
Introduction to Gaussian Processes

Iain Murray
School of Informatics, University of Edinburgh

The problem

Learn scalar function of vector values f(x)

0 0.2 0.4 0.6 0.8 1
−1.5

−1

−0.5

0

0.5

1

x

f(x)
y

i

0

0.5

1 0

0.5

1

−5

0

5

x
2x

1

f

We have (possibly noisy) observations {xi, yi}ni=1

Example Applications
Real-valued regression:

— Robotics: target state → required torque

— Process engineering: predicting yield

— Surrogate surfaces for optimization or simulation

Classification:

— Recognition: e.g. handwritten digits on cheques

— Filtering: fraud, interesting science, disease screening

Ordinal regression:

— User ratings (e.g. movies or restaurants)

— Disease screening (e.g. predicting Gleason score)

Model complexity
The world is often complicated:

0 0.2 0.4 0.6 0.8 1
−1.5

−1

−0.5

0

0.5

1

0 0.2 0.4 0.6 0.8 1
−1.5

−1

−0.5

0

0.5

1

0 0.2 0.4 0.6 0.8 1
−1.5

−1

−0.5

0

0.5

1

simple fit complex fit truth

Problems:

— Fitting complicated models can be hard

— How do we find an appropriate model?

— How do we avoid over-fitting some aspects of model?

Predicting yield

Factory settings x1 → profit of 32± 5 monetary units

Factory settings x2 → profit of 100± 200 monetary units

Which are the best settings x1 or x2?

Knowing the error bars can be important

Optimization

In high dimensions it takes many function evaluations to

be certain everywhere. Costly if experiments are involved.

0 0.2 0.4 0.6 0.8 1
−1.5

−1

−0.5

0

0.5

1

Error bars are needed to see if a region is still promising.

Bayesian modelling

If we come up with a parametric family of functions,

f(x; θ) and define a prior over θ, probability theory tells us

how to make predictions given data. For flexible models,

this usually involves intractable integrals over θ.

We’re really good at integrating Gaussians though

−2 −1 0 1 2
−2

−1

0

1

2

Can we really solve significant

machine learning problems with

a simple multivariate Gaussian

distribution?

Gaussian distributions

Completely described by parameters µ and Σ:

p(f |Σ, µ) = |2πΣ|−1
2 exp

(
− 1

2(f − µ)TΣ−1(f − µ)
)

µ and Σ are the mean and covariance of the distribution.

For example:

Σij = E[fifj]− µiµj

If we know a distribution is Gaussian and know its mean

and covariances, we know its density function.

Marginal of Gaussian

The marginal of a Gaussian distribution is Gaussian.

p(f ,g) = N
([

f

g

]
;

[
a

b

]
,

[
A C

C> B

])

As soon as you convince yourself that the marginal

p(f) =

∫
p(f ,g) dg

is Gaussian, you already know the means and covariances:

p(f) = N (f ; a, A)

Conditional of Gaussian

Any conditional of a Gaussian distribution is also Gaussian:

p(f ,g) = N
([

f

g

]
;

[
a

b

]
,

[
A C

C> B

])

p(f |g) = N (f ; a+CB−1(g−b), A−CB−1C>)

Showing this result requires some grunt work.
But it is standard, and easily looked up.

Noisy observations
Previously we inferred f given g.

What if we only saw a noisy observation, y ∼ N (g, S)?

p(f ,g,y) = p(f ,g) p(y |g) is Gaussian distributed

a quadratic form inside the exponential after multiplying

Our posterior over f is still Gaussian:

p(f |y) ∝
∫
p(f ,g,y) dg

RHS is Gaussian after marginalizing, so still a quadratic

form in f inside an exponential.

Laying out Gaussians
A way of visualizing draws from a 2D Gaussian:

−2 −1 0 1 2
−2

−1

0

1

2

f
1

f 2 ⇔

x_1 x_2

−1

−0.5

0

f
Now it’s easy to show three draws

from a 6D Gaussian:

x_1 x_2 x_3 x_4 x_5 x_6
−1.5

−1

−0.5

0

0.5

1

1.5

f

Building large Gaussians
Three draws from a 25D Gaussian:

−1

0

1

2

f

x

To produce this, we needed a mean: I used zeros(25,1)

The covariances were set using a kernel function: Σij = k(xi,xj).

The x’s are the positions that I planted the tics on the axis.

Later we’ll find k’s that ensure Σ is always positive semi-definite.

GP regression model

0 0.2 0.4 0.6 0.8 1
−1.5

−1

−0.5

0

0.5

1

0 0.2 0.4 0.6 0.8 1
−1.5

−1

−0.5

0

0.5

1

f ∼ GP

f ∼ N (0,K), Kij = k(xi, xj)

where fi = f(xi)

Noisy observations:

yi | fi ∼ N (fi, σ
2
n)

GP Posterior

Our prior over observations and targets is Gaussian:

P

([
y

f∗

])
= N

([
y

f∗

]
; 0,

[
K(X,X) + σ2

nI K(X,X∗)
K(X∗, X) K(X∗, X∗)

])

Using the rule for conditionals, p(f∗ |y) is Gaussian with:

mean, f̄∗ = K(X∗, X)(K(X,X) + σ2
nI)−1y

cov(f∗) = K(X∗, X∗)−K(X∗, X)(K(X,X) + σ2
nI)−1K(X,X∗)

The posterior over functions is a Gaussian Process.

GP Posterior

Two incomplete ways of visualizing what we know:

0 0.2 0.4 0.6 0.8 1
−1.5

−1

−0.5

0

0.5

1

0 0.2 0.4 0.6 0.8 1
−1.5

−1

−0.5

0

0.5

1

Draws ∼ p(f |data) Mean and error bars

Point predictions

Conditional at one point x∗ is a simple Gaussian:

p(f(x∗) |data) = N (f ; m, s2)

Need covariances:

Kij = k(xi,xj), (k∗)i = k(x∗,xi)

Special case of joint posterior:

M = K + σ2
nI

m = k>∗M
−1y

s2 = k(x∗,x∗)− k>∗M
−1k∗︸ ︷︷ ︸

positive

Discovery or prediction?

0 0.2 0.4 0.6 0.8 1
−1.5

−1

−0.5

0

0.5

1

x
*

 ± 2σ, p(y
*
|data)

± 2σ, p(f
*
|data)

True f
Posterior Mean
Observations

p(f∗ |data) = N (f∗; m, s2)

says what we know about the noiseless function.

p(y∗ |data) = N (y∗; m, s2+σ2
n)

predicts what we’ll see next.

Review so far
We can represent a function as a big vector f

We assume that this unknown vector was drawn from a

big correlated Gaussian distribution, a Gaussian process.

(This might upset some mathematicians, but for all practical machine learning and statistical problems, this is fine.)

Observing elements of the vector (optionally corrupted by

Gaussian noise) creates a Gaussian posterior distribution.

The posterior over functions is still a Gaussian process.

Marginalization in Gaussians is trivial: just ignore all of

the positions xi that are neither observed nor queried.

Covariance functions

The main part that has been missing so far is where the

covariance function k(xi,xj) comes from.

Also, other than making nearby points covary, what can

we express with covariance functions, and what do do they

mean?

Covariance functions
We can construct covariance functions from parametric models

Simplest example: Bayesian linear regression:

f(xi) = w>xi + b, w ∼ N (0, σ2
wI), b ∼ N (0, σ2

b)

cov(fi, fj) = 〈fifj〉 −
�
�
�
�
�>
0

〈fi〉
�
�
�
�
��>
0

〈fj〉
=
〈
(w>xi + b)>(w>xj + b)

〉
= σ2

wx
>
i xj + σ2

b = k(xi,xj)

Kernel parameters σ2
w and σ2

b are hyper-parameters in the Bayesian
hierarchical model.

More interesting kernels come from models with a large or infinite
feature space: k(xi,xj) = σ2

wΦ(xi)
>Φ(xj) + σ2

b , the ‘kernel trick’.

Squared-exponential kernel

An ∞ number of radial-basis functions can give

k(xi,xj) = σ2
f exp

(
− 1

2

D∑
d=1

(xd,i − xd,j)2/`2
d

)
,

the most commonly-used kernel in machine learning.

It looks like an (unnormalized) Gaussian, so is commonly

called the Gaussian kernel. Please remember that this has

nothing to do with it being a Gaussian process.

A Gaussian process need not use the “Gaussian”
kernel. In fact, other choices will often be better.

Meaning of hyper-parameters

Many kernels have similar types of parameters:

k(xi,xj) = σ2
f exp

(
− 1

2

D∑
d=1

(xd,i − xd,j)2/`2
d

)
,

Consider xi = xj, ⇒ marginal function variance is σ2
f

0 0.2 0.4 0.6 0.8 1
−30

−20

−10

0

10

20

 σ
f
 = 2

σ
f
 = 10

Meaning of hyper-parameters

`d parameters give the length-scale in dimension-d

k(xi,xj) = σ2
f exp

(
− 1

2

D∑
d=1

(xd,i − xd,j)2/`2
d

)
,

Typical distance between peaks ≈ `

0 0.2 0.4 0.6 0.8 1
−3

−2

−1

0

1

2

l = 0.05
l = 0.5

Typical GP lengthscales
What is the covariance matrix like?

0 0.2 0.4 x* 0.8 1

0

0.2

0.4

0.6

0.8

input, x

ou
tp

ut
,

y

0 0.2 0.4 x* 0.8 1

2

2.2

2.4

input, x
0 0.2 0.4 0.6 0.8 1

−1.5

−1

−0.5

0

0.5

input, x

— Zeros in the covariance ⇒ marginal independence

— Short length scales usually don’t match my beliefs

— Empirically, I often learn ` ≈ 1 giving a dense K

Common exceptions:
Time series data, ` small. Irrelevant dimensions, ` large.

In high dimensions, can have Kij ≈ 0 with ` ≈ 1.

What GPs are not

Locally-Weighted Regression weights points with a kernel

before fitting a simple model

0 0.2 0.4 x* 0.8 1

0

0.2

0.4

0.6

0.8

input, x

ou
tp

ut
,

y

x*

ke
rn

el
 v

al
ue

Meaning of kernel zero here: ≈ conditional independence.

Unlike GP kernel: a) shrinks to small ` with many data

points; b) does not need to be positive definite.

Effect of hyper-parameters

Different (SE) kernel parameters give different explanations

of the data:

0 0.2 0.4 0.6 0.8 1
−1.5

−1

−0.5

0

0.5

1

0 0.2 0.4 0.6 0.8 1
−1.5

−1

−0.5

0

0.5

1

` = 0.5, σn = 0.05 ` = 1.5, σn = 0.15

Other kernels
The squared-exponential kernel produces very smooth

functions. For some problems the Matérn covariances

functions may be more appropriate:

Periodic kernels are available, and some that vary their

noise and lengthscales across space.

Kernels can be combined in many ways (Bishop p296).

For example, add kernels with long and short lengthscales

The (marginal) likelihood

The probability of the data is just a Gaussian:

log p(y |X, θ) = −1
2y
>M−1y − 1

2 log |M | − n
2 log 2π

— likelihood of the kernel parameters, θ = {`, σn, . . . }
— used to choose amongst kernels

Gradients of the likelihood wrt the hyper-parameters can

be computed to find (local) maximum likelihood fits.

Because the GP can be viewed as having an infinite number of weight
parameters that have been integrated out, log p(y |X, θ) is often
called the marginal likelihood.

Learning hyper-parameters

The fully Bayesian solution computes the function

posterior:

p(f∗ |y, X) =

∫
p(f∗ |y, X, θ) p(θ |y, X) dθ

The first term in the integrand is tractable.

The second term is the posterior over hyper-parameters.

This can be sampled using Markov chain Monte Carlo to

average predictions over plausible hyper-parameters.

Log-transform +ve inputs

0 1 2 3
0

1

2

3

4

5

std(cell radius)

st
d(

"t
ex

tu
re

")

−4 −2 0 2
−2

−1

0

1

2

log(std(cell radius))

lo
g(

st
d(

"t
ex

tu
re

")
)

(Wisconsin breast cancer data from the UCI repository)

Positive quantities are often highly skewed

The log-domain is often a much more natural space

A better transformation could be learned:

Schmidt and O’Hagan, JRSSB, 65(3):743–758, (2003).

Log-transform +ve outputs
Warped Gaussian processes, Snelson et al. (2003)

t

z

(a) sine

t

z

(b) creep

t

z

(c) abalone

t

z

(d) ailerons

Learned transformations for positive data were log-like.

Always consider log transforming postive data.

However, other transformations (or none at all)

are sometimes the best option.

Mean function

Using f ∼ N (0,K) is common

0 0.2 0.4 0.6 0.8 1
−30

−20

−10

0

10

20

 σ
f
 = 2

σ
f
 = 10

If your data is not zero-mean this is a poor model.

Center your data, or use a parametric mean function m(x).

Other tricks

To set initial hyper-parameters, use domain knowledge
wherever possible. Otherwise. . .

Standardize input data and set lengthscales to ∼ 1.

Standardize targets and set function variance to ∼ 1.

Often useful: set initial noise level high, even if you

think your data have low noise. The optimization surface

for your other parameters will be easier to move in.

If optimizing hyper-parameters, (as always) random

restarts or other tricks to avoid local optima are advised.

Real data can be nasty
A projection of a robot arm problem:

100 150 200 250
100

150

200

250

300

215 220 225 230 235 240
210

220

230

240

Common artifacts: thresholding, jumps, clumps, kinks

How might we fix these problems? [discussion]

Non-Gaussian likelihoods

GP regression is tractable because both the prior and

likelihood are Gaussian.

There are many reasons to want to use non-Gaussian

likelihoods, although we can no longer marginalize out

the unknown function values at the observations. We can

use approximate inference methods such as MCMC, EP,

Laplace or Variational Bayes.

A common application of a non-Gaussian likelihood is a

model of heavy-tailed noise to account for large outliers.

This is intractable, but there are computational tricks to

help deal with t-distributions.

Classification

Special case of a non-Gaussian noise model

Assume yi ∼ Bernoulli(sigmoid(fi))

−1 −0.5 0 0.5 1
−10

−5

0

5

10

−1 −0.5 0 0.5 1
0

0.25

0.5

0.75

1

f(x) logistic(f(x))

MCMC can be used to sum over the latent function values.

EP (Expectation Propagation) also works very well.

Figures from Bishop textbook

Regressing on the labels
If we give up on a Bayesian modelling interpretation, we
could just apply standard GP regression code on binary

classification data with y ∈ {−1,+1}.

The sign of the mean function is a reasonable hard

classifier. Asymptotically the posterior function will be

peaked around f(x) = 2p(x)− 1.

Multiway classification: regressing y ∈ {1, 2, . . . , C}
would be a bad idea. Instead, train C “one-against all”

classifiers and pick class with largest mean function.

Not really Gaussian process modelling any more:
this is just regularized least squares fitting

Exploding costs

GPs scale poorly with large datasets

O(n3) computation usually takes the blame:

M−1 or M−1y, M−1k∗ and det(M)

Not the only story:

Kij = k(xi,xj) O(dn2) computation

O(n2) memory

Large literature on GP approximations

Subset of Data
Trivial, obvious solution:

randomly throw away most of the data

0 0.2 0.4 0.6 0.8 1
−1.5

−1

−0.5

0

0.5

1

0 0.2 0.4 0.6 0.8 1
−1.5

−1

−0.5

0

0.5

1

e.g. keeping 1/20 points

There are also methods to choose greedily, cheaply choose which
points to keep.

Mixtures and committees

Because the costs scale super-linearly, splitting up the

dataset helps:

A mixture of K experts potentially involves much cheaper

matrix operations:

n3 > K(n/K)3 = n3/K2

Alternatively K trained GPs can be simply averaged. The

Bayesian Committee Machine (BCM) provides a sensible

weighted averaging and error bars.

Inducing point methods

Approximate the GP prior:

p(f , f∗) =

∫
p(f , f∗ |u) p(u) du

' q(f , f∗) =

∫
q(f |u) q(f∗ |u) p(u) du

Several methods result from choosing different q’s:

SoR/DIC, PLV/PP/DTC, FI(T)C/SPGP and BCM

Quiñonero-Candela and Carl Edward Rasmussen (2005)

SoR/DIC, a finite linear model

q(f |u) deterministic:

u ∼ N (0,Kuu), set f∗ = k>∗K
−1
uuu

Draws from the prior:

0 0.2 0.4 0.6 0.8 1
−2

−1

0

1

2
Costs (m inducing u’s):

O(m2n) training

O(mn) covariances

O(m) mean prediction

O(m2) error bars

Limited fitting power

Those SoR prior draws again:

0 0.5 1 1.5 2 2.5 3
−2

−1

0

1

2

FIC / SPGP
q(f |u) =

∏
i pGP(fi |u)

0 0.5 1 1.5 2 2.5 3
−4

−3

−2

−1

0

1

2

3

4

O(·) costs are the same as SoR

[If time or at end: discuss low noise behaviours]

Training and Test times

Training time: before looking at the test set

Method Covariance Inversion

Full GP O(n2) O(n3)

SoD O(m2) O(m3)

Sparse O(mn) O(mn2)

Test time: spent making predictions

Method Mean Error bar

Full GP O(n) O(n2)

SoD O(m) O(m2)

Sparse O(m) O(m2)

Sparse behaviour

from Edward Snelson’s thesis

Take-home messages

• Simple to use:

– Just matrix operations (if likelihoods are Gaussian)

– Few parameters: relatively easy to set or sample over

– Predictions are often very good

• No magic bullet: best results need (at least) careful

data scaling, which could be modelled or done by hand.

• The need for approximate inference:

– Sometimes Gaussian likelihoods aren’t enough

– O(n3) and O(n2) costs are bad news for big problems

Further reading

Many more topics and code:
http://www.gaussianprocess.org/gpml/

More software:
http://becs.aalto.fi/en/research/bayes/gpstuff/

Gaussian processes for ordinal regression, Chu and Ghahramani,
JMLR, 6:1019–1041, 2005.

Flexible and efficient Gaussian process models for machine learning,
Edward L. Snelson, PhD thesis, UCL, 2007.

