaluation procedures and results’ discussions. We thoroughly investigate

the benefits of using more factors.

Chapter 6 The conclusion of this thesis, where the progress made during the project

is summarised and assessed.

Chapter 2

Background

2.1 Evolution of rating systems

Counting the number of wins and losses is a simple metric for rating, but the

percent of games won does not tell anything about the opponents against one

played. One can get a very high percentage just by choosing weak players, easily

defeated. Another problem is that skills change in time; players that have been

beaten repeatedly but learnt from their losses and improved their game would be

disadvantaged by a simple win–loss system.

Naturally, we aim to win most games, but too many victories probably de-

note a lack of challenge. Ideally, winning about half of the games would bring

balance, and if most of the players would be near a 50% ratio, the ranking by

win percentage would not be informative.

The most basic rating systems are based on rewards: every win provides a

prize consisting of a number of points proportional to the importance of the

match. The computations are very easy, simple to understand and it is this

simplicity that makes them popular, such systems being encountered in many

sports, for example tennis (ATP - Association of Tennis Professionals, 2011).

Usually, in these areas the focus is on the high-level competition between top

players.

However, even if their inherent structure makes them able to easily differen-

tiate between the top players, their ability to compare and contrast lower-ranked

competitors drops steeply. Also the number of points awarded do not have any

solid statistic reasoning behind, making these systems inefficient from a statistical

standpoint.

5

Chapter 2. Background 6

The first sport to turn towards a more scientific approach is probably chess.

This happened in the forties, with the emergence of the Chess Federation (USCF).

They started by using Harkness (1967), a system which employed rewards that

scaled with the difference between the current ratings of the players. This amount

was fixed beforehand, and computed using a simple function.

The next important system was proposed by Elo (1978). He based the system

on a statistical model, which makes the underlying assumptions explicit and open

to criticism and refinement. Elo’s two main assumptions were:

• a player’s performance is a normally distributed variable, with the same

standard deviation as other players’;

• the skill of a player should change very slowly, according to the belief that

a player cannot improve or lose his skill easily.

The ensuing systems tried, besides computing ratings, to also measure the

uncertainty of the skill’s estimation for every player. One such system was pro-

posed by Glickman, which was specifically constructed for dealing with matches

between two players. More background information about pairwise comparison

and other models can be found in (Glickman, 1999).

During the last decade, these rating systems have been extended for events

that include more players, and probably the most significant results were obtained

by Microsoft’s approach, TrueSkillTM (Herbrich et al., 2007) and TopCoder’s

ranking algorithm (TopCoder Inc, 2008). All these are based on a single feature

(skill of the player) and Bayesian inference. We should note that the performance

of the team is modelled as a (non weighted) sum with the components being the

skills of the participants, and this is not necessarily a valid assumption.

2.2 Related work

2.2.1 Recommender systems

The data that we wish to analyse is best modelled as a result of a pairwise

interaction between items of the same set (players). A related problem is when

the items belong to different sets – e.g. users and movies.

Recommender systems analyse available data in order to make predictions

about what TV series, movies or music a particular customer would enjoy. One

Chapter 2. Background 7

movie will be seen by many, and most customers watch a large number of movies.

Moreover, people are inclined to provide feedback about what they enjoy or dis-

like, so very large datasets are procurable. The Netflix competition has recently

sparked interest for this subject, and new collaborative filtering (Zhou and Luo,

2009) methods have been developed (Bell and Koren, 2007; Takács et al., 2008).

They model relationships between users and interdependencies among products,

in order to identify new user-item associations (Koren et al., 2009).

These methods can be divided into neighbourhood methods, which try to infer

relationships between movies or between customers (Sarwar et al., 2001), and

latent factor models. These aim to give an explanation for the ratings given

by the users by describing them and the movies each with a number of factors

(usually under a hundred).

Matrix factorization implementations of latent factor models have been favoured

recently and are considered to be scalable and to provide good accuracy (Cai et al.,

2008). The data is characterised by a matrix with one dimension containing users

and the other rated items (eg. movies). Only a fraction of the entries are known,

and the remainder are unavailable. The goal would be to complete these values,

by considering that the rows and columns of the matrix interact in an useful way.

The items and users are each associated with a vector of f features, in a latent

factor space where synergies are quantified by the inner product of said vectors.

The predicted interest of one user in a particular item is expressed by uT ·i, where

u and i have the same length, f. These features are very similar with what we

propose for modelling players’ skills.

Chapter 3

Data

As mentioned throughout the document, in this project we are developing a

multiple-featured ranking system which will be able to analyse games’ outcomes

and assign appropriate ratings to players. A suitable dataset for the experiments

is the data from the KGS GO 1 server.

This data has been collected since the start of the KGS GO community 2, and

represents all the games played on the server within a ten-year period. There are

a total of over 40 million matches, featuring more than 180 thousand players.

As part of fitting the models, we will split this into several smaller datasets,

containing training and validation data. The final tests were done at the end of

the project, on games from the last year of the dataset. This part was withheld

and never used during the project, in order to reduce any unintentional overfitting

that may occur. Matches towards the end of the period have been preferred

because the number of games per day is larger.

3.1 Data format

The data was received as a text file, 2.5 GB long. We have built a C# parser in

order to port the information to Matlab. We store it as a matrix, with a line for

each game. It contains the following information (columns):

• date of the game: originally yyyy−dd−mm, we converted it to a natural

number.

• name of the white player

1 http://www.gokgs.com/
2 Many thanks to KGS administrator William M. Shubert, who kindly provided the data

8

http://www.gokgs.com/

Chapter 3. Data 9

• name of the black player: these were account names, we built a hashtable

and assigned natural number id for every player. This was saved as a text

file for eventual further referencing.

• white and black ranks: the ranks for the two players, as assigned by the

KGS system. This information was discarded.

• game type: some matches are not ranked by the KGS rating system; a

game is either ranked or free.

• size: the dimension of the board, for example 9 (9× 9), 13 or 19.

• handicap: black is the weaker player, and has a number of handicap stones

to play before white’s first move, as an advantage.

• komi: points added to the score of the player with the white stones as

compensation for playing second.

• game duration: this information was discarded.

• score: the difference in number of points, with some specific values for

win by time, win by resign, no result, unfinished and forfeit games. Games

without result, or unfinished, were removed. For the rest, we have simply

used 1 for white win, and 0 for black win.

3.2 Data restrictions

There are some issues that may arise. Firstly, skills of the players may change

in time. For a model that does not take this assumption into account, we should

use data within a narrow time range. Skills are not likely to modify in a short

amount of time. For testing, we have extracted 10 completely disjunct datasets

from the last year, of 20 days each. Non-ranked matches and games on board

sizes other than 19× 19 have been discarded.

Secondly, we would like to discard players that have played only a few matches.

Having little information about a player is likely to cause diminished performance.

Dealing with new players is one of the challenges a rating system has to solve,

but is outside the scope of this project. Our main interest is extending a rating

system to use more than one latent feature for each player.

Chapter 3. Data 10

Only games between players with more at least 12 matches have been kept.

Note that the game count is only between these (remaining) players, and does not

feature subjects that are not in the set or that are outside the time limits. Thus,

every player has at least 12 games with other players present in the dataset.

Moreover, when splitting the data into training, validation and test sets, we

have enforced the 12 games restriction on the players in the training part (which

consists of the first 80% of the games). Otherwise, it might happen that some

competitor has all his matches in the test set, and we wouldn’t be able to predict

any of them. Naturally, players that do not figure in the training set have been

eliminated from validation and test data, too.

The resulting datasets have around 200 000 - 250 000 games each, and in

between 7 000 and 10 000 players.

3.3 Komi and handicaps

Usually the weaker player takes black, and places the first stone. To balance this

advantage and to prevent ties, he gives away some ‘komi’ points to the white

player. The players are ranked from 30 kyu to 1 kyu, then from 1 dan to 7

dan (amateur ranks) and from 1 professional dan to 9 professional dan, which

is separate from amateur ranks. This division would make for 30 + 7 + 9 = 46

number of ranks. The difference among each amateur rank is one handicap stone.

For example, if a 4k (weaker) plays a game with a 2k (stronger), the 4k would

need a handicap of two stones to even the odds.

We need to take both komi and handicap into account, when computing the

likelihood of one player winning. For a game with H handicap stones, and K komi

points, our models update the skill difference in a match between players W and

B with a term corresponding to the handicap:

Updated difference = SW − SB − (H − K

Komi factor
) ∗ Handicap factor .

(3.1)

If the skills of the player were numbers corresponding to their ranks (SW , SB ∈
[0, 46]), then the correct handicap factor would be 1. In our algorithms, we aim

for skill values roughly between −3 and 3, and we set

Handicap factor = 1/7

(
skill range

ranking range
=

6.5

46

)
(3.2)

Chapter 3. Data 11

Komi are points given in the opposite direction as the handicap, and have

to be converted into an equivalent number of handicap stones. By asking an

estimate from an expert player, the following values were proposed. A stone is

worth about 15 points in blitz games, 10 points in average speed real time games

(such as default KGS timings), and about 6 or 7 in correspondence games. We

settled on using

Komi factor = 12, (3.3)

though this factor could potentially be learned in future work.

Chapter 4

Maximum Likelihood fitting of

models

In this chapter we describe a standard Bradley–Terry model and fit it to the data

using maximum likelihood. We then extend the simple model to include mode

than one factor per player. In the last section of the chapter we evaluate both

models and present the results.

4.1 Standard Bradley–Terry and Elo models

The basic rating framework is the model suggested by Bradley and Terry (1952),

which has been proposed in order to deal with repeated comparisons between a

set of subjects. In their simplest form, Bradley–Terry models assume that each

player has a real rating, and the winning probability of a player in a game is

proportional to his rating (in the simplest case of two players competing with

no ties). Thus, in this system the probability of Player A defeating Player B is

computed as the performance associated with the first player divided by the sum

of the performances:

P (pA > pB) =
γA

γA + γB
=

1

1 +
γB
γA

. (4.1)

In the Elo ratings, the term γi quantifies the skill of Player i, and is defined

as an exponential function of his strength (skill value): γi = e
Si

Scale .

Then, using the sigmoid function we can write:

P (pA > pB) =
1

1 + e−
SA−SB
Scale

= σ
(SA − SB

Scale

)
. (4.2)

12

Chapter 4. Maximum Likelihood fitting of models 13

In this model it is considered that every player has a true playing strength or

– equivalently – skill, which is represented by SA;SB. The scale (denoted onwards

as k) determines what the numbers mean in terms of ability, i.e. the significance

of 100 rating points. For example, let’s consider two players that are 100 rating

points apart. When using k = 100 the probability of the weakest player to win

would be 0.27 whereas if k = 200 it would increase to 0.37.

This simple system is known to work reasonably well in practice, and is a good

candidate for our model. In the next section we will describe our methodology

for fitting a simple Bradley–Terry model to the data, and then we will discuss

increasing the number of factors in the model.

4.2 Fitting the models

Let us assume that we possess data from a number of matches between m players,

with their respective outputs (i.e., who is the winner). We note with D the

outcomes of all games.

The likelihood of S given D is used for approximating the skills of the play-

ers; the maximum likelihood value can be then chosen as an estimation. The

computation time is usually quite low using conjugate gradients, for example.

In this section we fit the model above to this data and determine the maximum

likelihood parameters, i.e. skills, for these subjects. The number of wins of pi

over pj will be denoted by wij and by convention wkk = 0. We compute the

probability of the data given the skills of the players:

P (D|S) =
m∏

i,j=1

(γi
γi + γj

)wij

. (4.3)

We assumed that the outcomes of pairs involving different players are inde-

pendent. The log likelihood can be expressed as

L(γ) =
∑
i

∑
j

(wij log γi − wij log(γi + γj)) =
∑
i,j

wij log σ
(Si − Sj

k

)
. (4.4)

Note that L(γ) = L(αγ), for a positive constant α , which indicates that

the solutions can be thought of as equivalence classes, and two parameter vec-

tors {γ1, · · · , γm} and {γ′1, · · · , γ′m} are equivalent if they are linearly dependent

Chapter 4. Maximum Likelihood fitting of models 14

(scaled by a constant). Consequently, we can add an additional constraint, for

example
m∑
i=1

γi = 1.

The maximum likelihood value can be reached by starting with some default

parameters, and optimizing iteratively until we are satisfied with the results. We

can employ a gradient ascent method, by updating S ′i = Si + η
∂L

∂Si

, where prime

denotes the new values, and

∂L

∂Si

=
m∑
j=1

wij
1

�σ
�σ(1− σ)

1

k
=

m∑
j=1

wij

k

[
1− σ

(Si − Sj

k

)]
. (4.5)

Alternatively, we could use other iterative algorithms (Hunter, 2004), and

compute directly

γt+1
i = wi

[∑
i 6=j

wij + wji

γti + γtj

]−1
, (4.6)

with the additional restriction that γi must be rescaled, such as
∑
i

γi = 1. This

leads to

e
S′i
k =

∑
j

wij

[∑
i 6=j

wij + wji

e
Si
k + e

Sj
k

]−1
. (4.7)

4.3 Regularization

In trying to fit the data better, we might impair the capability of the model to

generalize, a phenomenon usually known as overfitting. This is certainly unwel-

come, and there are some ways to avoid it. One solution is to use early stopping,

which means halting the optimization (error minimization) process at some point,

which is only optimal in its current window.

Regularization comes as another means to solve the problem. Regularization

modifies the error function we were minimising (if we consider Err(S) = −L(S))

by including a penalty term for the type of skills that we would like to avoid. For

instance, if we want to stay away from large skill values, we can use a regulariza-

tion term that punishes this sort of instance:

Err(S) = −L(S) + αR(S), and choosingR(S) = 0.5
∑
i

S2
i . (4.8)

The term is called a weight decay regularizer, and the constant α is the weight

decay rate. A good description can be found in MacKay (2003). Now our error

Chapter 4. Maximum Likelihood fitting of models 15

function rewards small skill values, and favours less overfitting on the training

data.

4.4 Extending the system with more factors

We can extend this model, thinking that in modelling a match between two

opponents it would be useful to consider other features besides the skill level. If

before we had

P (pA > pB) =
1

1 + e−
SA−SB

k

, (4.9)

with SA and SB being real values we might want to use extra concepts such as

offensive and defensive characteristics of the players. So, instead of writing

P (pA > pB) = σ(SA − SB) (4.10)

(let’s forget about the scale for now) we would try

P (pA > pB) = σ(SA − SB +OAWB −OBWA). (4.11)

This would make the probability for player 1 higher if his offensive (OA) is high,

and the opponent’s weakness (WB) is also high, while decreasing it if the adversary

is likely to succeed when attacking.

This model can be reduced to the first, simpler one, as the baseline model

is nested within the three-parameter model. Let us write it using more general

terms:

P (pA > pB) = σ(S
(1)
A − S

(1)
B + S

(2)
A S

(3)
B − S

(2)
B S

(3)
A), (4.12)

where lower indices stand for player, and the upper indices stand for the param-

eters (currently three).

If we would like to keep this property, things are likely to become awkward, for

example for a two-parameter model. Here we have only {S(1)
A ;S

(2)
A }{S

(1)
B ;S

(2)
B } to

work with. A solution would be to consider the other parameter a susceptibility

against better players, leading to

P (pA > pB) = σ(S
(1)
A − S

(1)
B + S

(1)
A S

(2)
B − S

(1)
B S

(2)
A). (4.13)

However the underlying logic upon which the approach is based favours an

odd number of parameters, say 2k + 1. These can be organised as

Chapter 4. Maximum Likelihood fitting of models 16

• (1) the skill, a scalar, Si

• (k) an offensive vector, containing k parameters, Oi = v
(1)
i

• (k) a weakness / susceptibility vector, containing k parameters, Wi = v
(2)
i

P (pi > pj) = σ(Si − Sj + v
(1)T
i v

(2)
j − v

(2)T
i v

(1)
j) (4.14)

In a similar way to the previous section, we compute the derivatives with

respect to the strength and the extra parameters, and use a gradient ascent

method to find the maximum likelihood values.

4.5 Evaluation and results

Rating systems are mainly used for making predictions about the results of future

encounters, and the quality of these prognoses is a metric for evaluating the

quality of the system. Thus, we will evaluate the different algorithms by how

effectively they predict the outcomes of contests.

The predictions for individual games will be scored separately and then we

will compute the mean across all games. The evaluation function used for scoring

(also suggested by Mark Glickman) is the Log Likelihood we previously maximise,

namely:

Log Lik = Outcome ∗ log(w) + (1−Outcome) ∗ log(1− w), (4.15)

where Outcome is 0 for a black win, and 1 for a white win, while w is the predicted

score for white. It is easy to see that predicting an expected score of 0% or 100%

has an undefined Log Likelihood, since log(0) is undefined. Furthermore, even if

white wins, the marginal benefit for a prediction of slightly above 99% is minimal

compared to a 99% prediction. Similarly, we can argue a 1% prediction for a

black win. Therefore there is no good reason to predict an expected score above

99% or below 1%. So for purposes of scoring, all predictions above 99% will be

treated as 99%, and all predictions below 1% will be capped to 1%.

The method described in the previous section is a point estimate method, since

it provides a one-value (in a dimension proportional with the number of players)

solution to our problem. We obtain a fixed skill value (or a set of factors) for

Chapter 4. Maximum Likelihood fitting of models 17

every player, and no information about the uncertainty of this prediction or about

how the skill of the player changes through time. In fact, we assume that his skill

is constant in the period over which we train and test the model. To minimise

the impact this assumption has over the results, we use for evaluation datasets

that are restricted to a period of 20 days. A player’s performance should not vary

significantly in a short period of time, at least compared to a 200 days interval.

For each dataset, the data is split into three sets:

• first 80% of games are the training set, which we use for training the model;

• the next 10% consist of the validation set, used for optimising parameters

of the model (eg regularization constant, also used for early stopping);

• and the last 10% form the test set; we evaluate the prediction performance

by the log likelihood on these games.

4.5.1 Number of factors

1 3 5 7 9
−0.687

−0.6865

−0.686

−0.6855

−0.685

−0.6845

−0.684

−0.6835

−0.683

−0.6825

Number of model factors

L
o
g
L
ik
el
ih
o
o
d

On Validation set

On Test set

Figure 4.1: Performance of models with increasing number of factors Red shows

the log likelihood on the validation set, blue on the test set. In this plot and all of the

following figures, unless stated otherwise, errorbars show standard error corresponding

to the 10 datasets.

Chapter 4. Maximum Likelihood fitting of models 18

The performance of models with different numbers of factors is shown in figure

4.1; results are averaged over 10 datasets, with errorbars corresponding to the

standard deviation divided by
√

10. This measure is known as standard error,

and has been used for most of our figures; one margin of standard error gives 68%

confidence.

We show the results on both validation and test sets.

The three factors model is slightly improving the single factor one, but using

more than three factors on this amount of data leads to overfitting and worse

performance.

4.5.2 Time variability

We have chosen datasets that span over a relatively small amount of time (20

days) in order to reduce the impact of time variability. However, time still neg-

atively affects the performance, as can be seen in the following experiment. In

Figure 4.2 is presented the Log Likelihood for the simple model (left) and the

three factors model (right), in two particular cases. The first case (blue) is the

standard, with the performance on the validation and test datasets. For the sec-

ond case (red) we have swapped the two sets, by doing validation on the last 10%

of the data and testing on the previous 10%. It can be seen that for both cases,

the data closest in time to the training set gives better performance. It should

be noted that the validation and test sets contain games that are played over

approximatively 2 days each, while the training set is made of matches ranging

around 16 days.

We assumed constant skills for the players, which may prove too restrictive

an hypothesis, even from a couple of days to the next one. Time variability is

certainly a problem, and even though limiting the datasets reduces the influence

of time variability, it is desirable that the problem is addressed by adapting the

models.

Chapter 4. Maximum Likelihood fitting of models 19

 Val. Test Val. Test Val. Test Val. Test
−0.687

−0.6865

−0.686

−0.6855

−0.685

−0.6845

−0.684

−0.6835

−0.683

−0.6825

Data sets

L
o
g
L
ik
el
ih
o
o
d

Model 1

Model 2

Figure 4.2: Performance for the simple (left) and 3 factors models (right) on

the validation and test datasets. The standard experiment is depicted in blue, while

red has the test set before the validation set, in time. In all cases, the models have

better performance on the games that are closest to the training set, time-wise.

4.5.3 Generalising capacity

Since the maximum likelihood solution is a single estimate of the skills, the mod-

els may (in principle) suffer in terms of generalization capacity and accuracy of

estimations for new test data. Further, such an algorithm does not provide a way

to measure the uncertainty we have about the skills of the players.

We investigated how well the models fit and generalize, using the following

experiment. The skills of the players are fitted on one of the datasets, and then

10 couples of synthetic datasets are generated, based on these skills. They are

identical to the original dataset, except the results which are randomly drawn

according to the underlying skills of the players. On the synthetic data, we refit

the skills and compare the score on both virtual datasets, like in Figure 4.3.

Chapter 4. Maximum Likelihood fitting of models 20

Figure 4.3: Testing on synthetic datasets. We start with a normal dataset, fit the

skills (S), generate two synthetic datasets, and refit. There are a total of six tests, for

the three skill sets over each of the two generated datasets. The 1 factor model is used.

Then, by doing 10 experiments we obtain the following performances, with

errorbars (Figure 4.4). The refitted skills are doing almost as good on any syn-

thetic dataset, but they are significantly worse than the true set of skills. The

maximum likelihood models are not generalizing very well, and they need more

data in order to perform near the accuracy of the true skills.

 S on SD1 S on SD2 Ref.S 1 on SD1 Ref.S 1 on SD2 Ref.S 2 on SD2 Ref.S 2 on SD1
−0.68

−0.675

−0.67

−0.665

−0.66

−0.655

−0.65

−0.645

−0.64

−0.635

Data sets

L
o
g
L
ik
el
ih
o
o
d

True skills

Refitted sk. 1

Refitted sk. 2

Figure 4.4: Performance for one factor model, on synthetic datasets. The predic-

tion accuracy of the true skills used for generating the datasets is shown in black, while

blue and red depict the prediction accuracy of refitted skills.

Chapter 4. Maximum Likelihood fitting of models 21

4.5.4 Calibration

We compare the win probabilities our models assign to the matches to the actual

win rate of the same games. On one of the datasets, we take the set of predictions

for all the matches, and divide it in bins of length 7% (eg. the first bin consists of

all the games with predicted probability p ∈ [0.50, 0.57)). The number of games

in each bin is shown in Figure 4.5, and it can be observed that the 3 factors model

is less confident about its predictions.

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
10

1

10
2

10
3

10
4

10
5

Expected win probability

N
r.

o
f
g
a
m
es

1 factor

3 factors

Figure 4.5: Number of games predicted to have a specified win probability.

For every bin, we compute the fraction that are real wins and contrast it with

the predictions. The results for the simple and three factors models are shown in

Figure 4.6.

As expected, both models are rather overconfident. Three factors is slightly

better calibrated, however. The result of Maximum Likelihood is a point (in a

dimension proportional with the number of players), which maximizes the prob-

ability of a given set of outcomes to occur. It should work well, provided we have

a lot of information about every player (i.e., many games). But we do not, and

it may even be unrealistic to expect more than a couple of games per day for a

Chapter 4. Maximum Likelihood fitting of models 22

player. Generally, the solutions fitted by maximum likelihood lead to overconfi-

dent predictions. This behaviour is described in more detail in MacKay (2003,

chap. 41).

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Expected win probability

R
ea

l
w
in

p
ro
b
a
b
il
it
y

1 factor

3 factors

Figure 4.6: Expected vs. real win probability for the simple and three factors models.

In this chapter, we have started with a standard Bradley–Terry model and

extended it to include more than one factor per player. We have fitted these

parameters using maximum likelihood, and a conjugate gradient ascent method.

While there is evidence that 3 factors may perform better than only one, the

difference is not statistically significant. There is also strong evidence that a

Bayesian model would improve our results by handling all the hypotheses for the

skills of the players, rather than only a single assumption, be it the most probable

or not. Instead of working with a point estimate, we should deal with the full

distributions over the players’ strengths. The Bayesian approach will be treated

in the next chapter.

A potential problem is posed by the impact of time on players’ skills. Choosing

datasets where this effect is limited may not be enough; Including some way to

incorporate time series into our models would be a welcome addition.

Chapter 5

Bayesian Approach

We start this chapter by briefly describing the TrueSkillTM algorithm, which is

one of the most prominent current rating systems. Using two core techniques

also part of TrueSkillTM , we devise models based upon Assumed density filtering

and Expectation Propagation. We build the algorithms from scratch, in order to

be able to customize them to working with multiple factors models.

While the first half of the chapter describes the algorithms and the underlying

theory, in the second half the evaluation is set and the models are compared and

contrasted using a multitude of experiments. We are interested in finding out how

and when more factors improve the accuracy, what are the differences between

TrueSkillTM , Assumed density filtering and Expectation Propagation and how

they reflect in the results obtained.

5.1 True SkillTM

The Elo model described in the previous section suffers from the following prob-

lems:

• It does not support teams and treats draws like half wins, half losses, which

is suboptimal. A draw implies similar strength values between players, while

wins or losses show that one player is more skilled than the other. However,

we do not know how big is the difference.

So in Elo draws do not convey as much information as they could. We

will not discuss these two problems further, because in Go there are neither

teams nor draws.

23

Chapter 5. Bayesian Approach 24

• Its beliefs about the players’ performances are normally distributed random

variables, with the same standard deviation. Elo fixes this variance as a

global constant and does not attempt to infer it from the data, which is

restrictive.

• The belief about one player’s skill would change very slowly, according to the

hypothesis that a player cannot improve or lose his skill easily. Furthermore,

the higher one’s rating, the less likely one would want to risk it fluctuating

much. The system considers ratings for players with less than 20 matches

as provisional. During these games players are associated parameters that

let the algorithm determine their skill faster. This is a rather high number

of games required to infer the skill of a player, and we would like a system

with faster convergence properties.

To solve the last two problems, the ensuing systems tried, besides computing

ratings, to also measure this deviation for every player. This adds a means to

estimate the certainty of the rating associated to a player. The rating system de-

vised by Glickman (1999), and later TrueSkillTM (Herbrich, Minka, and Graepel,

2007), treat skills as normally distributed variables where the variance denotes

the reliability of the estimation.

Even for limited data, exact Bayesian inference is intractable. We are not able

to compute the posterior distribution, and we need to approximate it. Conse-

quently, we are facing a marginalization problem which is one of the basic subjects

of Bayesian analysis theory. To solve the problem, the TrueSkillTM system em-

ploys a Gaussian density filtering algorithm, which we also used for our system.

We will continue by briefly presenting TrueSkillTM , and the ideas we used in

constructing our models.

5.1.1 TrueSkillTM description

The probabilistic model used by TrueSkillTM is constructed to deal with players

that take part in games or enter tournaments, and compete in teams of different

sizes. It estimates the skills of these players after each match (or competition).

The system is initialised with a prior Gaussian distribution over the skills

p(skill) = N(s;µ, σ2). (5.1)

Chapter 5. Bayesian Approach 25

The ‘true skill’ for the player is denoted by µ, and σ indicates the uncertainty

of the estimation. The uncertainty will usually decrease with the number of

matches, as we get more information about the respective player.

In matches, players do not perform according to these exact values, but are

characterised by

p(performance|skill) = N(p; s, β2), (5.2)

where β is a fixed value, constant for all players. Integrating out the skills, we

obtain

p(performance|µ, σ) =

∫ ∞
−∞

N(p; s, β2)N(s;µ, σ2) ds. (5.3)

These individual performances are then combined in order to obtain team

performances (t =
∑

i pi, the sum of the performances for all players in a team),

and these are compared with the order ω obtained as a match result. We are

only interested in one versus one matches, so we will not go into further detail.

We wish to compute the posterior distribution over the skills, given the out-

come ω :

p(s|ω) =
p(ω|s)p(s)∫
p(ω|s)p(s) ds

. (5.4)

One more type of parameter is introduced, d, which relates to the differences

in the team performances for any consecutively placed teams. Then the joint

probability of the model can be written as:

p(ω, d, t, p, s) = p(ω|d) p(d|t) p(t|p) p(p|s) p(s), (5.5)

from which we would like to find out

p(ω|s) =

∫ ∫ ∫
p(ω, d, t, p, s) dd dt dp. (5.6)

This marginalization is solved using message passing (Kschischang et al.,

2001), and you can see an example factor graph in the Figure 5.1. Most of the

distributions are Gaussian, leading to easy computations, except for the bottom

node (black colour). This distribution is approximated with a Gaussian by com-

puting the first and second moments, and the message passing algorithm is run

until convergence. The method that specifies this approximation and convergence

criteria is Expectation Propagation (Minka, 2001), and is only used within the

Chapter 5. Bayesian Approach 26

factor graph corresponding to a single match, although with any number of teams

and players. On the other hand, the Gaussian filtering algorithm is employed in

the context of updating the players’ skills after a match. It approximates the

posterior distribution with a Gaussian, and uses it as the prior for the next game

(Herbrich et al., 2007). These algorithms will be further explained in the ensuing

sections.

P (s1)

s1

P (s2)

s2

P (s3)

s3

P (p1|s1)

p1

P (p2|s2)

p2

P (p3|s3)

p3

P (t1|p1) P (t2|p2,p3)

t2t1

P (d|t1,t2)

d

111(d > ε)

Figure 5.1: Example of TrueSkillTM factor graph for two teams. One player forms

the blue team, and the red one has two players. Adapted from Figure 1 from (Herbrich

et al., 2007).

For our problem, the factor graph is simplified, as we do not have more than

two players, or teams. Also, we did not include the performance level, and as-

sumed that results depend directly on the true skills of the players. For these

Chapter 5. Bayesian Approach 27

reasons, we did not employ factor graphs, and will not present the computations

in a message passing framework.

5.1.2 Modifications

We would like to compare our models to TrueSkillTM during evaluation, and

we need to implement the algorithm and choose the right parameters, to obtain

good results. Fortunately, there is already available a very good C# implementa-

tion 1 for TrueSkillTM . However, some changes were needed (such as interfacing

with Matlab, integrating the handicap system, building a prediction metric, and

choosing the right parameters). We will briefly talk about the most important

modifications required in order to adapt TrueSkillTM to our problem in the next

three subsections of 5.1.2.

5.1.2.1 Predictions

We have outlined the basic working principles of TrueSkillTM , and let us assume

that we inferred both

• a set of true skills and

• variances denoting the system’s uncertainty for the skills’ estimations.

In TrueSkillTM , the draw probability is used as an evaluation metric, since the

focus is on match quality and consequently, the balance level of a match (larger

draw probability results in more interesting matches). We, on the other hand,

would like to predict the outcome of a future game, using the values inferred by

our models.

In Elo, a Cumulative Gaussian or a Sigmoid function of the difference in

skills was used, and we can generalise this approach. If we subtract the two

Gaussians corresponding to the skills of the players, the result is another normal

distribution, with the mean equal to the difference of means and a bit wider than

the previous distributions (see Figure 5.2). This new Gaussian represents all the

possible game outcomes. One would like to count all the possible outcomes where

he is performing better than his opponent.

1Open source code by Jeff Moser https://github.com/moserware/Skills

https://github.com/moserware/Skills

Chapter 5. Bayesian Approach 28

Figure 5.2: Skill estimates for two players in blue and red. They represent the

probability distribution of their individual performances. The probability of their per-

formances’ difference is shown in grey, and is also normal distributed. Darker shade

of grey (right side) is associated with the better player winning the game. Blue player

skill ∼ N(16.2, 1.32), red player skill ∼ N(14, 1.62).

The first player, for example, would be interested in all the positive differences,

meaning the area under the Gaussian, to the right of zero:

p(pA > pB) =

∫ ∞
−∞

111(SA − SB > 0)p(SA;µA, σA)p(SB;µB, σB) dSA dSB (5.7)

=

∫ ∞
0

N(D;µA − µB, σ
2
D)dD (5.8)

σD =
√

(σ2
A + σ2

B). (5.9)

On the example in Figure 5.2, this method yields a probability of 85.70% for

the better player to win (darker shade of black in figure). Since we used the

sigmoid function for computing the likelihood of one player beating another, we

Chapter 5. Bayesian Approach 29

can also try :

p(pA > pB) =

∫ ∞
−∞

σ(SA − SB)p(SA;µA, σA)p(SB;µB, σB) dSA dSB (5.10)

≈ σ

(
µA − µB√

1 + (π/8)(σ2
B + σ2

A)

)
(5.11)

using the approximation which we will later introduce in equation 5.22. On the

same example, this method gives a win probability of 79.28% for equation 5.10,

computed using a quadrature method. If we use the approximation as in equation

5.11, the resulting probability is 79.36%, very close to the ‘exact’ version which

yields 79.28%. Both of these values are lower than 85.70% obtained with the

previous method (5.7), denoting less confident predictions.

5.1.2.2 Handicaps

The handicap system has already been mentioned in section 3.3.The skills used

for the players are the values we obtain after doing the handicap and komi sub-

traction. We update these modified skills according to the game’s outcome (which

will be a match between players closer in skill than without the handicap modi-

fication). Then, we set the final skills as the updated version plus the handicap

term we deducted (see Figure 5.3).

5.1.2.3 Choosing the parameters

Since TrueSkillTM was last used for Chess problems, we had access to parameters

optimized for this problem. We started from these, and modified them until we

obtained good results.

We picked an initial mean of 1500, and initial standard deviation of 400. These

are the values a new player starts with. For the handicaps, we have 10 for Komi

factor, and 45 for the Handicap factor. The draw probability is zero.

The β parameter was defined by Herbrich (2007) as the length of the ‘skill

chain’. In other words, it indicates how wide each skill class is, in terms of skill

points. A player with β more skill points than another player has an 80% chance

of winning against that person. In high-skill games, where smaller differences in

points lead to this 80% : 20% ratio, we need small beta values. In our model a

value of 400 was used.

In the TrueSkillTM system, the uncertainty about players’ skills decreases

over time, as we acquire more data about the players. It is almost impossible

Chapter 5. Bayesian Approach 30

Figure 5.3: Updating the skills of two players. The initial values are shown in

part 1, blue for one player and red for other. We assume the estimates have equal

variances, for simplicity. The handicap value is identified in part 2, and subtracted

in part 3. Then the algorithm computes the updates, shown in black horizontal lines.

We assume blue player wins, hence the system will increase his estimate and lower red

player’s estimate. The updates have the same absolute value here because we assumed

the variances are equal. Then, in part 5, we add back the handicap factor to obtain

the final values for the skills of the two players.

for a player who started poorly to reach a high skill value, because the system

becomes very certain about him after a few games. To solve this problem, the

dynamic factor τ is introduced. Without it, the TrueSkillTM algorithm would

always cause the standard deviation of players to shrink. Before the updates are

computed, τ 2 is added to the variance of the players. Thus, a larger τ would

cause players to change skill values faster. The TrueSkillTM default value is the

initial standard deviation divided by 100. We used the algorithm on a dataset

with a small number of minimum matches per player, so we picked τ = 15 to

avoid slow convergence.

5.2 Assumed-density filtering

Having described the TrueSkillTM algorithm, and how it was modified to work

on our dataset, we will continue by introducing our first Bayesian model. It

has similar theoretical background, its core technique being the Assumed-density

filtering, from which Herbrich et al. (2007) derived the Gaussian density filtering

used in TrueSkillTM . Constructing the algorithm will enable us to customize it,

e.g. by adding additional factors.

Chapter 5. Bayesian Approach 31

5.2.1 Algorithm description

Assumed-density filtering, commonly encountered in conjunction with terms such

as moment matching or online Bayesian learning, is a method that can be used to

approximate posteriors in Bayesian models. It needs a joint distribution over some

observed variablesD and hidden parameters S, and it computes an approximation

for the posterior p(S|D). The following description of ADF is based on the

algorithm presented in Minka (2001).

We note with S the vector of skills we want to find, and D is the data we

have observed. The joint distribution of S and the N results of the matches

D = {r1, · · · rN} is then

p(D,S) = p(S)
∏
i

p(ri|S), (5.12)

where rj is the result of match number j.

For ADF, we need to factor this distribution into a product of factors:

p(D,S) = f0 ·
∏
i

fi , so we choose (5.13)

f0 = p(S) as the prior, and (5.14)

fi(S) = p(ri|S) as the other factors. (5.15)

Next, a distribution from the exponential family is chosen to approximate

the posterior (the assumed density). The simplest choice available is the Gaus-

sian distribution, also used by Glickman (1999), TrueSkillTM (Herbrich et al.,

2007) and ultimately TrueSkill through time (Dangauthier, Herbrich, Minka, and

Graepel, 2008). Consequently, we pick:

q(S) = N(S;m,V). (5.16)

We start off by using a prior to initialise the posterior, and sequence through

all the factors, updating and incorporating each one into our posterior. In every

step, we start with a Gaussian prior q(S), and we use the new observation’s

likelihood fi(S) to obtain an approximate posterior qnew(S). Updating the prior

term is easy, and for the others the exact posterior is

p̂(S) =
fi(S)q(S)∫

S
fi(S)q(S) dS

. (5.17)

Chapter 5. Bayesian Approach 32

qnew is found by minimising the KL divergence KL(p̂(S)||qnew(S)), and con-

sidering that the new approximate posterior should also be a Gaussian distri-

bution. The qnew obtained after using the last observation from D is the final

approximation of the ADF algorithm.

5.2.2 Applying ADF to rating

The first thing we would like to point out is that we can reduce the scope of

the updates by considering only the two players directly involved in a match

ri = {pA vs. pB}.
The KL divergence can be split into two terms (see Appendix A.1). Min-

imising them keeps the skills of the players that are not involved constant, and

henceforth we are free to update with respect to pA and pB only. The first KL

divergence in A.8 is solved by matching the mean and covariance of the two

two-dimensional distributions, p̂(SA, SB) and qnew(SA, SB).

Minka (2001) computes the mean and covariance of the updated posterior

qnew using the gradient of

Zi = Zi(mAB, VAB) =

∫
SAB

fi(SA, SB)q(SA, SB) , resulting in (5.18)

mnew
AB = mAB + VAB∇m logZi (5.19)

V new
AB = VAB − VAB(∇m∇T

m − 2∇v logZi)VAB. (5.20)

For computing the integral and the gradients, we employ the following ap-

proximation from MacKay (1992)∫
s

σ(s)N(s;m, v2) ds ≈ σ

(
m√

1 + (π/8)v2

)
. (5.21)

The approximation is useful because q(SA, SB) is gaussian, and fi(SA, SB) is

a sigmoid function. However, fi does not fit well into equation 5.21 because, in

the simplest case, fi(SA, SB) = σ(SA − SB). We need to generalise and we do so

by considering the argument of fi to be the dot product of:

• x, a vector of constants and

• SAB, a vector containing the skills of players A and B.

Chapter 5. Bayesian Approach 33

Then the approximation 5.21 can be generalised to :∫
S

σ(xTS)N(S;m,V) dS ≈ σ

(
xTm√

1 + (π/8)xTV x

)
︸ ︷︷ ︸

z

= σ(z). (5.22)

Introducing x for writing the argument of the sigmoid is a mathematical trick

which helps computations. An example of usage is shown in equation 5.29.

In this case of rank one derivatives, for Zi ≈ σ(z) , Minka (2008) suggests

that computations can be simplified by using α and β as follows:

∇m logZi = αixi (5.23)

αi =
σ(−zi)√

1 + (π/8)xTV x
(5.24)

∇m∇T
m − 2∇v logZi = βixix

T
i (5.25)

βi = αi
αi + (π/8)xTmnew√

1 + (π/8)xTV x
. (5.26)

The final ADF algorithm is shown below:

Algorithm 1: ADF algorithm

1 Initialise m = 1, V = I

2 Set constant x such that σ(xTSAB) = p(pA > pB)

for each match ri ∈ D do

3 Extract mAB and VAB, the information for the two players

(such that pA is the winner)

4 zi =
xTmAB√

1 + (π/8)xTVABx

5 Update mAB, VAB according to :

αi = . . . (eq 5.24) mnew
AB = mAB + VAB · αi · x

βi = . . . (eq 5.26) V new
AB = VAB − VAB · (βixxT) · VAB

Note that because we have swapped players around such that the first player

(pA) is always the winner, we can find x like in equation 5.29. In that example,

the update

∆mAB = mnew
AB −mAB = VAB · αi · x (5.27)

Chapter 5. Bayesian Approach 34

(αi is a number) will thus be a 2× 1 vector, with the first component a positive

number, and the second one negative. Consequently, the skill for the winner will

be updated by increasing the previous value, and the loser will have his rating

decreased.

5.2.3 One factor ADF model

For the simple model,

p(pA > pB) = σ(SA − SB) (5.28)

SA − SB =
(

1 −1
)
·

(
SA

SB

)
(5.29)

⇒ x = (1− 1)T , SAB =

(
SA

SB

)
. (5.30)

The mean of SAB will consist of the means for the skills of the two players,

and the covariance matrix will be as below :

mAB =

(
mA

mB

)
VAB =

(
v2A 0

0 v2B

)
. (5.31)

We consider only the diagonal terms from the covariance matrix, ignoring

the correlations between players. This is a simplification which leads to a faster

algorithm, and smaller memory requirements. Keeping track of the correlations

might provide higher accuracy (Birlutiu and Heskes, 2007), but is outside the

scope of the project, whose main goal is to investigate the benefits of introducing

more factors in the vanilla models.

A quick check reveals that, for example, the xTVABx term in the approxima-

tion is (
1 −1

)
·

(
v2A 0

0 v2B

)
·

(
1

−1

)
= v2A + v2B, (5.32)

which can be double checked with the original approximation 5.21, considering

the formula for the difference between two Gaussian distributions.

Chapter 5. Bayesian Approach 35

5.2.4 ADF with more factors

For a three factors model, we consider the following terms:

Player A→


SA

OA

WA

 with means mA =


mSA

mOA

mWA

 (5.33)

and standard deviations vA =


vSA

vOA

vWA

 ; (5.34)

The covariance matrix is:

VA =


v2SA

0 0

0 v2OA
0

0 0 v2WA

 . (5.35)

For simplicity we have again assumed independence, now between each factor.

As future work, it would be interesting to use the full covariance matrix and check

for anti-correlations between the factors.

The win probability is

p(pA > pB) = σ(SA − SB +OA ·WB −OB ·WA), (5.36)

and we can thus choose

x =


1

−1

1

−1

SAB =


SA

SB

OA ·WB

OB ·WA

→ (5.37)

mAB =



mSA

mSB

mOA
v2WB

+mWB
v2OA

v2WB
+ v2OA

mOB
v2WA

+mWA
v2OB

v2WA
+ v2OB


vAB =



vSA

vSB

vOA
vWB√

v2WB
+ v2OA

vOB
vWA√

v2WA
+ v2OB


. (5.38)

This can be used to compute the approximation

Zi =

∫
σ(xTSAB)N(SAB;mAB, VAB) ≈ σ(zi), (5.39)

Chapter 5. Bayesian Approach 36

where VAB is the matrix with elements of vAB on the diagonal, and zero for the

rest. However, it is not appropriate to use α and β for updating, because we

are interested in updating each of the six parameters individually (three for each

player), rather than updating mAB. So we compute each gradient separately, for

example :

∇mA
= σ(−z) ·


1

v2WB

v2WB
+ v2OA

v2OB

v2WA
+ v2OB

 (5.40)

and use the updating rules:

mnew
A = mA + VA∇m logZi (5.41)

V new
A = VA − VA(∇m∇T

m − 2∇v logZi)VA. (5.42)

5.2.5 Problems

The first obvious disadvantage of the method described above would be that

inference strongly depends on the order chosen for the updates. The ADF model

will give different results if we reverse two games, even if they happen in the

same day, maybe even a few minutes apart. It is unlikely the skills of the players

change that fast. If we do not possess any mechanism for keeping track of the

skill evolution in time, it is reasonable to assume that the order of game outcomes

in a given day, for example, has a reduced importance. Therefore, the results of

inference should be independent of the order of games within a day.

Another restriction is that information is only propagated forward in time.

For instance, if A and B are very good friends and decide to enter the system,

they may play a lot of matches between them but none against other opponents.

After these, updating their skill parameters would certainly provide a good grasp

of their relative compared strengths, but we don’t know how they relate to the

community. Suppose now that player A starts to play against other people,

its rating changes but the rating of B does not. The TrueSkillTM and ADF

algorithms presented do not propagate that information backwards in time to

correct player A’s skill estimate. Possible solutions to this issue would be to

make several passes of the algorithm, to extend the model to incorporate and use

covariance information, or the algorithm we will present in the next section.

Chapter 5. Bayesian Approach 37

5.3 Expectation Propagation

The two issues mentioned in the previous section can be directly addressed by

extending the Assumed density filtering to running full expectation propaga-

tion (EP) until convergence. This method, described by Minka (2001), was suc-

cessfully used by Dangauthier, Herbrich, Minka, and Graepel (2008) for their

TrueSkill through time algorithm. In this section we will describe how we applied

EP for inferring the skills of the players, and the equations for a multiple factors

model.

The basic idea of expectation propagation is to update repeatedly on the same

game outcomes but making sure that the effect of the previous update on that

game outcome is removed before the new effect is added (Dangauthier et al.,

2008).

The posterior distribution was not Gaussian; but if the factors involved were

normal distributions (scaled by a constant), then we would be able to compute

the posterior analytically. One way is to take each factor in our model and

approximate them one by one with Gaussians, using the knowledge from the

other factors.

One might wonder, how approximating a sigmoid with a normal distribution

might give a decent estimate. This happens because the estimation is done in

the context of all the other factors: when we multiply all of them together,

the posterior distribution that summarizes the other factors will become very

compact. Its variance would be very small, compared to any single likelihood

term. When we make our approximation for one term, we are interested in its

product with the summarizing posterior constructed using information from the

other factors. Thus, we do not need to capture all the details in every individual

likelihood function, all we really need to get a good approximation is to represent

very well the zone that overlays with the posterior. An example is shown in

Figure 5.4.

EP repeatedly iterates (in no particular order) over the outcomes and refines

the approximations for the terms until convergence. The resulting approximation

will be less dependent on the games’ order.

Chapter 5. Bayesian Approach 38

−10 −8 −6 −4 −2 0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Diffrence of skills between two players

W
in

ro
b
a
b
il
it
y

Likelihood

Context posterior

Approximation

Exact posterior

Figure 5.4: Example for approximating the likelihood of an outcome in EP. The ap-

proximation will be later noted with f̃i (see 5.43), and the context posterior with q\i;

this q\i is the exact posterior, from which the effect of term i is removed (see 5.45).

5.3.1 Implementation

We continue to use the notation from Minka (2008), as our algorithm is a direct

extension of the EP implemented there, and shares similar equations.

Similar to the ADF setting, we have the factors fi(SAB) = σ(SA − SB +OA ·
WB −OB ·WA) (for three factors) which we want to approximate with

f̃i(SAB) = ci exp(−1

2
(SAB −mi)

TV −1i (SAB −mi)). (5.43)

We are always able to do this, because we can define the approximation of the

factor as proportional to the new posterior (we will drop the new notation from

now on) over the old posterior:

f̃i(SAB) ∝ qnew(SAB)

q\i(SAB)
. (5.44)

q\i is the posterior from which we have removed the effect of the term i. If

Chapter 5. Bayesian Approach 39

the posterior over SAB is q(SAB) ∼ N(SAB;m,V) then

q\i(SAB) ∼ N(SAB;m\i, V \i) ∝ q(SAB)

f̃i(SAB)
(5.45)

(V \i)−1 = V −1 − V −1i (5.46)

m\i = V \i(V −1m− V −1i mi). (5.47)

The new posterior is computed via ADF, using the exact posterior p̂ :

Zi(m
\i, V \i) =

∫
SAB

fi(SAB) · q\i(SAB) dSAB (5.48)

p̂(SAB) = fi(SAB) · q\i(SAB) (5.49)

q(SAB) = argmin
q

KL(p̂(SAB)||q(SAB)) (5.50)

m = m\i + V \i∇m logZi (5.51)

V = V \i − V \i(∇m∇T
m − 2∇v logZi)V

\i. (5.52)

In all of the above equations, we have used SAB instead of S, meaning that for

every match we update only the information for the two players directly involved.

This is correct, because we can prove that minimising the KL divergence for the

whole set of players is equivalent to keeping S\AB unmodified and minimising the

KL divergence for SAB (see Appendix A.2).

Finally, we update the approximation, using, as in (Minka, 2008):

V −1i = V −1 − (V \i)−1 (5.53)

Vi = (∇m∇T
m − 2∇v logZi)

−1 − V \i (5.54)

mi = Vi(V
−1m− (V \i)−1m\i) (5.55)

= m\i + (Vi + V \i)(V \i)−1(m−m\i) (5.56)

= m\i + (∇m∇T
m − 2∇v logZi)

−1∇m logZi (5.57)

ci = Zi|I + V \iV −1i |1/2 exp(
1

2
∇T

m(∇m∇T
m − 2∇v)

−1∇m logZi) (5.58)

The final EP algorithm is shown below:

Chapter 5. Bayesian Approach 40

Algorithm 2: EP algorithm

1 Initialise the prior term

2 Initialise the other terms to 1 :

mi = 0 (5.59)

si = 1 (5.60)

Vi = 1020 · I (5.61)

3 Initialise posterior :

m = mprior, V = Vprior (5.62)

while all {mi, Vi, ci} not converged do

for i = 1, . . . N do

4 Set m and V with only the information for the two players

5 Remove f̃i from the posterior, to get an old posterior

V \i = (V −1 − V −1i)−1

m\i = V \i(V −1m− V −1i mi)

6 Compute the posterior (same as ADF), using the old posterior and

fi

Zi(m
\i, V \i) =

∫
SAB

fi(SAB) · q\i(SAB) dSAB

m = m\i + V \i∇m logZi

V = V \i − V \i(∇m∇T
m − 2∇v logZi)V

\i

7 Update the approximation f̃i for fi

Vi = (∇m∇T
m − 2∇v logZi)

−1 − V \i

mi = m\i + (∇m∇T
m − 2∇v logZi)

−1∇m logZi

ci = Zi|I + V \iV −1i |1/2 exp(
1

2
∇T

m(∇m∇T
m − 2∇v)

−1∇m logZi)

Chapter 5. Bayesian Approach 41

In the next section we will continue with evaluating the models we built in this

chapter, and presenting the results we have obtained.

5.4 Evaluation

5.4.1 Making predictions

We have mentioned before two different methods for predicting game outcomes,

once we inferred the skills and variances of the players:

• p(pA > pB) =

∫ ∞
−∞

111(SA − SB > 0)p(SA;µA, σA)p(SB;µB, σB) dSA dSB

=

∫ ∞
0

N(D;µA − µB, σ
2
D)dD, and

• p(pA > pB) =

∫ ∞
−∞

σ(SA − SB)p(SA;µA, σA)p(SB;µB, σB) dSA dSB.

We found the first one to be more sensitive to the player’s deviations, and thus

sensible to changes in parameters. The best results were obtained by artificially

increasing variances of the players when making predictions. Otherwise, the

systems tend to be extremely overconfident.

For example, for the first metric we used:

p(pA > pB) =

∫ ∞
0

N(D;µA − µB, (x · σD + y)2)dD, (5.63)

where x and y are two constant we optimised on the validation set, using a

conjugate gradient method.

In the experiments, this prediction method provided better results, compared

to the one using the sigmoid function. In all of the following tests, unless stated

otherwise, the results are obtained using the prediction technique from above.

5.4.2 Model initialisation

For both ADF and EP, the skills and variances are initialised in the beginning of

the algorithm. This corresponds to the prior on these parameters, the belief we

have about where the skills and variances should lie.

The strengths (skills in the 1 factor models, and the first factor in the other

models) are initialised with 1, and have a standard deviation of 1. This choice

Chapter 5. Bayesian Approach 42

is not very important, as this parameter is invariant to addition with a constant,

since the systems depend only through the difference between players. However,

the deviation of 1 reflects our belief about the skills of the players, because the

skill range (best player minus worst player) is assumed to be around 6.

We want the product of the two extra factors (i.e., Oi
AW

i
B where O comes from

Offence, and W from Weakness) to represent the advantage player A would gain

by using ‘strategy’ i against player B. A positive value would be easy to represent,

so we think of O and W both as positive values, between 0 and some constant, 1

for example. Thus they were initialised with random numbers distributed with a

mean of 0.5 and deviation 0.15. Having Gaussian beliefs about these factors may

cause inconsistencies, as normal distributions may have some mass on negative

numbers, which we ignore. However, using positive numbers is easier to interpret,

and usually the variance of the Gaussians is small enough not to cause damage

when the means are close to zero.

For multiple sweeps of the ADF algorithm, we kept the skill values as found

out in the previous sweep, and increased the variances of the strengths to 1, and

the variance of the factors to 0.1.

5.4.3 Dealing with negative variances

It is mentioned by Minka (2001) that the EP algorithm may fail on subsequent

iterations due to negative variances. This can happen in equation 5.45, where we

would end up with a resulting negative variance V \i, and we wouldn’t be able to

compute Zi(m
\i, V \i). Also it has been noted that sometimes the approximations

may oscillate without reaching convergence, in the presence of many negative

variances. Minka (2001) suggests modifying the variance for these terms to a very

big number, which would practically ignore the respective observation (V \i ≈ V).

We have to pay even more attention to this phenomenon, because our approx-

imation of Zi (5.22) uses a square root of a (weighted) sum of variances. And it

might become negative even for a V \i that has mostly positive terms. This is the

main stability issue in our algorithm.

As we have mentioned, ignoring the correlations between players (and between

factors) is probably diminishing the predictive ability of the algorithm. However,

it is easier to control the stability if we assume independence and that the variance

for the skills involved is diagonal.

Chapter 5. Bayesian Approach 43

We have decided against artificially increasing the variances like in the sug-

gestion above, because even if it guarantees convergence, the results we obtain

are worse than without imposing positivity. This happens particularly for players

with few matches, where ignoring some games makes a decent difference on their

skill estimations. We have found that if we upper limit the components of the

posterior variance (V) to 2, for example, it prevents most of the problems without

significantly impairing the performance. In this way, V −1 − V −1i is less likely to

be negative.

This works well for the 1 factor EP, but the multiple factors model tends to

be less stable. To obtain convergence, we had to use additional constraints, such

as:

• limit terms of V \i to less than 2.5;

• before updating the approximations mi, Vi, limit V to more than 0.1. Oth-

erwise V −1 may get large.

5.4.4 Factor restrictions

Another issue concerns the additional factors, which in our model we interpreted

as some positive values, between 0 and 1, for example. This is a problem for both

ADF and EP models, and we have to keep the factors above zero.

For very set of factors we obtain

A ∼

(
Oi

A

W i
A

)
B ∼

(
Oi

B

W i
B

)
; (5.64)

the model is dependent on the value of Oi
AW

i
B−Oi

BW
i
A, which may be interpreted

as the determinant of the 2× 2 matrix formed with the respective factors.

After inferring every set of factors, we do the following checks:

• if a factor is negative, make it small (10−3) instead.

• if the determinant is bigger than a constant (5), divide all the factors such

that the determinant will be less than that constant. For players distributed

roughly between (−3, 3), differences between their skills should not be larger

than this value.

• likewise, limit the products across the diagonals (meaning both Oi
AW

i
B and

Oi
BW

i
A). There might be cases when the two products have big, close values,

Chapter 5. Bayesian Approach 44

resulting in a small difference, which passes unnoticed. No matter how

better a player is, and how weak his opponent, Oi
AW

i
B has no reason to be

larger than 5.

5.5 Accuracy experiments and results

5.5.1 Comparing ADF models with different number of factors

We used the same datasets as in the previous evaluation part (section 4.5). The

three factors model is the best, while five factors give roughly the same perfor-

mance as the simple model; using more factors is not efficient, as we probably

do not have enough data for a large number of factors. As future work, it would

be interesting to construct a system which can use a different number of factors

depending on the quantity of data it has; for example, a hierarchical model that

can use nested models with varying number of factors.

1 3 5 7 9 11 13 15 17 19
−0.692

−0.69

−0.688

−0.686

−0.684

−0.682

−0.68

−0.678

−0.676

−0.674

−0.672

Number of model factors

L
o
g
L
ik
el
ih
o
o
d

True Skill

ADF

Figure 5.5: ADF performance for models with different number of factors. Errorbars

on standard deviation corresponding to results averaged on 10 datasets. For reference,

the best maximum likelihood performance is at −0.683 (Figure 4.1).

Chapter 5. Bayesian Approach 45

TrueSkillTM , which basically uses ADF 1 factor plus some additional tricks,

has a slightly better performance. Probably, the biggest difference is made by

increasing the variance before each match, effectively simulating a simple time

series model.

We should remember that the three factors maximum likelihood solution,

which is the best in the previous chapter, has a log likelihood of about −0.683.

On Figure 5.5 this value is around the performance of the 9 factors ADF, lower

than both TrueSkillTM and the best ADF model.

5.5.2 Extra iterations of ADF algorithms

Restricting the size of the dataset and using only players with more than 12 games

may result in a rather small quantity of data, which affects the ADF algorithms

in a negative way. We can emulate a twice as big dataset effectively by doing one

more algorithm sweep on the same data. With this idea, we tested how well the

ADF models would perform with increasing number of iterations.

Figure 5.6: ADF performance for 1 factor, and different number of iterations. Er-

rorbars on standard error from the 10 datasets, as before.

As we mentioned in section 5.4.2, after doing one sweep, we keep the means

Chapter 5. Bayesian Approach 46

obtained but increase the variances, then do another iteration. This is similar

to the dynamic factor mechanics in TrueSkillTM , and prevents variances from

reaching very small values, causing diminished updates.

As we can see in Figure 5.6, doing more iterations brings a massive benefit.

Starting the algorithm again, but roughly knowing where the skills of the players

lie (as a prior), makes better use of the information available. We can see the

performance we gain over the previous iteration, in Figure 5.7. The biggest in-

crease comes with the second sweep, then every further iteration brings decreasing

advantage.

Figure 5.7: ADF performance for 1 factor, and different number of iterations. We

have plotted the increment of the percentage of correct predictions: how much we

gain by running the algorithm one more sweep through the data. This means that on

the third sweep ADF gets about 0.43% more matches correctly predicted than on the

second sweep, and 0.95% more than on the first iteration.

5.5.3 Combining multiple factors and extra iterations

Running the previous experiment on ADF models with more factors yields the

performances in Figure 5.8. We expected the three factors model to be better than

Chapter 5. Bayesian Approach 47

the initial model, and there is evidence this might be true, though the improve-

ment is not statistically significant. The performance decreases with increasing

the number of factors, but even so, the 11 factors model, for instance, is much

better than only one iteration of ADF, or TrueSkillTM (which is at −0.675).

1 factor

3 factors

11 factors

5 factors

1 4 7 10 13 16 19
−0.69

−0.685

−0.68

−0.675

−0.67

−0.665

−0.66

−0.655

Number of iterations

L
o
g
L
ik
el
ih
o
o
d

Figure 5.8: ADF performance for 1,3,5 and 11 factors, and different number of

iterations. Standard error values are mostly less than 0.001. They do not appear in

the figure because the closeness of the lines would make it difficult to read.

5.5.4 Expectation Propagation

Running Expectation Propagation on the same datasets as before leads to results

in Figure 5.9. The three factors EP does much better than EP with 1 factor.

Increasing the number of factors to more than three comes with a drop in per-

formance, as there probably are not enough matches per player in the datasets.

Chapter 5. Bayesian Approach 48

Figure 5.9: EP performance for 1,3 and 5 factors, and different number of itera-

tions. Errorbars on standard errors corresponding to running the algorithms on the

10 datasets. EP 1 converges after 15 iterations. The more iterations ADF models are

around the upper plot limit of −0.666 (Figure 5.8.)

EP with 1 factor converges faster than the versions with more factors, but also

yields lower performance. In fact, it barely reaches TrueSkillTM . This probably

happens due to TrueSkillTM’s increasing variance trick. However, when looking

again at Figure 5.8 we can see that the best performance for ADF models with

more iterations lie around the −0.666 value. This is still significantly better than

EP. An explanation for this fact would be that for the outcome of EP, all games

have roughly the same importance, while in TrueSkillTM and the ADF models

games towards the end of the dataset have more influence on the resulting players’

skills. Consequently, the sequential methods have an advantage at predicting

matches that take place just after the training data. Probably including a time

series model in the EP algorithm would cancel this advantage.

Nonetheless, we can also look back at Figure 4.1. The best performance

obtained from the maximum likelihood methods is around −0.6835 which is a lot

lower than the accuracy of all the models we have just described. Going Bayesian

is fully justified and brings significant advantages over the maximum likelihood

fitting of models.

Chapter 5. Bayesian Approach 49

Having obtained a good idea about how the algorithms relate to each other

in terms of accuracy, we will try to provide more insight into how more factors

compare to one factor, in the next section.

5.5.5 Increasing the size of the dataset

All the previous experiments have been realised using small datasets. They con-

tain matches played over periods of 20 days, in an effort to minimise the impact of

time on players’ skills. While a befitting choice when comparing models with more

factors to one factor version of themselves, this restriction also brings some dis-

advantages. Firstly, the relatively small number of games per player is probably

a reason why increasing the number of factors for ADF models does not improve

the accuracy as we would have expected. Expectation Propagation makes better

use of the data available, and we can see a clear advantage for the three factors

model. Assuming that the lack of data causes poor performance, especially when

increasing the number of factors in ADF case, we test the algorithms on a larger

dataset.

We increase the time range to 200 days, and otherwise keep the same re-

strictions as for the previous datasets. First of all, TrueSkillTM is now better

than ADF 1 factor, no matter how many iterations. This is not surprising, since

the simple time series model included in TrueSkill becomes very important with

increasing the time range of the games.

Secondly, doing more iterations is not always better, as after a point the mod-

els lose performance. Probably using the resulting skills as a prior contrasts too

much with the actual skills of the players at that point, since the time difference

is of 200 days.

In the third place, we can see that increasing the number of factors now brings

better accuracy, as we have previously presumed. At its highest point, the ADF 3

factors is comparable to TrueSkillTM , while there is evidence that ADF 7 factors

is slightly better. At any rate, they both surpass 1 factor ADF.

Chapter 5. Bayesian Approach 50

Figure 5.10: ADF performance for 1,3,5 and 11 factors, and different number of

iterations. Errorbars on standard error corresponding to the games in the test set.

By contrasting how well TrueSkillTM performs compared to ADF 1 factor

on both small and large datasets, we can see that ADF is less accurate when

increasing the number of days. From this we can infer the importance of a time

series model, and the advantages even a simple method (as increasing the variance

after every match – emulating a Gaussian diffusion) brings to the rating systems.

5.6 One factor vs. more factors

In the previous section we have examined the accuracies for the different algo-

rithms implemented, and in particular, how well models with more factors com-

pare to their one factor versions. In this section, we will continue with defining

a few extra metrics which we will then use to further contrast the models. More

specifically, we will look at ADF and EP with one and three factors.

5.6.1 Metrics

5.6.1.1 Difference between models

In the one factor model the winning probability is P (pA > pB) = σ(SA − SB),

while in the three factor models the same concept is expressed as P (pA > pB) =

Chapter 5. Bayesian Approach 51

σ(SA−SB +OAWB−OBWA). After we fit these parameters for both models, the

difference between these ‘activations’ would be

D = (S3
A − S3

B +O3
AW

3
B −O3

BW
3
A)− (S1

A − S1
B), (5.65)

where upper indices represent the number of the model factors. Henceforth, this

metric relates to how much the predictions of the two models will differ.

Histograms for both ADF and EP are provided in Figure 5.11. We can see

that doing one iteration of ADF does not lead to great differences, while in EP

the one and three factors versions yield more different activations. This is not

surprising, since one iteration of ADF does not have enough time and data to

fully take advantage of the more complex model.

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

100

200

300

400

500

600

700

800

900

Difference between models

N
u
m
b
er

o
f
g
a
m
es

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

200

400

600

800

1000

1200

1400

Difference between models

N
u
m
b
er

o
f
g
a
m
es

Figure 5.11: Histogram on number of games, function of the difference between

likelihood of outcomes (D in equation 5.65). ADF in left figure, EP in right figure.

5.6.1.2 Importance of the extra terms

In the same settings as above, it would be interesting to look at how much the

term with the factors O3
AW

3
B −O3

BW
3
A explains out of the whole ‘skill difference’

S3
A − S3

B +O3
AW

3
B −O3

BW
3
A. For this, we have noted the ‘extra term’ importance

with

I =
|O3

AW
3
B −O3

BW
3
A|

|O3
AW

3
B −O3

BW
3
A|+ |S3

A − S3
B|

(5.66)

Absolute values are mandatory, since sometimes the two term may have op-

posing signs, and even cancel out. The importance is a real number, I ∈ [0, 1].

Histograms for both ADF and EP are provided in Figure 5.12. They are very

similar, and maybe there is small evidence EP has a few more games where the

Chapter 5. Bayesian Approach 52

extra term is more important. Overall, in EP both terms have roughly the same

importance on the given sets of games; In the ADF model, the extra term is a

little less significant.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

50

100

150

200

250

300

350

400

Importance of the extra term

N
u
m
b
er

o
f
g
a
m
es

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

50

100

150

200

250

300

350

400

Importance of the extra term

N
u
m
b
er

o
f
g
a
m
es

Figure 5.12: Histogram on number of games, function of the importance of the

extra term provided by the factors (I in equation 5.66). ADF in left figure, EP in right

figure.

5.6.1.3 Increase in prediction percentage

We also need a way to quantify how well (or how bad) games are predicted by

the models, and for this task an easy choice is to look at the predictions :

P 1(pA > pB) = σ(S1
A − S1

B) (5.67)

P 3(pA > pB) = σ(S3
A − S3

B +O3
AW

3
B −O3

BW
3
A) (5.68)

%Increase = P 3(pA > pB)− P 1(pA > pB), (5.69)

in a game where pA is the winner. Upper indices represent the number of factors

of the model.

Histograms for both ADF and EP are provided in Figure 5.13. They look

like normal distributions, with the mean slightly above zero (meaning that on

average there is some small improvement over the 1 factor model). Negative

values correspond to games where the more factors model has done worse.

Chapter 5. Bayesian Approach 53

−15 −10 −5 0 5 10 15 20
0

100

200

300

400

500

600

700

800

900

Increase % prediction from the 1 factor model

N
u
m
b
er

o
f
g
a
m
es

−40 −30 −20 −10 0 10 20 30 40
0

100

200

300

400

500

600

700

800

900

1000

Increase % prediction from the 1 factor model

N
u
m
b
er

o
f
g
a
m
es

Figure 5.13: Histogram on number of games, function of the percentage increase

in prediction of the model with 3 factors over the 1 factor (see equation 5.69). ADF in

left figure, EP in right figure.

5.6.2 Combining the metrics

A histogram of the number of games for both importance of extra term and the

absolute value of the difference between ADF models is shown below. The bulk of

the matches do not differ much, and the extra term has a moderate importance.

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1
0

100

200

Importance of extra term
Difference between models

N
u
m
b
er

o
f
g
a
m
es

(a) Histogram on number of games, func-

tion of both metrics for the ADF model.

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

−500

0

500

Importance of extra term
Difference between models

%
p
re
d
ic
ti
o
n
in
cr
ea

se

(b) Percentage prediction increase as

function of the other two metrics. The height

represents the sum of the percentage for the

games in every bin. ADF model.

Figure 5.14: ADF model

Next, we plot the sum of percentage prediction increase for every bin, in

Figure 5.14(b). Since in some zones there are very few games (as it can be seen

Chapter 5. Bayesian Approach 54

in Figure 5.14(a)), showing just the mean wouldn’t be very useful. We would

probably need more games per bin to obtain a relevant figure.

We can observe that for bigger differences (about 0.4 − 0.5 on the Y axis),

there are the biggest gains, even if there are significantly fewer games than on

the smaller difference zone (also see Figure 5.11). For values higher than 0.5, the

number of games is too small to have any impact.

A similar histogram for EP (5.15(a)) shows a distribution of the games which

is comparable to the ADF case. The difference would be that there are more

games with bigger differences when moving from the 1 factor model to 3 factors.

This was easily identifiable in Figure 5.11.

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1
0

100

200

300

Importance of extra termDifference between models

N
u
m
b
er

o
f
g
a
m
es

(a) Histogram on number of games, func-

tion of both metrics for the EP model.

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

−500

0

500

Importance of extra term
Difference between models

%
p
re
d
ic
ti
o
n
in
cr
ea

se

(b) Percentage prediction increase as

function of the other two metrics. The height

represents the sum of the percentage for the

games in every bin. EP model.

Figure 5.15: EP model

The games that differ most from the 1 factor model bring, again, the biggest

gain (Figure 5.15(b)). This behaviour is even more accentuated than for the ADF

case, but probably running until convergence brings more differences between

models than only one sweep through the data, as in the ADF instance.

5.6.3 Benefit of extra term in prediction performance

The gain in prediction percentage as a function of the importance of the extra

term is shown in Figure 5.16(a) for ADF and in Figure 5.16(b) for EP. The result

are rather contrasting, with ADF having better predictions as the extra term

Chapter 5. Bayesian Approach 55

becomes predominant. On the other hand, EP gains less for match-ups where

the extra term represents the majority of the skill difference between players.

(a) ADF model (b) EP model

Figure 5.16: Increase of prediction percentage for the three factors model com-

pared to one factor model, as a function of the importance of the extra terms involved.

5.6.4 Players with close skill values

One hypothesis is that for players very close in skill – as predicted by a one factor

model – fitting a number of additional factors would lead to better accuracy. The

extra factors might provide information about the players that the rating system

could use to better predict otherwise very balanced games.

0 0.5 1 1.5 2 2.5 3
0

200

400

600

800

1000

1200

Skill difference between players

N
u
m
b
er

o
f
g
a
m
es

Figure 5.17: Number of games between players expected to have a certain difference

in skills. Values are computed on one dataset, using an EP model with one factor.

Chapter 5. Bayesian Approach 56

We are interested in matches with players that have similar strengths. A

histogram of the difference of skills for all matches in the test set, using an EP 1

factor model, is shown in Figure 5.17.

We fit using an EP model with 3 factors, and then compare the performances.

In Figure 5.18 we look at how well they both do on matches between players

with similar skill values, as predicted by the first EP model. As expected, the

model with more factors is better at judging very close matches, and has similar

performance on the rest of the games. We should also note that there are more

close games (on which EP with more factors does better), with about half of

the games being in the [0, 0.4] interval. These are the balanced games which we

would naturally want to predict better.

Figure 5.18: Log Likelihood for EP 1 factor and EP 3 factors models, as a function

of skill difference between players. Experiments were done on a single dataset, with

points corresponding to the means of each bin. The bins are equally spaced (0.2 skill

difference each), and the errorbars represent the standard error for games in each bin.

The errorbars in Figure 5.18 are done on the games in each bin; some of the

games in a bin may be predicted better by the EP with three factors, some by

the model with only one factor, as long as on average the three factors model

gives higher log likelihood. We would like to confirm the affirmations in the

previous paragraph more statistically solid; in the next experiment we measure

Chapter 5. Bayesian Approach 57

the percentage prediction increase on each game. Indeed, the gain is bigger for

matches with small skill difference between players (Figure 5.19). This proves our

hypothesis right, and indeed more factors help predict balanced matches better.

Figure 5.19: Percentage prediction increase for EP 3 factors over EP 1 factor

model, as a function of skill difference between players. Same conditions as in the

previous figure.

5.6.5 Highly skilled players

Another hypothesis is that in high-level matches, where the best players are in-

volved, the difference in skills could be less significant compared to the proficiency

of the players for different strategies. It is possible that a model with more factors

will perform better on these types of games.

A simple way to pinpoint matches with good players is to compute the average

skill for the two competitors, as identified by a model with one factor. The

associated histogram is shown in Figure 5.20.

Using this metric, the one factor model identifies the competitive level of the

games. Next, for the same matches, we look at the importance of the extra

term in a three factor model. Figure 5.21 shows that as players improve, the

factors become more important compared to just the skill difference. As we have

predicted, the factor model gives more weight to the factors for games with better

players. Also, it should be noted that for very poor players, the factors are more

Chapter 5. Bayesian Approach 58

relevant than the skill difference, too. Consequently, it seems that just the skill

difference is a slightly less relevant for players that are very good, or very bad.

−2 −1 0 1 2 3 4
0

100

200

300

400

500

600

700

800

900

1000

Mean player skill in a match

N
u
m
b
er

o
f
g
a
m
es

Figure 5.20: Number of games corresponding to different levels of average player

skill. For each game, the mean of the skills of the two players is calculated. The skills

have been computed using EP with one factor.

Figure 5.21: Importance of the extra term for different skill levels involved in a

game, computed with a 3 factors EP model. The matches have been ranked using EP

with one factor. Errorbars on the standard error for games in each bin.

However, looking at how well the 3 factors EP and 1 factor EP predict the

results of the same games (Figures 5.22 and 5.23), we can see that the 3 factor

Chapter 5. Bayesian Approach 59

model is actually better only on the games with weaker players. The accuracy

for matches with better players is similar for the two models. We can conclude

that possibly for less strong players the strategy and style of play is more im-

portant than a small difference in the skill value, and there is evidence that this

assumption does not hold with very good players.

Figure 5.22: Log Likelihood for both 3 factors EP (red) and 1 factor EP (blue), on

the same data as in previous experiment. Errorbars on standard error for games in

each bin.

Figure 5.23: Percentage prediction increase for the 3 factors EP over 1 factor EP,

on the same dataset. Errorbars on standard errors for games in each bin.

Chapter 6

Conclusions

This chapter summarises the work conducted during this project, and makes fur-

ther comments on the results presented throughout this document. We mention

justifications for the research tracks we followed, and how they relate to our ini-

tial goals. Having presented all the resulting remarks in the evaluation sections,

we will gather here the few key observations and organise them into compact,

summarising points. In the end, we will suggest appropriate further work.

6.1 Goals and results

As discussed in Chapter 1 we started with four goals, which we have tried to

accomplish during this project. All four have been successfully addressed:

Model The Terry–Bradley model for rating players is used in current algorithms

and all the state of the art rating systems investigated build their models

upon it. Extending to include different numbers of factors was not difficult,

and thus it made a good choice for our research.

Data The game of Go is a two player win–lose game, with an interesting hand-

icap system. Not having to deal with team support and draws prevented

unnecessary complications of the models, since our main interest lies in in-

vestigating the number of latent skills associated to a player. The handicap

system required some effort to incorporate, but we did not experience any

other hardships.

The KGS Go dataset has a large number of players and games, and very

clean records. We possess enough games per player per day to test our

60

Chapter 6. Conclusions 61

models. A number of features (like time of play, game size, free or ranked

game) allows for custom choice of subsets for experiments. It should be

noted that there already is a matchmaking system in use on the server, and

thus the ranked games are balanced. Differences in prediction percentages

of 1% (between two algorithms) are hence quite significant.

Rating systems We fitted the models first by using maximum likelihood, which was not

especially successful. A simple means to compare different models, but

gives poor results due to data insufficiency. We used periods of 20 days

for testing, in order to limit the effect of skills’ change in time, and on the

resulting datasets models with more factors were not statistically improving

as much as we expected. They were indeed slightly better, but the models

did not necessarily generalise to data as well as expected, and the Bayesian

methods gave much better results.

Choosing TrueSkillTM as a reference, we continued with developing ADF

and EP models for rating. The key results are:

– ADF is slightly better with three factors than only one, but a larger

number of factors requires unreasonably large amounts of data. Be-

cause TrueSkillTM contains time series elements, it does better than

ADF with any number of factors.

– In contrast, the three factors EP does much better than EP with one

factor, as it makes better use of data. But, again, increasing the

number of factors to more than three also required a lot of data to

work well. TrueSkillTM works better than EP with one factor, but is

now outperformed by EP with three factors, despite the time series

advantage.

– We found out that iterating ADF on small datasets gives an unexpect-

edly bigger advantage, surpassing all previous algorithms. ADF with

one factor and ten iterations is much better than both TrueSkillTM and

EP with more factors. Re-running ADF knowing where the skills of

the players lie (as a prior) seems to make better use of the information

available. Also the games towards the end of the dataset have more

influence than with EP, which helps predicting outcomes of matches

immediately after.

Chapter 6. Conclusions 62

– On a large dataset with more data available (200 days), we can use

more factors and still improve the (iterated) one factor ADF model.

However, TrueSkillTM is now superior to the one factor (iterated) ADF

(time series more effective). Nevertheless, a 7 factors ADF with one

or two extra iterations has a higher accuracy than even TrueSkillTM .

More factors We have compared and contrasted the models’ predictions using a multitude

of experiments, in order to find out how and when more factors improve

the accuracy. The most important results are:

– ADF gives better predictions for games in which the additional factors

count more than the initial difference in skill. While this is what one

would hope, on the other hand, EP gains less for match-ups where the

extra terms represent the majority of the skill difference between play-

ers. It would be interesting to further investigate the EP behaviour,

as this result may be a sign of problems that could be addressed in

future work.

– A model with more factors is better at judging very close matches, and

still has similar performance on the rest of the games. This is a very

favourable conclusion, as most games set up using a matchmaking sys-

tem are balanced, and these are also the games everyone is interested

in.

6.2 Future work

It is clear from the results described that extending current models to use more

than one latent variables for each player has many advantages. However, there

is a significant amount of work that we have not had the opportunity to carry

out. This is, mainly, related to including some way to incorporate time series

into our models. For the ADF algorithm an easy addition would be to emulate

TrueSkillTM ’s choice, by adding extra variance to the skills after every match,

or every day. In such a model the variance increases linearly with time, so the

confidence interval grows like the square root of time. We might be worried about

Chapter 6. Conclusions 63

drifting to infinity, so we may try for example a process such as:

s(t+ 1) = s(t) ·
√

1− ε2 + εν

ν ∼ N(0, w2),

and control its spread with the w parameter.

Other interesting tasks, suitable for future work would be:

• To fit the posterior over the factors using a full covariance matrix and to

check for anti-correlations between the factors. For simplicity, we have

assumed that they are independent, which may negatively affect the per-

formance of the algorithms.

• Keeping track of the correlations between players, which has already been

proved to increase the accuracy (Birlutiu and Heskes, 2007).

• Constructing a system which can use a different number of factors depend-

ing on the quantity of data it has; for example, a hierarchical model that

can use nested models with varying number of factors. Our algorithms suf-

fered from the lack of data, and it would be useful to automatically choose

the best number of factors.

• Investigate if factors map to some real, identifiable characteristics and pro-

vide any insight into the strategies used by players. Obtaining opinions

from expert gamers would be particularly valuable.

• Learning the handicap and komi scaling factors directly from the data.

• Investigating why approximate inference using ADF is affected so much by

re-iterating on the same (relatively small) data.

Appendix A

A.1 Reducing the ADF update to two players

The factor for the match is

fi(S) = σ(SA − SB) = fi(SA, SB) (A.1)

By separating the players in two sets, one containing pA and pB, and the other

one the rest of the competitors p\AB, we can expand the exact skills’ posterior

p̂(S) =
fi(SA, SB)q(SA, SB)q(S\AB|SA, SB)∫

S

fi(SA, SB)q(SA, SB)q(S\AB|SA, SB) dS
(A.2)

The integral from the denominator is∫
S\AB

[∫
SAB

fi(SA, SB)q(SA, SB)q(S\AB|SA, SB) dSAB

]
dS\AB

=

∫
SAB

fi(SA, SB)q(SA, SB) dSAB

∫
S\AB

q(S\AB|SA, SB) dS\AB

=

∫
SAB

fi(SA, SB)q(SA, SB) dSAB (A.3)

We can now write the posterior as

p̂(S) = p̂(SA, SB)q(S\AB|SA, SB) (A.4)

64

Appendix A. 65

Computing the KL divergence :

KL(p̂(S)||qnew(S))

=

∫
S

p̂(S) [log p̂(S)− log qnew(S)] dS (A.5)

=

∫
S

p̂(SA, SB)q(S\AB|SA, SB)[log p̂(SA, SB) + log q(S\AB|SA, SB)

− log qnew(SA, SB)− log qnew(S\AB|SA, SB)] dS (A.6)

=

∫
S

p̂(SA, SB)q(S\AB|SA, SB)[log p̂(SA, SB)− log qnew(SA, SB)] dS+ (A.7)∫
S

p̂(SA, SB)q(S\AB|SA, SB)[log q(S\AB|SA, SB)− log qnew(S\AB|SA, SB)] dS

= KL(p̂(SA, SB)||qnew(SA, SB))

+ Ep̂(SA,SB)[KL(q(S\AB|SA, SB)||qnew(S\AB|SA, SB))]. (A.8)

These two can be minimised separately, and since the posterior is Gaussian,

it is obvious that the second KL divergence will lead to

qnew(S\AB|SA, SB) = q(S\AB|SA, SB). (A.9)

A.2 Reducing the EP update to two players

p̂(S) = p(pA > pB)q\i(S) (A.10)

= p(pA > pB)q\i(SAB)q\i(S\AB|SAB) (A.11)

= p̂(SAB)q\i(S\AB|SAB) (A.12)

KL(p̂(S)||q(S)) = KL(p̂(SAB)q\i(S\AB|SAB)||q(SAB)q(S\AB|SAB)) (A.13)

= KL(p̂(SAB)||q(SAB))

+ Ep̂(SAB)[KL(q\i(S\AB|SAB)||q(S\AB|SAB))] (A.14)

Bibliography

ATP - Association of Tennis Professionals. ATP Rankings Frequently

Asked Questions. 2011. URL http://www.atpworldtour.com/Rankings/

Rankings-FAQ.aspx.

R. M. Bell and Y. Koren. Lessons from the Netflix prize challenge. ACM SIGKDD

Explorations Newsletter, 9(2):75, Dec. 2007. ISSN 19310145. doi: 10.1145/

1345448.1345465.

A. Birlutiu and T. Heskes. Expectation propagation for rating players in sports

competitions. Knowledge Discovery in Databases: PKDD 2007, pages 374–381,

2007.

R. Bradley and M. Terry. Rank analysis of incomplete block designs: I. The

method of paired comparisons. Biometrika, 39(3/4):324–345, 1952. ISSN 0006-

3444.

J. Cai, E. Candes, and Z. Shen. A singular value thresholding algorithm for

matrix completion. preprint, pages 1–28, 2008.

P. Dangauthier, R. Herbrich, T. Minka, and T. Graepel. Trueskill through time:

Revisiting the history of chess. Advances in Neural Information Processing

Systems, 20:337–344, 2008.

A. E. Elo. The Rating of Chess Players, Past and Present. Batsford, (London),

1978. ISBN 0923891277.

M. E. Glickman. Parameter Estimation in Large Dynamic Paired Comparison

Experiments. Journal of the Royal Statistical Society: Series C (Applied Statis-

tics), 48(3):377–394, Aug. 1999. ISSN 0035-9254. doi: 10.1111/1467-9876.

00159.

66

http://www.atpworldtour.com/Rankings/Rankings-FAQ.aspx
http://www.atpworldtour.com/Rankings/Rankings-FAQ.aspx

Bibliography 67

K. Harkness. Official chess handbook. David McKay Company, 1967.

R. Herbrich. Ranking and Matchmaking TrueSkill Revealed, 2007. URL http://

www.microsoft.com/downloads/en/details.aspx?id=7367. Talk: Gamefest

2007.

R. Herbrich, T. Minka, and T. Graepel. TrueSkill(TM): A Bayesian skill rating

system. Advances in Neural Information Processing Systems, 20:569–576, 2007.

D. Hunter. MM algorithms for generalized Bradley-Terry models. The Annals of

Statistics, 32(1):384–406, 2004. ISSN 0090-5364.

Y. Koren, R. Bell, and C. Volinsky. Matrix factorization techniques for recom-

mender systems. Computer, 42(8):30–37, 2009. ISSN 0018-9162.

F. Kschischang, B. Frey, and H. Loeliger. Factor graphs and the sum-product

algorithm. Information Theory, IEEE Transactions on, 47(2):498–519, 2001.

D. J. C. MacKay. The evidence framework applied to classification networks.

Neural computation, 4(5):720–736, 1992.

D. J. C. MacKay. Information theory, inference, and learning algorithms. Cam-

bridge Univ Pr, 2003. ISBN 0521642981.

T. P. Minka. A family of algorithms for approximate Bayesian inference. PhD

thesis, 2001. Massachusetts Institute of Technology.

T. P. Minka. EP: A quick reference, 2008. URL http://research.microsoft.

com/en-us/um/people/minka/papers/ep/minka-ep-quickref.pdf.

B. Sarwar, G. Karypis, J. Konstan, and J. Reidl. Item-based collaborative fil-

tering recommendation algorithms. In Proceedings of the 10th international

conference on World Wide Web, pages 285–295. ACM, 2001. ISBN 1581133480.

G. Takács, I. Pilászy, B. Németh, and D. Tikk. Matrix factorization and neighbor

based algorithms for the Netflix prize problem. Proceedings of the 2008 ACM

conference on Recommender systems - RecSys ’08, page 267, 2008. doi: 10.

1145/1454008.1454049.

TopCoder Inc. Algorithm Competition Rating System, 2008. URL http://apps.

topcoder.com/wiki/display/tc/Algorithm+Competition+Rating+System.

http://www.microsoft.com/downloads/en/details.aspx?id=7367
http://www.microsoft.com/downloads/en/details.aspx?id=7367
http://research.microsoft.com/en-us/um/people/minka/papers/ep/minka-ep-quickref.pdf
http://research.microsoft.com/en-us/um/people/minka/papers/ep/minka-ep-quickref.pdf
http://apps.topcoder.com/wiki/display/tc/Algorithm+Competition+Rating+System
http://apps.topcoder.com/wiki/display/tc/Algorithm+Competition+Rating+System

Bibliography 68

J. Zhou and T. Luo. Towards an Introduction to Collaborative Filtering. 2009

International Conference on Computational Science and Engineering, pages

576–581, 2009. doi: 10.1109/CSE.2009.381.

	Introduction
	Rating systems
	Purpose
	Motivation
	Objectives
	Project outline

	Background
	Evolution of rating systems
	Related work
	Recommender systems

	Data
	Data format
	Data restrictions
	Komi and handicaps

	Maximum Likelihood fitting of models
	Standard Bradley–Terry and Elo models
	Fitting the models
	Regularization
	Extending the system with more factors
	Evaluation and results
	Number of factors
	Time variability
	Generalising capacity
	Calibration

	Bayesian Approach
	True Skill™
	TrueSkill™ description
	Modifications

	Assumed-density filtering
	Algorithm description
	Applying ADF to rating
	One factor ADF model
	ADF with more factors
	Problems

	Expectation Propagation
	Implementation

	Evaluation
	Making predictions
	Model initialisation
	Dealing with negative variances
	Factor restrictions

	Accuracy experiments and results
	Comparing ADF models with different number of factors
	Extra iterations of ADF algorithms
	Combining multiple factors and extra iterations
	Expectation Propagation
	Increasing the size of the dataset

	One factor vs. more factors
	Metrics
	Combining the metrics
	Benefit of extra term in prediction performance
	Players with close skill values
	Highly skilled players

	Conclusions
	Goals and results
	Future work

	
	Reducing the ADF update to two players
	Reducing the EP update to two players

	Bibliography

