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Abstract
This project looks at the challenges involved in the automatic recon-

struction of strip (vertically cut) and cross (both vertically and horizontally

cut) shredded documents. The unshredding problem is of interest in the

fields of forensics, investigative sciences, and archaeology.

All stages of the unshredding pipeline are analysed, starting from scanned

images of shreds and ending with reconstructed documents. The current

bottlenecks in this pipeline are identified and solutions are proposed.

The original contributions of this project include a probabilistic scor-

ing function which outperforms the standard cost functions used in lit-

erature, a refinement upon a previously proposed, graph-inspired, search

heuristic and a tractable up/down orientation method for strip-cut shreds.
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Chapter 1

Introduction

Ever since the paper shredder was invented, people have worked on sticking the pieces

back together again. Recently, techniques permitting the purely electronic storage and

transmittal of sensitive documents have been developed but, because of convenience or

for legal reasons, many sensitive documents are still printed and eventually shredded.

Traditionally, the cost of reconstructing these documents was considered prohibitive

as the work had to be done manually (see Figure 1.1), however with the development

of methods that partly automate the process this situation is changing.

It is currently unclear what level of security the paper shredder still offers.

Figure 1.1: A shredded document belonging to the CIA. This was reconstructed by a

team of carpet weavers during the 1979 Iran hostage crisis. The reconstructed docu-

ments were eventually released by the Iranian government in a series of books [23]
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6 Chapter 1. Introduction

1.1 Importance

Techniques such as dumpster diving have long been used to gain access to sensitive

information. Skoudis [44], for instance, discusses how such techniques, in conjunc-

tion with basic social engineering, can completely circumvent the security measures

protecting a system. Similar approaches also account for part of the several million

identity theft cases identified by the US Federal Trade Commission every year [51]. In

the face of this danger, both Skoudis and the Federal Trade Commission call attention

to the shredding of sensitive documents as a good security measure to take. [44, 50].

However, the development of commercial shredded document reconstruction software

[48] casts doubts on the benefits of shredders and highlights the need for further re-

search in this area.

One recent initiative looking at the reconstruction problem was the 2011 DARPA1

shredding challenge, which offered a $50,000 prize for the first team to successfully

solve a series of puzzles printed on shredded paper [11]. The puzzle was solved in 32

days, with the winning team managing to reconstruct a total of 5 documents shredded

into more than 10,000 pieces (see Figure 1.3).

The DARPA Challenge was motivated by the difficulties that troops encounter in war

zones, while trying to make sense of the remnants of destroyed documents. Further

research in this area could have a significant impact on a number of related problems

in the fields of forensics and investigative science. One of the most notable projects

that could benefit from advancements in unshredding technology is the current effort to

recover the shredded archives of the East German secret police. The STASI2 destroyed

most of its archives before the 1990 reunification with West Germany. These archives

consist of 16,000 bags of shredded documents and, so far, it has taken three dozen

people six years to reconstruct 300 of them [21]. At that rate, it would take 11,520

person-years to finish the task (see Figure 1.2).

Figure 1.2: A fraction of the 16,000 bags containing the shredded STASI archives.

1Defense Advanced Research Projects Agency
2The Ministry for State Security - The official state security service of East Germany
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(a) One of the easiest documents in the DARPA Challenge. It is perfectly reconstructed.

(b) One of the hardest documents in the DARPA Challenge. Even though the reconstruction is

far from complete, the competitors were able to extract the information they needed from this

partial solution.

Figure 1.3: Two of the DARPA Challenge documents [11]



8 Chapter 1. Introduction

Outside of forensics, the techniques developed to aid the reconstruction of shredded

paper could also be of use to archaeologists. Several approaches to reconstructing

ancient artefacts (eg: [32, 31]) face problems regarding image feature analysis and

curve matching methods which are very similar to the problems tackled in shredded

document reconstruction.

1.2 Paper Shredders

Paper shredders come in many different shapes, sizes and price ranges. It is therefore

worthwhile to take a closer look at the types of shredders in use and at the security they

offer.

There are 3 main categories of shredders:

• Strip-cut: The cheapest and least secure variant. The paper is cut in long vertical

strips. The width of the strips varies with the model.

• Cross-cut: The type of shredder typically used when extra security is deemed

necessary. The paper is cut both vertically and horizontally into small rectangles.

The size of the rectangles again varies with the model.

• Other: There are several types of industrial or specialist shredders that fall out-

side of the above categories. These include things such as Grinders which con-

sist of a rotating shaft with blades that grinds the paper until it is small enough to

fall through a mesh. These types of shredders are rarely used outside of industrial

settings, so we shall not consider them further.

The strip and cross-cut shredders can be further classified according to the DIN3 32757

standard which is used throughout Europe [41]. This standard defines 6 common cate-

gories of strip or cross-cut shredders based on the level of security they offer, as shown

in Table 1.1.

Security Level
Strip-Cut Cross-Cut

Shred size No. shreds/page Shred size No. shreds/page

Level 1 12 mm. 18 11x40 mm. 152

Level 2 6 mm. 35 8x40 mm. 216

Level 3 2 mm. 105 4x30 mm. 530

Level 4 N.A. N.A. 2x15 mm. 2100

Level 5 N.A. N.A. 0.8x12 mm. 6575

Level 6 N.A. N.A. 0.8x4 mm. 19725

Table 1.1: Levels of security defined by the DIN 32757 standard

3Deutsche Industrial Norm
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In order to get a better intuitive sense of these, Figure 1.4 shows sample shreds out-

putted by machines at each level.

(a) Level 1 (b) Level 2 (c) Level 3 (d) Level 4 (e) Level 5 (f) Level 6

Figure 1.4: The output generated by shredders at the different DIN levels [41].

As can be seen, the amount of security offered varies drastically. At level 1 the paper

could feasibly be reassembled by hand, while at level 6, the noise introduced by the

cutting and scanning of the pieces would likely make a full reconstruction impossible.

1.3 Roadmap

In Chapter 2 we formally define the problem being analysed, specify any simplifying

assumptions that were made and look at the problem’s complexity. In Chapter 3 we

look at previously published related work. In Chapter 4 a novel probabilistic score

function is proposed and shown to perform well in comparison with the standard cost

functions used in literature. In Chapter 5 several tractable search heuristics are anal-

ysed and a new heuristic is proposed. Chapter 6 looks at the pre-processing function

and introduces a simple and computationally efficient orientation detection method.

Finally, Chapter 7 analyses the results of the whole system and discuses possible fu-

ture work.





Chapter 2

Problem Definition

2.1 Domain

There are many subdomains under the general unshredding umbrella. Some of the

more common distinctions look at how the paper was shredded (eg: strip-cut, cross-

cut or hand torn), at the nature of the shredded document (eg: black and white or

coloured; text document, picture or mixed) and at the reconstruction method (eg: fully

automatic, integrated human expert or crowdsourced).

Nowadays, most documents are mechanically shredded rather than hand torn, so we

decide to focus solely on the strip-cut and the cross-cut variants. Additionally, the most

commonly shredded documents are black and white, typed, text documents, so this is

the variant we are interested in. Finally, we only look at fully automatic solutions,

partly because previous work [35, 45, 36, 40] has shown that automatic methods can

be modified to incorporate user interaction with relative ease.

2.2 Assumptions

The output of a shredding device, and therefore the input to our algorithm, is a set of n

shreds S = {s0, ...,sn−1}. The first part of our algorithm is a pre-processing step which

aims to transform the real scanned images, containing the shreds, into images we call

ideal shreds.

The ideal shreds have the following properties:

• Each ideal shred corresponds exactly to a separate image file. That is to say, an

ideal shred image file will contain all the pixels belonging to a certain shred and

only those pixels.

• All ideal shreds have the same height and width.

• All edges on all ideal shreds are either perfectly vertical or perfectly horizontal.

11



12 Chapter 2. Problem Definition

• All ideal shreds are correctly orientated. That is to say, if the original document

were displayed with its longest edge vertically aligned, then all ideal shreds have

the same orientation they would have in that original document (note that this

means the document may be “upside down”; this is fine as long as all shreds

share the same orientation).

• The ideal shred image files contain only pure white and pure black pixels.

The problem of reducing the real shreds to these ideal shreds is analysed in Chapter

6. For the rest of this work, the input to the algorithm is assumed to consist of ideal

shreds (see Figure 2.1).

Figure 2.1: Example of ideal shreds of a document.

Now that we have our ideal shreds, the problem can be further subdivided into two

functions.
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2.3 Formal definition of score and search functions

The edge scoring function: This first function analyses all pairs of shreds for edge

matches and returns a number that represents the quality of each match (see Figure

2.2).

Figure 2.2: A potential edge between two shreds. The edge scoring function has to

evaluate this match and report how good it is.

Formally, we must obtain: scr(si,s j) and scb(si,s j),∀si,s j ∈ S where scr(si,s j) is the

score of placing s j to the right of si and scb(si,s j) is the score of placing s j below si.

The global search function: The second function receives the scores between all pairs

of shreds as input and must find an arrangement of shreds in 2D space that optimises

the global score.

We consider the global score to be the sum of all individual scores between neighbour-

ing shreds. Modifying the formulation made in [6], we can define a solution of the

search function as a mapping Π : D2→ S where D = {0, ..., |S|−1}. This means each

position in a two dimensional space defined by D2 corresponds to a shred. Formally

Π(r,c) =

{

the shred placed at row r, column c; IF such a shred exists

a completely blank shred; OTHERWISE
,∀r,c ∈ D

The global score of a shred placement, GS(Π) can then be defined as:1

GS(Π) =
|S|−1

∑
r=1

|S|−1

∑
c=1

(scb(Π(r−1,c),Π(r,c))+ scr(Π(r,c−1),Π(r,c)))

1This assumes the shreds are indexed such as (0,0) is the top, leftmost shred and (|S−1|, |S−1|) is

the bottom, rightmost shred
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2.4 Complexity

The scoring function is forced to calculate a score for each pair of shreds. Therefore,

if we have n shreds, we will have to calculate on the order of n2 scores. Looking at

the number of pieces that a page can be shred into (Table: 1.1), we can see that this

quickly becomes a problem. Some techniques that could mitigate this bottleneck are

explored in Section 3.4

The search function, on the other hand, has to search the space of all possible two

dimensional placements of edges. Since we have no information about the original

shape of the document, the space we must consider for n shreds will have length =
height = n and therefore positions = n2. This means we are placing n shreds into n2

slots and so the number of possible placements is

(

n2

n

)

=
n2!

n!(n2−n)!
. Clearly this is a

huge search space and, in fact, [35] has shown that the search problem is NP-hard even

if restricted to just strip-cut documents. Again, looking at Table 1.1 we can easily see

that optimal search solutions are not feasible for this problem and we must therefore

make do with heuristics.

2.5 Modularity

By splitting the reconstruction into the three mentioned sub-functions (pre-processing,

score and search), we attempt to solve the problem in a modular way.

Any of the three functions could be enhanced, or replaced entirely without needing to

make any modifications in the other two functions. This is particularly useful since

each function has quite a different goal and utilises different techniques (for instance,

all optical character recognition related algorithms will be restricted to the score func-

tion). This separation of concerns allows us to improve algorithms more easily or

extended them to different problem domains.

This modularity is something that was aimed at throughout, so that not only can any

of the functions be replaced, but they can easily be composed with other functions.

These factors will be discussed more thoroughly in the chapters corresponding to each

function.



Chapter 3

Literature Review

3.1 Related Problems

The unshredding problem can be viewed as a special case of the general jigsaw recon-

struction problem. Automatically solving jigsaws has been an active area of research

since the 60s [16] and as such there is a wealth of information published on this topic.

However the majority of early methods focus entirely on the shape information of the

pieces (eg: [16, 18]) and are therefore not applicable to our problem. More recently

there have been several attempts that also utilise the visual information of the pieces

(eg: [12, 52]), however these methods mostly focus on the distribution of colours on

the images and thus are not easily applicable to our black and white domain. Addition-

ally, the solutions proposed are generally restricted to very small problem instances

(usually less than 50 pieces), which is too small a number for our purposes. One

promising method is presented in [30]. Here the authors reconstruct the jigsaw while

looking only at image features, and also manage to solve instances with as many as

320 pieces. The features used in their comparison function are viable candidates for

shred comparison or clustering.

Another related problem is the reconstruction of full-colour shredded documents. As

opposed to the jigsaw puzzle formulation, this problem has no edge shape information

to use. However, the availability of full-colour means that the amount of information

available on a shred is much higher than in the case of binary data (i.e. black and white

pixels). A thorough review of this problem is presented in [43]. Here, Skeoch analyses

several types of distance functions that look at how similar two pixels are and uses

these to design some simple yet effective shred comparison functions. However, the

author notes that these methods don’t work very well on black and white documents.

Additionally, the analysis is restricted to the strip-cut variant.

Yet another related problem, is the reconstruction of hand-torn documents. In this

problem, edge shape becomes once more a big factor, especially since hand-torn doc-

uments tend to contain much fewer shreds than mechanically torn ones. Most ap-

proaches (eg: [25, 7, 38]) focus on curve matching methods and are therefore not

applicable to us. Additionally, since the search space is smaller, such approaches are

15



16 Chapter 3. Literature Review

generally quite computationally expensive ([25], for instance, was only tested on up

to 15 shreds). One interesting method in this area was presented by De Smet in [13].

Here, he proposes a search algorithm that takes advantage of the way humans tend to

stack hand-torn shreds and which successfully manages to speed up the search pro-

cess. A method more applicable to our problem is analysed in [14], where the authors

look at the effectiveness of different features when used to cluster the shreds based on

similarity.

A final related problem is the semi-automatic reconstruction of shredded documents.

Some of the most successful reconstruction methods developed so far, including those

that won the DARPA Shredder Challenge [17, 9] fall under this category and incor-

porate human input into the evaluation loop. Using even a small amount of human

expertise can vastly reduce the difficulty of the problem, because humans can catch

errors early, before these have a chance to propagate. One example of such a system is

shown in Figure 3.1

Figure 3.1: The pipeline of the Deshredder algorithm and user interface. Figure taken

from [9].

A particularly interesting semi-automatic approach was developed in [53], where the

authors show a shred to the user and then allow him to draw what a portion of the

neighbouring shred might look like. The user is then shown shreds which match his

drawing, at which point he can either select a correct match from the proposed edges

or decide change his drawing.
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3.2 Edge comparison functions

Most previously published approaches have used a cost function to compare edge

matches. A cost function means that a lower cost represents a better match and, in

particular, a cost of 0 shows a perfect match and a cost of ∞ shows an impossible one.

Relatively little progress has been made in developing the cost function. Most papers

(eg: [35, 36, 34, 40, 6, 39]) settle on a simple “Gaussian cost” formulation which does

a weighted difference of each pair of adjacent pixels on either side of the proposed

join and increases the cost of the join if the pixels are too dissimilar. The logic here

is that neighbouring shreds are more likely to have matching pixels on their edges. In

order to mitigate the effect of noise, a “Gaussian” comparison is done by looking at

a small neighbourhood of pixels rather than doing a single pixel to pixel comparison

(see Figure 3.2).

Figure 3.2: Cost function calculating the weighted sum of the difference between two

opposing pixels and their respective opposing neighbours. Figure taken from [6]

In order to formally define this function, we first must get a term for the weighted sum

of the yth pixel on shred A being matched to the corresponding yth pixel on shred B.

We call this function e′h(A,B,y) and define it as:

e′h(A,B,y) =|0.7(vr(A,y)− vl(B,y))+

0.1(vr(A,y+1)− vl(B,y+1))+

0.1(vr(A,y−1)− vl(B,y−1))+

0.05(vr(A,y+2)− vl(B,y+2))+

0.05(vr(A,y−2)− vl(B,y−2))|

where vr(A,y) returns the yth pixel on the right edge of shred A and vl(A,y) returns the

yth pixel on the left edge of shred A.
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Once we have this weighted sum, we can pass it through a threshold τ in order to obtain

the pixel cost:

eh(A,B,y) =

{

1 if e′h(A,B,y)≥ τ

0 otherwise

And finally, the edge cost is simply the sum of all pixel costs:

cr(A,B) = ∑
y∈Edge Pixels

eh(A,B,y)

One problem with the above formulation is that matching a completely white edge to

another completely white edge will give a perfect cost of 0. Therefore whenever such

a white-on-white match is available it will be taken, which can result in undesirable

behaviour (see Figure 3.3).

Figure 3.3: Left: the correct match. Right: white-on-white match which would get a

perfect cost under the Gaussian cost function and be incorrectly preferred

A refinement to the cost function that solves the white-on-white problem is proposed

in [45]. Here, the authors base the cost only on how well the black pixels match (i.e

they disregard matching white pixels from their cost computation). This paper also

introduces a heuristic that penalises edges that have too few black pixels on them.

These improvements result in the best cost function published so far and therefore the

main benchmark against which we will compare our method.

The authors of [33] present another proof-of-concept cost function improvement. They

use computer vision techniques to identify individual characters that were split be-

tween different shreds and try to match them together. The authors learn the correct

character shapes from the shreds themselves, therefore the method can be applied on

any character set. The paper has promising preliminary results but doesn’t provide

comparisons with other cost functions, so aspects such as robustness to noise remain

unclear.
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3.3 Search functions

Significant effort has been made towards finding a good search function and several

different approaches have been explored. In [35], the authors show that the search

problem is NP hard by reducing it to a Travelling Salesman Problem. The authors then

solve this Travelling Salesman Problem by using the Chained Lin-Kernighan heuristic

[2]. In [34] an exact solution is attempted via Integer Linear Programming. Due to the

large search space, this paper only looks at the strip-cut variant. The method presented

here yields very good results but is intractable for any number of strips above 150. This

suggests that any attempts to use Integer Linear Programming for the cross-cut variant

would likely be futile.

Several attempts at using top-down local improvement have also been made. These

methods first obtain a seed solution using a heuristic function and then attempt to

improve upon this solution via local search methods. In [36] the authors apply the

Variable Neighbourhood Search meta-heuristic [28], which contains two parts, a lo-

cal search function called variable neighbourhood descent and a perturbation function

which aims to help the local search escape local optima. The variable neighbourhood

descent searches neighbourhoods of increasing size for a solution that is better than

the current one. Here neighbourhoods are obtained by either swapping single pieces,

or shifting groups of pieces around. The perturbation function simply adds some ran-

domness in the form of occasionally switching the solution to a neighbour even if the

neighbour’s score is worse than our current score. In the same paper, the authors also

define an Ant Colony Optimization solution [15]. This Ant Colony Optimization for-

mulation proved to be overall better than the Variable Neighbourhood Search heuristic,

but at the cost of a longer runtime. These results are improved upon in [40], where the

authors use the same Variable Neighbourhood Search formulation, but embed it into

a genetic algorithm. The method defines several mutation and recombination opera-

tors which are applied to an initial population of solutions generated by some simple

heuristics. Between every step of the genetic algorithm, the solution pool is improved

by running the Variable Neighbourhood Search algorithm.

As mentioned above, [36, 40] both rely on heuristic search methods to provide them

with initial seed solutions. One of these methods is the Row Building Heuristic (RBH).

RBH tries to take advantage of the fact that shreds with a completely white edge prob-

ably belong on the margin of the document. RBH therefore randomly selects a shred

with a white left edge as its starting shred. It then adds the best match, as defined by

the cost function, to the right of this starting edge. The greedy process is repeated, thus

increasing the length of the current row, until we append a piece which has a white

right edge, at which point the algorithm simply restarts and attempts to build the next

row.

The second heuristic worth mentioning is the Prim Based Heuristic, which is analogous

to the Prim minimum spanning tree algorithm [37]. This works by picking a random

shred as a starting point and then expanding it by adding a shred to one of the four

possible neighbouring positions. The process is repeated, always greedily adding the

best edge to one of the neighbours of our current solution (see Figure 3.4).
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Figure 3.4: Four steps from the middle of a Prim search are shown. The green pieces

highlight the changes that occur in every step and the red pieces show the positions

that are considered for the insertion of new shreds.

Lastly, a heuristic called ReconstructShreds is proposed in [45]. This heuristic can be

viewed as a relaxation of the Prim heuristic such that we can have multiple clusters of

pieces at any time. ReconstructShreds is looked at in more detail in Section 5.2.
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3.4 Pre-processing the shreds

As discussed in Section 2.2, a pre-processing step is needed in order to transform the

real, noisy, input into a form suitable for the rest of the algorithm. Several aspects of

this pre-processing step have been previously analysed in literature, namely: segmen-

tation, skew correction, up/down orientation and clustering.

Segmentation: The first issue is to actually extract the shreds from the scanned image

and to make sure they’re all the same size. Skeoch [43] tackles this problem by first

thresholding the original image as to detect the position of the pixels sufficiently dif-

ferent from the background colour. Several ways of automating the threshold selection

method are analysed but ultimately, due to the high variance present in scanned im-

ages, user input is still required. After thresholding, Skeoch fits rectangles to all pixel

blobs over a certain size and thus obtains the individual shreds. A complication can

arise when processing narrow strip-cut documents as the shreds can have a tendency

to curve, in a manner similar to human hair. Since this curvature can trip up the rect-

angle fitting, Skeoch proposes instead to detect the corners of the shreds and then fit

a polynomial to the edges. An alternative that may be preferable if noise is a major

issue, would be to use the Generalised Hough Transform [5] to detect the delimitation

of each shred.

Skew Correction: If we have already detected the shred’s bounding rectangles, then

fixing the skew of the image can be done by rotating the rectangles so that their longest

side is vertical. Alternatively, in [9] the authors take a different approach by fixing the

skew first. They frame the skew correction as an optimization problem and seek the

rotation that would minimize the distance between each shred pixel and a vertical line.

This completely avoids the need to fit or detect the lines of the shreds since, after the

shred has been oriented vertically, a simple bounding box can be taken around it. Both

approaches work reasonably well in practice, with maximum errors in the range of 1-2

degrees.

If accuracies greater than this are required, then more complex document orientation

methods can be employed. For instance, in [4], the authors use a row detection method

and then predict the skew and orientation based on some features of these rows. Their

method has a precision of 0.1 degrees, and similar results have also been obtained

by several other algorithms (eg: [1, 49]). However none of these methods have been

tested on extremely small shreds. Their performance degradation as the information

on a shred decreases is unclear and may pose a problem.

Up/Down Orientation: If we have opted for the simpler methods of performing skew

correction, then the shreds will now be either correctly oriented or rotated by 180

degrees. Several reliable methods have been developed to deal with this problem. If

we restrict the problem to documents written in Roman script, then a robust method

is presented in [10]. The author obtains 100% accuracy even on documents degraded

by noise. Additionally, the method is employed for shred orientation detection in [14],

thus showing the method can handle orientation on smaller pieces of text (though that

paper handles hand-torn documents, so the shreds they look at aren’t as small as the

ones we might be interested in). For a completely general approach, there are also
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several orientation methods that work on both Roman and non-Roman scripts, usually

by employing some learning algorithm (eg: [3])

Clustering: One last pre-processing task, useful in some domains, involves clustering

the shreds. The problem is that often the shreds of many different documents will be

mixed together, thus making the reconstruction process intractable. However, if not

all the documents are completely uniform, then the search space can be reduced by

clustering the shreds into similar document classes. Several image features have been

proposed for this classification task. In [47], the authors propose the use of the MPEG-

7 standard descriptors [42] and look at the effectiveness of features such as colour,

shape and texture. The paper shows encouraging results for coloured pages, but black

and white documents prove to be a harder problem. Their method is expanded upon in

[46], where in addition to the MPEG-7 descriptors, the authors also detect higher level

features, such as whether the paper is from a notebook, by using the Hough transform

[22]. In [14] the authors propose several other custom features, such as detecting

whether the text is typed or handwritten and detecting the type of paper used. For text

documents, good results are obtained if the text or paper colour varies, or if the writing

changes from typed to handwritten. Making use of subtler features, such as differences

in fonts, proved to be more difficult.
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Probabilistic Score

This paper proposes a departure from the previous cost function definitions, looking

instead at using a probabilistic model to directly estimate the likelihood of two edges

matching.

4.1 Motivation

A pervasive problem with the cost functions discussed above is that their design is

ad hoc and relies on hand-picked values based on the authors’ empirical observations.

For instance, in [35] the authors have to decide on the size of the Gaussian window

they employ, on the weights to assign to the pixels that fall within that window and

on a suitable value for their threshold function. All these parameters are given a static

value but, since they are dependent on the source document, the authors would need to

manually find different values for each class of documents. In [45] the authors not only

face all of the above problems, but also have to decide on a threshold value for their

row comparison and on another threshold regarding the minimum amount of black

pixels that an edge must have in order for its matches to be considered relevant.

This ad-hoc formulation suffer from several impediments which the probabilistic method

manages to avoid or at least ameliorate:

Cost function Probabilistic score function

Relies on the values the authors hand-

picked for their particular dataset.

Learns a new document’s pixel distribution

by analysing the shreds it is given.

Cannot be easily combined with a different

similarity function.

Can be easily composed with any similarity

function that produces a probability. Sev-

eral such functions already exist, such as

the optical character recognition based sys-

tem proposed in [33]).

23
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Cost function Probabilistic score function

Difficult to evaluate results of the function

since the numbers outputted are meaning-

less, only the order of the results matters.

The scores returned are estimated probabil-

ities of a match, so the calibration of the

method can be easily checked by compar-

ing estimated and observed probabilities.

Cost is additive and must therefore be nor-

malized relative to the sum of lengths of the

matching edges.

All scores are normalized probabilities, so

length of edges or number of edges match-

ing is irrelevant (see Figure 4.1).

(a) Here we are trying to place one of the 3

shreds in the green rectangle into one of the

two red slots. We want to identify the best of

the 6 possible placements.

(b) The raw scores are shown. The scores for

the left slot are lower since it has two neigh-

bouring edges and therefore more probabilities

to multiply together. For the right slot, two of

the edges would give a “white on white” match

and therefore a very large score of 0.9.

(c) Normalized scores shown in red. Number

of pixels multiplied is irrelevant since the scores

for each slot must sum up to 1. Probability

mass for “white on white” matches is split be-

tween the two possible matches, thus making

it less likely that any of them will be picked.

(d) The best placement is shown. Intuitively,

this placement is best because its raw score is

significantly larger than any of its competitor’s.

This score distribution means that this place-

ment is the most likely to be correct.

Figure 4.1: Properties of normalization. Both the issue with the varying number of

pixels and the “white on white” matches are solved by normalizing. In contrast, previous

methods [35, 45] had to employ ad-hoc heuristics to address these problems.
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Additionally, as will be shown in Section 4.3, the probabilistic score outperforms all

previously formulated scoring functions.

Lastly, the effectiveness of probabilistic models, when applied to text data, has been

repeatedly shown. Pixel prediction goes back to systems such as the 1981 JBIG loss-

less compression ISO standard (which tried to predict the value of a pixel using several

features including 6 of its neighbours [20]) and is still employed in today’s state of the

art encoders [19].

4.2 Description

To the best of our knowledge, a probabilistic scoring function has never been previ-

ously used in this domain. We therefore choose to restrict ourselves to a relatively

simple probabilistic model which can be used as a benchmark for future, more com-

plex, approaches.

When looking at a proposed match, we try to estimate the probability that a candidate

pixel is correct given several of its neighbouring pixels (called the candidate pixel’s

“context”, see Figure 4.2). We refer to this conditional probability as Pr(p |C(p,Ex)),
where C(p,Ex) is the context of pixel p when placed next to edge Ex. Ideally we’d

want to learn these conditional probabilities by analysing the original document, which

we obviously don’t have access to. However, relatively few pixels are destroyed when

shedding a document and we can assume that the ones that are destroyed are uniformly

distributed over the space of contexts. Therefore the average distribution of pixels

within the shreds will, in general, be a close approximation to the distribution of those

in the original document. This similarity means that we can get a good estimate of the

needed probabilities by obtaining the probabilities for each individual shred and then

averaging them over all shreds.

Figure 4.2: This shows a proposed match between the top 3 and the bottom 3 pixels.

The model estimates the probability that the candidate pixel is white based on the four

context pixels
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4.2.1 Edge likelihood

Once we obtain the conditional probabilities by analysing our shreds, then the raw

probability of two edges matching can be calculated by sliding the context down the

proposed edge and multiplying all the individual candidate pixel probabilities (see Fig-

ure 4.3).

Figure 4.3: The context slides down the proposed edge calculating a series of target

pixel probabilities. All of these are then multiplied together to give the raw edge proba-

bility.

That is to say, if we have a proposed matching between edge E1 and edge E2, and Ex
1

represents the xth pixel on edge 1, then we would estimate the joint probability of the

pixels in the two edges as being:

Pr(Pix(E1),Pix(E2)) =
len(E2)

∏
i=1

Pr(E i
2 |C(E i

2,E1))

A problem arises though, because the shape of the context prohibits us from taking
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the conditional probability for the first and last few pixels (depending on the length of

the context). For these the best we can do is assign them the prior probability, Pr(p),
which is also extracted from the data simply by counting the proportion of white and

black pixels. Therefore, when using the context of size 4 shown in Figure 4.2, the edge

probability will actually be:

Pr(Pix(E1),Pix(E2)) = Pr(E1
2)Pr(E

len(E2)
2 )

len(E2)−1

∏
i=2

Pr(E i
2 |C(E i

2,E1))

4.2.2 Normalization

The above, while being a good measure of the joint probability of pixels on an edge, is

a function that will tend to decrease as len(E2) increases. The function will therefore

tend to prefer shorter edges with less probabilities to multiply. Luckily, using proba-

bilities gives us one more piece of information here. In the original file, every edge of

every shred has only one correct match, since no two shreds are superimposed. There-

fore, we know that the sum of the probabilities of all matches along one edge should

sum up to one. In technical terms, if SE is the set of all edges and Pr(E1,E2) is the

probability that edges E1 and E2 match, then:

∀Ea ∑
Ex∈SE

Pr(Ea,Ex) = 1

To obtain the edge probabilities that satisfy this constraint, the previous pixel proba-

bilities are normalized along every edge. After the normalization, the preference for

shorter edges is eliminated and the probabilities for different edges and pieces can be

directly compared regardless of local features such as a particular edge length. There-

fore, accounting for the normalization process, the final definition becomes1:

Pr(E1,E2) =
Pr(E1

2)Pr(E
len(E2)
2 )∏

len(E2)−1
i=2 Pr(E i

2 |C(E i
2,E1))

∑Ex∈SE
Pr(E1

x )Pr(E
len(Ex)
x )∏

len(Ex)−1
i=2 Pr(E i

x |C(E i
x,E1))

The normalization discussed above has an additional property, which ends up mitigat-

ing the predisposition towards whitespace that some of the other cost functions suffer

from. The property in question is that if E1, E2 and E3 are very similar or identical

edges then they will have less chance of being picked as the best match because the

available probability mass of any match will be split equally among the 3 of them.

Formally, if IEx
is the set of edges identical to Ex then:

∀Ea Pr(Ea,Ex)≤
1

| IEx
|

1There actually is a further problem with the presented formula, namely that it doesn’t account for

edges belonging to the same piece. If E1 and E2 both belong to the same shred then obviously the

probability that they match is 0 since a shred can’t be in 2 places at once. This extra complication is

ignored in the mathematical formalism for reasons of clarity
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Since there are usually several white edges floating around in the edge set at any time,

the above property ends up naturally discounting them without the need for any ad

hoc heuristics (see Table 4.1 for a typical situation and Figure 4.3 for an additional

illustration). To further discount the white on white matches we can introduce dummy

white pieces into the shreds pool.

Raw probabilities Normalized probabilities

Edge 3 Edge 4 Edge 5 Edge 3 Edge 4 Edge 5

Edge 1 0.90 0.90 0.20 0.45 0.45 0.10

Edge 2 0.10 0.10 0.50 0.14 0.14 0.71

Table 4.1: Here Edge 1, 3 and 4 are all white and as such have a very good raw score

when matched together. After normalization however, the match between edge 2 and

5 is considered a better bet than any match containing edge 1, as edge 1’s probability

mass is distributed equally among the identical edges 3 and 4.

4.2.3 Learning

Given the above descriptions, the problem of calculating the probability of any two

edges matching can be reduced to the problem of estimating Pr(p | C(p,Ex)) for an

arbitrary pixel and its context. Depending on the size of the context, various machine

learning methods could be used to accomplish this task. However, if the context is

of the form shown in Figure 4.2, then a simple exhaustive exploration of the context

space becomes a possible solution. If the context is of size 4, as above, and we are

working on black and white documents, then there are only 24 = 16 possible contexts.

Since the number of contexts we can sample is directly proportional to the pixel count

of the source image, for an average one page document, the number of observations

will exceed 1 million. In practice this means that all 16 possible contexts are well

represented in the document (a document where any of the contexts had less than 250

observations hasn’t yet been encountered).

Of course the fit to the data will be limited by such a small context, however care must

be taken when extending the context as it can easily lead to over-fitting. For instance

using a context of size 7 instead of 4 usually leads to having several contexts with a

number of observations in the single digits. Such values can, of course, not be trusted.

Therefore it seems necessary to use more sophisticated methods in conjunction with a

larger context.

One such attempt was made by using neural networks. Different architectures were

tried, with both contexts of size 4 and 7, however no significant difference was found

when compared with the above direct estimation. It’s likely that a context of 7 was

still too small for the neural networks to manage to gain an advantage over direct

estimation. Therefore the neural networks were abandoned as the longer training time

could not be justified on the small contexts used in this method. If, however, we were

to extend the score to use a significantly larger context or an altogether different and

more complex probabilistic model, then more involved learning methods would likely

prove essential.
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4.3 Evaluation

The evaluation measures used here work by comparing the edges predicted by the

algorithm to the real edges. In order to obtain the predicted edges, for every edge, we

simply take the most likely pair edge. If PredMatch(Ea) is a function that returns Ea’s

predicted match, then:

PredMatch(Ea) = argmax
Ex

Pr(Ea,Ex)

4.3.1 Comparison with Gaussian cost functions

In order to perform this comparison, a function CorrMatch(Ea) is defined, which re-

turns the correct match for edge Ea. With this function we can define the score(Ea)
function as:

score(Ea) =

{

1 if CorrMatch(Ea) = argmaxEx
Pr(Ea,Ex)

0 otherwise

However, there’s a mistake here. The problem is that argmaxEx
Pr(Ea,Ex) is not

guaranteed to return a single element. What we really need to check for then is

CorrMatch(Ea) ∈ argmaxEx
Pr(Ea,Ex).

This change allows for multiple maximum likelihood matches, but doesn’t account for

the increased probability that the correct edge is within the predicted set by chance. In

the extreme case, if the probability score returned the same value for every edge, then

this scoring function would judge any pairing as correct. The solution is to discount

the score based on the size of the predicted set (which also makes intuitive sense,

since when a search is actually performed, if there are multiple matches with the same

probability, the search will simply have to pick one at random). The final score function

is:

score(Ea) =

{

1
|argmaxEx Pr(Ea,Ex)| if CorrMatch(Ea) ∈ argmaxEx

Pr(Ea,Ex)

0 otherwise

Therefore the proportion of correctly predicted edges (where SE is again the set of all

edges) is:

predictedCorrect =
∑Ex∈SE

score(Ex)

| {Ea |CorrMatch(Ea) ∈ SE} |
Here the denominator is just counting the number of edges that actually have matches.

This is necessary because using | SE | instead would also count the outer edges which

have no correct match.

Calculating analogous measures for the cost functions defined in [35] and [45] allows

us to compare the three methods and shows the probabilistic score as having a relatively

consistent advantage2 over the other functions (see Figure 4.4).

2In the presented graph, the advantage only manifests on samples with more than 50 shreds. The

performance on the small cases is very volatile, causing the results of the methods to vary from document

to document. The performance on the larger instances is, however, consistently in favour of ProbScore.
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Figure 4.4: The probabilistic score has better results on medium and large instances

than the cost functions presented in [35] (GaussCost) and [45] (BlackGaussCost)

4.3.2 Validity of predicted probabilities

As mentioned in the Motivation, there is another (perhaps more natural) evaluation

that we can perform. Namely comparing the predicted and observed probabilities for

our predicted edge matches. The observed probabilities are calculated exactly as in

the previous section, and the predicted probabilities are recorded for every predicted

match.

The formula bucket = ⌊prob ∗ 10 + 0.5⌋ is used to place the predicted probabilities

into one out of a total of 10 buckets. The observed and predicted probabilities are

then averaged within each bucket, and the process is repeated for different number of

shreds. The resulting graph is Figure 4.5.

4.3.3 Robustness

Another important aspect worth evaluating is the robustness of the method. When

used in real life situations it is unlikely that documents will always be high-resolution,

perfectly cut into shreds and completely smudge-free. In order to test this, the results

obtained on an image are compared to those obtained when various types of noise are

added to the image.
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Figure 4.5: The labels show the number of cross-cut shreds. As the number of shreds

increases the relationship between the predicted and observed probability degrades.

However the overall shape of the curve is still generally increasing, so a higher predicted

probability will usually translate into a higher observed probability and for large predicted

probabilities the method is quite accurate

The types of noise analysed are: downsampling, flipping random pixels and shuffling

random pixels around their original position (see Figure 4.6).

(a) Original image (b) 10% of bits are randomly flipped

(c) The image is downsampled by a

factor of 1.5

(d) Pixels are randomly shuffled to one

of their neighbours

Figure 4.6: How one word of the image is modified by the various types of noise

The score evaluation is run on the original and modified documents, and the results are

shown in Figure 4.7.
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Figure 4.7: Degradation of performance between original image and 3 noisy images

Since the probabilistic scoring function is unique for each document, as it is trained

on the noisy shreds, we’d like to see if this gives it an advantage when compared

to the stationary Gaussian. Therefore, the probabilistic scoring function is compared

with the best Gaussian alternative on all types of noise in Figure 4.8. As expected

some performance degradation is observed in all cases. It is interesting to note that

the largest reduction in performance is caused by the random pixel flipping. This can

be explained by the fact that the other types of noise are restricted by the existing

structure of the document, if you have a section of white pixels, neither downsampling

nor shuffling can introduce a black pixel into it. The algorithm seems to suffer more

from the unrestrained randomness exhibited by the flipping. The good news is that

in real life scenarios most noise should not be completely random and we’d expect it

to be more similar to the downsampling and shuffling types of noise than to the pixel

flipping.

4.4 Drawbacks

Finally, we’ll look at some of the flaws in the probabilistic scoring function and at

some possible solutions.
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(a) Original image
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(b) 10% of bits are randomly flipped
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(c) The image is downsampled by a factor of

1.5
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(d) Pixels are randomly shuffled to one of their

neighbours

Figure 4.8: ProbScore outperforms the best Gaussian cost function on 3 out of 4 noise

variants. The poor performance on case (b) is due to the simple probabilistic model not

being able to cope well with completely random noise. However, this type of noise is

less likely to be encountered than the other variants.

4.4.1 Uniformity assumption

Learning a single set of conditional values of the form Pr(pi | C(pi,Ex)), where the

number of possible contexts C(pi,Ex) is small, implicitly makes the assumption that

these conditional values are relatively uniform over the whole document. This is usu-

ally a reasonable assumption to make if the documents we’re interested in are all text.

However this assumption is certainly not always justified. Consider the document from

Figure 4.9. Here we can clearly see that there are two distinct regions, the text region

and the table region. An algorithm which tries to fit a single valued model with a small

context to this document cannot achieve very good results, because this document can-

not be described well by such a model. The problem will only be compounded if we’re

looking at multiple shredded pages from possibly different documents.

One solution here is to make the context complex enough to remove the uniformity

assumption, by being able to tell between the different regions in the document. This

could be done by using a significantly larger context size, or perhaps by using a differ-
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Figure 4.9: A document in which the uniformity assumption is wrong.

ent probabilistic model that takes higher level features into account (see also Section

4.4.3). A different approach would be to first split the shreds into categories and then

learn a set of conditioned probabilities for every category. In theory this could also

help reduce the problem size, by separating the documents into smaller uniform re-

gions. However, avoiding overfitting might be difficult in this scenario. For instance,

we wouldn’t want the model to decide that every boldfaced piece of text belongs to-

gether in a separate uniform region.

4.4.2 Lack of symmetry

If Ex and Ey are two edges and Erot
x and Erot

y are the previous edges rotated by 180◦

then we might reasonably expect that

∀Ex∀Ey Pr(Ex,Ey) = Pr(Erot
y ,Erot

x )

This would be a good property to have, since we are essentially comparing the exact

same edge matching in both situations. However, the current probabilistic model of-

fers no such guarantee. In particular the probabilistic model cannot guarantee that

P(Ex,Ey) = P(Erot
y ,Erot

x ) because it is not assured (and indeed quite unlikely) that

enough data was present for these two conditional probabilities to have converged to

the same value.

Depending on the situation this deficiency could be ignored. It is possible, however,

that the search function being employed will assume the score to be symmetric. In

that case, the best solution seems to be to calculate both Pr(Ex,Ey) and Pr(Erot
y ,Erot

x )
and re-assign both probabilities to some number in between the 2 original probabilities
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(arguments could be made for either min, max or avg). Care should be taken that

this re-assignment is done before the normalization step, otherwise the values will no

longer add up to 1.

4.4.3 Ignoring non-edge information

This problem is common to both the probabilistic score and all the cost functions pre-

sented above. It is also the hardest to fix. Figure 4.10 shows an error made on a 5x5

cross-cut document. It is interesting to notice how even in a document cut into only 25

pieces such a convincing false match can occur. As the size of the shreds and there-

fore the amount of information available to our scoring function decreases further we

can expect a huge number of such mistakes, making reconstruction of any non-trivial

cross-cut document problematic.

Figure 4.10: An incorrect match that would be very difficult to detect by a cost/score

function which only looks at the edge pixels

The solution here likely involves combining multiple scoring functions looking at dif-

ferent sets of features, both higher and lower level. Luckily, as mentioned above, the

probabilistic score can easily accommodate any such scoring functions as long as they

can express their result as a probability. One possible higher level scoring functions is

discussed in Section 4.5.

4.5 Modularity

One of the big advantages of using a probabilistic scoring function is that this allows

for very easy composition with any other probabilistic function. As a proof-of-concept

implementation, we propose a very simple function, called “RowScore”, and show

how it can be composed with the probabilistic scoring function.

“RowScore” is based on the idea that rows in neighbouring shreds should generally

match. We identify all the rows in the shreds and, when looking at a potential shred

match, sum up all the discrepancies between neighbouring rows. In order to formally



36 Chapter 4. Probabilistic Score

define this sum, we specify a function neighRow such that, if A is a shred and t is a y

coordinate, then:

neighRow(A, t) = the y coordinate of the row in A closest to location t

If we also define rows(A) to be a set of the y coordinates of all rows in shred A, the

measure of how well shreds A and B match is then given by:

RowDist(A,B) = ∑
t∈rows(A)

|t−neighRow(B, t)|

In order to translate this distance into a probability, we can make a simple Gaussian

assumption. We want to assign the most probability mass to the case when the distance

is 0, so this is the mean of the distribution. Therefore the final form of “RowScore”

is3:

RowScore(A,B) =
e
− x2

2σ2

σ
√

2π

Using the above method, we can give the probabilistic scoring function a small but

consistent boost in performance, as shown in Figure 4.11.
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Figure 4.11: Even the extremely simple “RowScore” model gives a noticeable and con-

sistent boost in performance to the probabilistic scoring function.

3The variance of the normal distribution can be set empirically, but should take account of the size

of the shreds. In experiments we have seen that the performance is not very sensitive to this value.
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Heuristic Search

5.1 Motivation

As discussed in the Chapter 3, many complex methods have been applied to the search

problem. These methods take varied approaches such as reduction to a travelling sales-

man problem and making use of industrial solvers [35], variable neighbourhood search

[35, 36, 40], genetic algorithms [40, 29], ant colony optimization [36, 29] and refor-

mulation as an integer linear programming problem [34].

However, at least in the first instance, we decide to focus upon relatively simple greedy

heuristics. Some reasons for this decision are:

• The heuristics run significantly faster than the aforementioned methods. This

allows for ease of prototyping and the ability to easily experiment with many

variations on both the search and cost functions.

• The inner-workings of the heuristics are transparent. This transparency allows

for ease in diagnosing problems with either the heuristics themselves or with

the cost functions. The transparency also allows for easy visualisation of every

individual search step which enables us to observe exactly how errors occur and

are how they are propagated. In contrast, using some of the previous methods

would make it difficult to diagnose, for instance, whether an error is caused by

the search or the cost function.

• Any advanced search methods need to be compared against a solid baseline.

These heuristics provide such a baseline.

• Surprisingly good performance has been obtained using greedy heuristics. For

instance, [45] reports that their simple heuristic search managed to outperform

both a variable neighbourhood search and an ant colony optimization method.

• The heuristics can cope with inputs containing missing shreds or extra shreds

coming from different documents. This robustness is a consequence of the

heuristic’s bottom up formulation, which needs to make fewer assumptions than

the top down optimizing solutions.
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5.2 Description

Despite the fact that most of the previous work has focused on complex search algo-

rithms, a few greedy heuristics have been explored before. We first re-implement 3 of

these heuristics which, in growing order of complexity, are: the Row building heuristic

[36], the Prim based heuristic [36] and the ReconstructShreds heuristic [45]. More de-

tails about these techniques are available in Section 3.3. Additionally, we implement a

fourth, novel, heuristic which is an extension of the ReconstructShreds version.

The central idea behind the ReconstructShreds heuristic is that, at each search step,

the best available edge should be added to the partial solution. A few steps of the

execution of this algorithm are examined in Figure 5.1, where all groups of shreds of

size 2 or larger are shown (i.e. the individual pieces, which are groups of size 1, are

omitted from the figure). The algorithm will continue to add the best possible edge to

the partial solution and thus enlarge and merge clusters until only 1 cluster is left. This

final cluster is the algorithm’s final solution.

(a) There are 3 clusters: A, B and C . (b) Best edge was between 2 shreds which be-

longed to neither cluster. Therefore a new clus-

ter is created.

(c) Best edge was between a shred belonging

to cluster B and one belonging to neither clus-

ter. Therefore cluster B is enlarged.

(d) Best edge was between a shred belong-

ing to cluster B and one belonging to cluster

C. Therefore the two clusters are merged.

Figure 5.1: Four steps from the middle of a ReconstructShreds search are shown. The

clusters are called A, B, C and D, the green pieces highlight the changes that occur in

every step and the red pieces show the positions that are considered for the insertion

of new shreds.
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5.2.1 Analysis of ReconstructShreds

This algorithm calculates all the edge probabilities and goes through the list in de-

scending order. Whenever it encounters a valid edge, it adds it to the solution set (see

Algorithm 1 for the pseudocode 1).

Algorithm 1 The ReconstructShreds heuristic

⊲ Takes the set of edges and the set of shreds as input

1: procedure RECONSTRUCTSHREDS(Sedges, Sshreds)

2: probs← [] ⊲ Initialize 2 empty arrays for the probabilities and edges

3: edges← []
4: for all Ex ∈ Sedges do

5: for all Ey ∈ Sedges do

6: probs[(Ex,Ey)]← Pr(Ex,Ey) ⊲ Calculate and store all the probabilities

7: end for

8: end for

9: setsLe f t← |Sshreds| ⊲ Initially every shred is its own set, initialize these

10: for all Sx ∈ Sshreds do

11: InitSet(Sx)
12: end for

13: while setsLe f t > 1 do ⊲ Get the edges with the max probability

14: (Ex,Ey)← argmax(Ex,Ey) probs[(Ex,Ey)]
15: Sx← GetSet(Ex) ⊲ Retrieve the sets of these 2 edges

16: Sy← GetSet(Ey)
17: if Sx 6= Sy & mergePossible(Ex,Ey) then

18: Sx←Union(Sx,Sy) ⊲ If the edge is valid, merge the two sets

19: Sy←Union(Sx,Sy)
20: edges.append((Ex,Ey))
21: setsLe f t← setsLe f t−1

22: end if

23: probs[(Ex,Ey)]← 0 ⊲ make sure the processed edge isn’t picked again

24: end while

25: return edges ⊲ The set of returned edges describes a complete solution

26: end procedure

The problem with this approach is that the probabilities used are static and therefore

the algorithm is completely ignorant of the formed partial solution. Its only interaction

with the current state of the solution occurs via the mergePossible(Ex,Ey) function

which just tells the algorithm if the current solution allows for that particular merge.

In particular, the algorithm takes no account of the fact that when merging 2 sets of

1The pseudocode in this chapter assumes the existence of a disjoint-set data structure which can

perform operations such as InitSet(x) (create a set with the element x in it), GetSet(x) (return the set to

which x belongs) and various set operations such as Union(Sx,Sy) and Intersect(Sx,Sy)



40 Chapter 5. Heuristic Search

pieces, several new edges may form. Therefore the ReconstructShreds heuristic would

be happy to merge two large sets of pieces based on 1 good edge resulting from the

merge even if several other terrible edges also result from that same match (see Figure

5.2).

Figure 5.2: Here two potential matches for the red slot are shown. The first match

is a single white piece, while the second match is a group of 3 shreds that perfectly

aligns with our target shreds. Since ReconstructShreds will only look at one edge,

both matches will have an identical score, namely that assigned to all white on white

matches. ReconstructShreds cannot take advantage of the extra information gained

since the second white shred was merged with additional shreds.

Our algorithm is designed to address this shortcoming.
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5.2.2 Kruskal based heuristic2

Our approach towards resolving the problem observed in ReconstructShreds is to re-

calculate the probabilities of two edges matching at every iteration. By doing so we

can take into account all the additional matches that would result when the sets corre-

sponding to the 2 edges are merged (see Algorithm 2).

Algorithm 2 The Kruskal based heuristic

1: procedure KRUSKAL(Sedges, Sshreds)

2: edges← []
3: setsLe f t← |Sshreds|
4: for all Sx ∈ Sshreds do

5: InitSet(Sx)
6: end for

7: while setsLe f t > 1 do

8: probs← [] ⊲ Probability calculation is done for every iteration

9: for all Ex ∈ Sedges do

10: for all Ey ∈ Sedges do

11: probs[(Ex,Ey)]← getProb(Ex,Ey) ⊲ Helper function is called

12: end for

13: normalize(probs,Ex,Sedges) ⊲ An extra normalization step is needed

14: end for

15: (Ex,Ey)← argmax(Ex,Ey) probs[(Ex,Ey)]
16: Sx← GetSet(Ex)
17: Sy← GetSet(Ey)
18: if Sx 6= Sy & mergePossible(Ex,Ey) then

19: Sx←Union(Sx,Sy)
20: Sy←Union(Sx,Sy)
21: edges.append((Ex,Ey))
22: setsLe f t← setsLe f t−1

23: end if

24: probs[(Ex,Ey)]← 0

25: end while

26: return edges

27: end procedure

The differences between the Kruskal and the ReconstructShreds algorithms are:

2This method is called a Kruskal based heuristic because the main goal of the method, namely that of

always adding the best available edge to the solution, is analogous to the goal of the minimum spanning

tree algorithm, Kruskal [26]. Therefore the general Kruskal method can be extended to this specific

problem, with the only additional difficulty of having to reject potential matches which would result in

2 shreds overlapping. Indeed ReconstructShreds is already an extension of the Kruskal method, though

the authors of [45] do not identify it as such
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• The probability calculation has been moved inside the while loop, and thus our

calculated probabilities need not be static any more.

• Rather than simply taking the pre-calculated probability Pr(Ex,Ey) as the final

measure of the likelihood of a match between Ex and Ey, the helper function

getProb(Ex,Ey) is now called instead. This new function checks the proposed

merge and identifies all the new edges that would be formed if this merge is se-

lected (for convenience we assume the set of edges Sx has a function Sx.neighbours()
which returns all the pairs of edges that are neighbours under this merge). The fi-

nal probability is then given by multiplying the individual probabilities for every

newly created edge (see Algorithm 3).

Algorithm 3 The getProb helper function

1: procedure GETPROB(Ex, Ey)

2: prob← 1.0

3: Sx← GetSet(Ex)
4: Sy← GetSet(Ey) ⊲ Get the set of the proposed match

5: merged←Union(Sx,Sy)
6: for all Ea ∈ Sx do ⊲ Multiply probs of new neighbours created by the match

7: for all Eb ∈ Sy do

8: if (Ea,Eb) ∈ merged.neighbours() then

9: prob← prob∗Pr(Ea,Eb)
10: else if (Eb,Ea) ∈ merged.neighbours() then

11: prob← prob∗Pr(Eb,Ea)
12: end if

13: end for

14: end for

15: return prob

16: end procedure

• A normalization step is added. This is necessary because, by potentially mul-

tiplying the probabilities of several edges together to get the probability of our

match, the sum of all probabilities is no longer guaranteed to be 1. Formally,

after the normalization step taken in the calculation of the Pr(Ex,Ey) values (see

Section 4.2.2) we had the following assurance:

∀Ea ∑
Ex∈SE

Pr(Ea,Ex) = 1

We would like to have the same assurance regarding getProb(Ex,Ey), which is

why the additional normalization step is required. As before, the normalization

step takes the form:

normProb(Ex,Ey) =
getProb(Ex,Ey)

∑Ea∈SE
getProb(Ex,Ea)
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5.2.3 Evaluating the heuristics

We turn to evaluating the strengths and weaknesses of the algorithms discussed above.3

Towards this purpose we run two sets of tests.

Firstly, we look at the performance offered by the various search functions. This is ac-

complished by running all the heuristics on the same input document, using the same

cost function and then comparing the number of correct edges observed in the output

(see Figure 5.3). These results show that the Row Building Heuristic performs signif-
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Figure 5.3: The proportion of correct edges found by each search heuristic as the

number of shreds increases.

icantly worse than the others, but the performance of the top 3 heuristics is somewhat

hard to compare.

In order to try to improve upon this, a new evaluation method is proposed. This method

tries to evaluate how hard it would be for a human to understand what is printed on the

returned document. We therefore look at the number of moves a human would have to

make to obtain the correct solution from a solution received from one of the heuristic.

This assumes that the human can spot all areas of the document that are correctly

reconstructed, extracts these areas and places them correctly relative to one another.

Using this new evaluation method, we get Figure 5.4, which shows that Kruskal is

usually the best performing heuristic, even if not by a large margin.

3RBH and Prim are reviewed in Section 3.3.
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Figure 5.4: The proportion of correct edges found by each search heuristic as the

number of shreds increases.

Secondly, we analyse the scalability of the algorithms. In real world scenarios an

unshredder would potentially have to work with thousands, or even tens of thousands

of pieces, which makes scalability an important factor to consider. For comparison

purposes, the runtime of several more complex search functions are also shown in

Figure 5.5.

As can be seen. even though the heuristics were not implemented with speed in mind4,

they are significantly faster than the top-down optimization methods.

5.3 Cascading

All of the greedy methods presented thus far have in common an inability to correct

errors. This makes them prone to a cascading effect through which an error made

early in the search process can have a major effect on the result. Since there is no

means through which to move the wrongly placed shred, the search will instead try to

find additional pieces which match well with said shred, and these pieces will have a

significant probability of also being wrong.

4The heuristics are written in python, while the quoted optimization methods are written in C. Ad-

ditionally, the implementation of “Kruskal” is a proof-of-concept and has not been optimized at all. A

non-naive reimplementation could bring its performance more in line to that of “Prim”.
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Figure 5.5: Runtime comparison for 3 of the heuristics and several previously reported

methods taken from [45, 36, 40]. “ACO” is Ant Colony Optimization and “HV 2” and

“BV 2” are two different genetic algorithms.

In order to quantify the magnitude of this issue it is helpful to plot the function:

Errorsearch(x), where x = Errorcost . This function shows the proportion of errors that

the search function commits when given a score function with a certain error rate. The

results of this experiment5 (see Figure 5.6) are telling.

Even on a tiny 5 by 5 instance, in order for the Prim heuristic to achieve 80% accuracy

the scoring function must be 95% accurate. As can be seen, the problem only gets

worse as the number of shreds increases. On a 30 by 30 instance Prim requires the

same 95% cost function accuracy rate in order to achieve a final accuracy of only 50%.

In order to address this problem, several error correcting mechanisms were analysed.

5This experiment was run on synthetic data. We simulated a score function with a fixed error rate

and gave the output of this function to the search heuristics
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Figure 5.6: The effect the error in cost/score has on the final error of the method for

both search heuristics on 5*5 shreds and for Prim on 30*30 shreds

5.3.1 Making all shreds movable

The simplest approach is to consider pieces that have already been placed as movable

and treat them the same as the pieces which haven’t been placed. Estimating the results

of this formulation with the above cascading experiment gives us Figure 5.7.

In theory, this approach should ameliorate the cascading problem, as we are now able

to fix wrongly placed pieces. However, in practice, this basic approach can lead to an

infinite cycle of moves if it happens that one piece is the best match for two different

edges. In that case, the greedy algorithm will continue to switch the piece between

the two different edges. This specific problem can be solved by giving the greedy

correction algorithm a lookahead of size one, which ensures that a piece is only moved

if the piece’s score would increase. This solution however will only eliminate cycles

of length 2. In order to eliminate all cycles in this way, we would require a complete

examination of the search tree from the current point onwards, which quickly becomes

intractable.

A different solution to the cycle problem would be to use a global score rather than

a local one to determine the greedy moves. Instead of looking at the individual score

of matching a shred, we could check how moving that shred affects the global score

of the solution. This method indeed eliminates cycles, but introduces further prob-

lems regarding the handling of outer whitespace. If we ignore outer whitespace when
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Figure 5.7: Allowing already placed pieces to move ameliorates the cascading problem.

Results are on 5x5 instances.

calculating the global score, then we introduce an incentive for the shreds to be very

dispersed as to minimize the amount of edges that count towards the score. Conversely,

if we enforce outer white-space costs, we introduce a large amount of noise since most

of the shreds analysed at the beginning of a solution won’t end up having an external

edge by the end.

We decide to stick to a local score and, in order to eliminate cycles while using a fixed

size lookahead, we remember all previous states that the search has passed through

and use these to detect cycles. Once a cycle is detected, we revert to the best state

encountered within the cycle and then pick a move that breaks the cycle.

5.3.2 Adding a post-processing step

As mentioned above, a problem that plagues the heuristic search methods presented

here is that while the search is in progress they cannot known which pieces will end up

on an outer edge and which will be in the centre. This means we cannot take account

of the score of an edge piece adjacent to white space, which in turn places no incentive

on the search to find compact shapes that have less pieces on an outer edge.

We can ameliorate this problem by doing a post-processing step to the search. When

all the pieces have been placed we finally know what the proposed outside edges are, so
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we can now apply a global score which keeps count of the external whitespace. Since

the search we perform is still greedy, in order for the method to find correct solutions,

it will require a large lookahead (see Figure 5.8).

Figure 5.8: In order to move from solution 1 to solution 2 the greedy search would have

to pass through solution 3. However, solutions 1 and 3 both have the same number of

external edges and so the same score. In this case the transition to the correct result

will only be made if the search can see at least 3 moves ahead.

As before, the lookahead requirement becomes quickly intractable. However, since all

previous states are recorded, this post-processing step is guaranteed to obtain a final

state that’s either better or at least equivalent to the one it started with. This guarantee

cannot be made for the previous correction heuristic.

5.3.3 Evaluating the error-correcting methods

Both of the above error-correcting mechanism slow down the run-time of the search

significantly, as shown in Figure 5.9. The problem is that, even though infinite cycles

are detected, the algorithm can still make a large number of moves before it returns

to a previous state where a cycle can be stopped. Additionally, the error correcting

methods make the runtime of the algorithm a lot more erratic as it ultimately depends

on the nature of the encountered cycles. As can be seen in Figure 5.9, while the runtime
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of the original Prim algorithm increases smoothly with the number of shreds, the error

correcting variants have many more peaks and valleys.
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Figure 5.9: Comparison between the basic Prim algorithm and the enhanced versions

either with just the post-processing step or with both the run-time corrections and the

post-processing. In the case of “Prim - Runtime & PostProc”, the last 3 data points

weren’t generated as their run took longer than 20 minutes and was thus stopped.

The performance hit shown above limits the size of the lookahead that can be used and

the size of the lookahead can severely limit the performance boost obtained. With a

lookahead of 1, the corrections done during the running of the search are inconsistent

and may actually hurt the result. The post-processing step however provides a small

but consistent boost in performance (see Figure 5.10)

5.4 Modularity

As shown in Section 7.2 and throughout literature (eg: [45, 40, 9]), the reconstruction

of cross-cut documents is a very difficult problem. As such, we’ve strived for modu-

larity in all aspects of the proposed solution as to allow for ease of improvement and

adaptation at a later time.

The “Kruskal” search function can also allow for modularity, by incorporating a feature

called early stopping. Since the logic behind the Kruskal method is to, at each step,
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Figure 5.10: Comparison between the basic Prim algorithm and the enhanced versions

either with just the post-processing step or with both the run-time corrections and the

post-processing. The run-time corrections are not very consistent when using a small

lookahead

pick the most likely edge, then we can intuitively return a partial solution by stopping

the execution of the search when the most likely edge isn’t likely enough. This allows

us to use the presented search heuristic as a first step in a larger system, by reducing

the search space to a dimension on which a more complex method can function. By

varying the stopping condition, we can juggle a trade-off between a more aggressive

reduction of the search space and an increased chance of introducing errors into the

partial solution, as shown in Figure 5.11

As can be seen, even the extremely conservative 99.95% stopping condition helps us

reduce the search space to between 40% and 80% of its original size. Since the com-

plexity of the search function is exponential in the number of pieces, these reductions

are significant and may allow previously intractable search methods to now be run

on the reduced search space. As seen from the second graph, greater reductions are

possible if we can tolerate some errors in the output.
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Figure 5.11: Trade-off between reduction in search space and errors incurred by 3

different stopping conditions.





Chapter 6

Pre-Processing

6.1 Motivation

As previously discussed in Section 2.2, a pre-processing step is employed to remove

some of the noise introduced by the shredding and scanning process and bring the

shreds to a standard form which can be used in the rest of the algorithm. To shortly

re-iterate, we want to take the scanned image and return individual images for each

shred, such that the shreds are correctly orientated, are all the same size and contain

only white and black pixels.

The goal of the pre-processing step can be intuitively seen in Figure 6.1.

6.2 Segmentation and Skew

First of all, the shreds need to be picked out from the background. In order to simplify

this process, a background colour which is significantly different from both white and

black needs to be chosen (in the case of Figure 6.1 it has an RGB value of (255,127,0)).

In order to identify the shred pixels, we can declare a threshold value τ and then say

that a pixel p belongs to the background if 1

|p[0]−background[0]|+ |p[1]−background[1]|+ |p[2]−background[2]| ≤ τ

As reported in [43], automatically setting a τ value is not easy, as the optimal value

depends on the noise level in the scanned image. We just choose a value empirically,

by running a few tests on the input data.

1here we assume that p[0], p[1] and p[2] correspond to the red, green and blue values of pixel p

53
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(a) Scanned image given as input.

(b) Individual ideal shred images outputted.

Figure 6.1: Desired input and output of the Pre-Processing function.
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After the potential shred pixels are identified, we next group them into continuous

blobs. This is done by assigning an initial set to each pixel and then checking each

pixel’s 8 neighbours. If a neighbouring pixel is found, then the two have their sets

merged. After these blobs are identified, the groups smaller than 100 pixels are dis-

carded as noise (unless we are working with micro-shredders, it’s quite unlikely a

shred will have a size of less than 10x10 pixels). The remaining blobs of pixels are our

shreds.

The next step is to fix the skew of the shreds, so that their edges become placed either

vertically or horizontally. First the corners of the shreds are identified as the topmost,

bottommost, leftmost and rightmost points in each shred. We then identify the edges

running between these points, using the criteria that edge pixels are neighbours with

at least one background pixel. Once the edges are known, we pick one of the long

edges and, for each pixel on that edge, we calculate how much the shred would have to

be rotated such that the edge pixel would be placed on a vertical line containing both

its corner pixels (see Figure 6.2). Finally, we choose the median of all the calculated

angles as the final angle by which the shred will be rotated.

Figure 6.2: The triangle showing how much a certain pixel would need to be moved to

be placed on the vertical line (in this case, about 10 degrees).

Once the rotation is known, we can proceed with the segmentation. First a rough

bounding box is made around each shred, thus allowing a different image to be created

for every shred. Each of these images is then rotated by the required amount as to

fix the skew of the shreds. The next step is to go over each pixel once more and

record the height and width of each shred for every row and every column in the shred.

The median height and median width over all these values are then taken as the final
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dimensions of the shreds and each image is cropped to that size.

We now have individual images for each shred, which are all of the same size and

which are either correctly oriented or rotated by 180 degrees.

6.3 Up/down orientation detection

This is the final step which will make sure that all shreds are “the right way up”. Here

we want to identify the shreds which are upside down and rotate them by 180 degrees.

We employ a simple method based on row detection. The goal is to detect both the

“inner” and “outer” rows on each shred (see Figure 6.3). The outer rows are defined

as those y coordinates in which a transition is made between a row that contains no

black pixels and a row that contains at least 1 black pixel. The resulting “outer rows”

are then filtered such that only those wider than a minimum threshold are kept, since

a row that is only 1 or 2 pixels wide is quite likely spurious. We then want to find an

“inner row” inside each remaining “outer row”. The inner rows are defined as the y

coordinates exhibiting the greatest difference between the sum of black pixels in two

consecutive rows. So when we detect the greatest increase in number of black pixels

between 2 consecutive rows, we call this the upper limit of the inner row, and when we

detect the greatest decrease we call it the lower limit of the inner row.

Figure 6.3: Red lines delimitate the inner row, blue lines delimitate the outer row.

After this is done, we count the number of black pixels in the “upper region” and “lower

region”, which are the areas between the inner and outer rows placed below and above

each shred (see Figure 6.4). We then sum up all of these numbers and predict that a

shred will have more black pixels in the “upper regions”.

Figure 6.4: The upper region is in red and the lower one in blue. For Roman script, the

upper regions will generally contain more black pixels.
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This simple orientation detection method does surprisingly well2, as can be seen in

Figure 6.5.
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Figure 6.5: The proportion of correctly oriented shreds.

As can be seen, the results are perfect for strip-cut documents (i.e. 0 horizontal cuts)

and steadily degrade as we introduce more horizontal cuts. This happens because

horizontal cuts reduce the number of rows printed on each shred and therefore make

the system more vulnerable to noise. It is worth noting that in the lower two curves, the

odd behaviour of the performance getting better as the number of vertical cuts increases

is caused by completely white pieces. Completely white pieces are declared as being

always correctly oriented and, when both the number of vertical and horizontal cuts are

high, there are a lot of completely white pieces. For the lower two curves, increasing

the number of vertical cuts increases the number of white pieces faster than the added

noise can degrade the performance, so the overall proportion of correctly predicted

orientations increases.

In conclusion, this simple orientation detection method works quite well as long as the

number of horizontal cuts is small. For more robust solutions that handle cross-cut

documents better or that also work on non-Roman script, one of the methods discussed

in Section 3.4 could be implemented.

2This experiment uses ideal shreds. Preliminary tests indicate that the method works similarly on

real scanned shreds, as long as the skew correction function produces results within 1-2 degrees of

vertical.
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6.4 Limitations

There are two main limitations of the pre-processing method described above which to-

gether were severe enough to prevent the system from working on real scanned shreds.

The first problem comes from the skew correction. It seems that any rotation3 above

1 or 2 degrees can significantly distort the source image (see Figure 6.6). As shown

in Section 4.3.3, this type of noise will deteriorate the performance of the probabilis-

tic model. The problem here is exacerbated since not all shreds will be rotated the

same amount and therefore some shreds will be distorted more than other. This non-

uniformity further confuses the scoring function.

(a) Original document. (b) Document rotated by 10 degrees.

Figure 6.6: The noise introduced by rotating a document and recasting it to binary data.

The second problem is caused by the “curviness” of the strips which was briefly dis-

cussed in Section 3.4. While at a casual glance the original scanned strips appear to be

straight, after pre-processing them it becomes clear they are actually curvy (see Figure

6.7). This is a big problem for our scoring function, since it only looks at a thin context

on the margin of the shred, and this is exactly the area affected by this issue.

Figure 6.7: A section of a real processed shred. The curviness causes the segmen-

tation to fail and therefore makes part of the margin completely black. This seriously

affects the performance of the scoring function.

One solution for the above problems would be to increase the complexity of the meth-

ods employed by the pre-processing function. The rotation noise could be mitigated

by doing the rotation at a high resolution and then downsampling the image. Specific

smoothing operators could also be employed as to minimize the difference between

shreds rotated by different amounts. The issue with curvy strips could could be mit-

igated by the method suggested in [43], namely fitting a polynomial in order to find

the true edges. Afterwards the shred could be forced back into a rectangle, though the

noise introduced by this modification might further complicate the task.

Alternatively, another solution would be to improve the scanning process as to remove

these problems before the pre-processing step. This approach is taken in [8], where

the authors find that carefully securing the strips to a rigid background can eliminate

both their tendency to curve and the need to correct their skew by more than a couple

degrees.

3Document rotation was done using both the Python Imaging Library [27] and the ImageMagick

“convert” command [24]. No qualitative difference was observed between the two methods.
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Conclusions

7.1 Overview

This project looks at the problem of reconstructing shredded black and white docu-

ments, starting from a scanned image of the shreds and ending with a total or partial

reconstruction of the original document. The reconstruction is split into 3 functions,

“Pre-process”, “Score” and “Search”, each of which is analysed individually.

As part of pre-processing, we define the notion of an ideal shred and discuss methods

by which such shreds may be extracted from a real scanned image. In particular a new

shred orientation method is discussed, which is computationally efficient and works

well on strip-cut documents.

The presented scoring function represents a departure from all other scoring/costs func-

tions previously presented in literature. By adopting a probabilistic framework, we

improve upon the performance of the previous state-of-the-art method while also get-

ting rid of the ad-hoc heuristics the previous method had used to deal with issues such

as white-on-white matches. Additionally, our proposed function is shown to be more

robust on most noisy documents and is also more easily composed with other scoring

functions, as demonstrated by its combination with “RowScore”.

We analysed the search heuristics used so far and proposed a novel “Kruskal inspired”

variant. The Kruskal heuristic outperforms the previously proposed methods and also

easily lends itself to compositions with other search methods, via its “early stopping”

functionality. Finally, we analyzed a common shortcoming of the heuristics, namely a

“cascading” effect and tested out some possible solutions for this problem.

59
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7.2 Results

A major difference can be observed between the results obtained on the strip-cut and

cross-cut variants, as shown in Figure1 7.1.
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Figure 7.1: The performance of the system on strip-cut and cross-cut documents. While

the strip-cut variant is almost completely solved, the cross-cut one proves to be signifi-

cantly more difficult.

In order to get a better idea of what these numbers mean, we can take a look at some

sample reconstructed documents. A document cut into 49 strips is shown in Figure 7.2

and a document cross-cut into 49 rectangles is shown in Figure 7.3.

We can see that with a 64% completion rate the reconstructed cross-cut document has

many readable sections. Figure 7.4 shows all the subgroups of the document that were

correctly reconstructed.

1These results are obtained using virtually shredded documents, the Prim search heuristic and the

probabilistic scoring function
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Figure 7.2: As expected, the strip-cut document is perfectly reconstructed.

Figure 7.3: This is the outputted document for a 7x7 cross-cut. The edges in this

document are 64% correct.
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Figure 7.4: All correctly reconstructed groups of shreds from the cross-cut document.

These groups were manually extracted from the reconstructed document.

Here, if we think in terms of the evaluation metric introduced in Section 5.2.3, we

can see that the search space has been reduced from 49 shreds to 10 shreds. Even

though this only corresponds to 64% correct edges in the final image, the reduction in

search space means that, while the initial task would have been somewhat daunting to

a human, the new task can be solved with relative ease. Using the “early stopping”

mechanism presented in Section 5.4 further simplifies the human’s task by returning

just the groups the algorithm is certain about. The identified groups with a threshold

of 99.5% are shown in Figure 7.5.
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Figure 7.5: The groups automatically identified by the Kruskal search with a stopping

threshold of 99.5%.
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7.3 Future Work

The post-processing step is in most dire need of work, since it isn’t currently usable

without spending a large amount of time and effort preparing the shreds before scan-

ning. First of all, the problem with the “curviness” of the strips could be managed by

implementing a more complex segmentation method, such as the polynomial fitting or

the Hough transform proposed in [43]. Methods of better managing the noise inherent

in the shredding, scanning and processing of shreds are also necessary. If the strips

are to be segmented and rotated at a high-resolution and then downsampled, the effect

of different downsampling and denoising methods needs to be analysed. Lastly, more

robust orientation detection methods are needed for small cross-cut documents. Some

variants that could be tested include those presented in [10] and [3].

The scoring function, at this stage, can best be improved by being composed with

higher-level probabilistic scoring functions. One very simple such function, “RowS-

core”, was tested, but more complex variants could be incorporated. One idea would

be to look at the size of the blobs of continuous black pixels formed by a new edge

(i.e. the letters situated on the edge). Another method, proposed in [33] would be to

look at the actual shape of the aforementioned black, continuous, blobs and predict the

probability that these are real letters. Going further, new methods could be devised that

do optical character recognition on the shreds and predict the likelihood of detected n-

grams. Going in a different direction, different models could be proposed that expand

the problem space to incorporate full-colour documents, or even hand-torn documents.

Further work on the search function should focus on fixing the cascading problem

presented in Section 5.3. In order to solve this problem a limited exploration of the

search space likely needs to be performed. The best way to perform this exploration is

an interesting problem that hasn’t been previously looked at. Several other additions

could also be implemented as to make the system more robust to real world conditions.

For instance, the system should be able to handle double-sided documents, as well as

documents that contain both text and pictures. Additionally, the degradation of the

system when presented with missing shreds or with shreds that don’t belong to the

current document should be explored.
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