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A common situation within a probabilistic model is that some variables x={x1, . . . , xN}
are assumed to have come from an unknown distribution. For large datasets it may be
necessary to introduce a flexible or non-parametric prior over possible distributions.
A simple assumption, often good enough for small N , is to assume that the {xn} came
from a uniform distribution, Uniform[a, b], with a and b unknown. This note contains
the marginal likelihood of this model for quick reference.

We put a broad uniform distribution on the unknown (a, b) bounds:

p(a, b) =
2

(B − A)2
I(b>a) I(b<B) I(a>A). (1)

The above probability and all that follow are implicitly conditioned on hyper-parameters
A and B. The likelihood of the parameters is:

p(x|a, b) =
1

(b − a)N
I(xmax <b) I(xmin >a). (2)

The marginal likelihood is

p(x) =
∫

da

∫
db p(x|a, b) p(a, b)

=
2

(B−A)2

∫ xmin

A
da

∫ B

xmax

db
1

(b − a)N

=
(xmax−xmin)2−N + (B−A)2−N − (B−xmin)2−N − (xmax−A)2−N

1/2 (N−1)(N−2)(B−A)2
.

(3)

In the (improper) limit A→−∞, B→∞:

p(x) ∝ 1
(xmax−xmin)N−2

. (4)

An interpretation of this could be that we treat all xmax and xmin equally and then pre-
dict the rest of the values uniformly between them. For moderate-sized datasets using
this limit won’t differ much from any broad proper prior, although the marginal likeli-
hood is now zero, so cannot be used for model comparison.

Another common special case is that we know [A,B] = [0, 1], then:

p(x) =
(xmax−xmin)2−N + 1 − (1−xmin)2−N − (xmax)2−N

1/2 (N−1)(N−2)
. (5)

These results will be probably be found in many contexts. For a recent concrete example,
both equations (4) and (5) were used in Bovy et al. (2009).
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