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Card prediction

3 cards with coloured faces:

1. one white and one black face

2. two black faces

3. two white faces

I shuffle cards and turn them over randomly. I select a card

and way-up uniformly at random and place it on a table.

I’ve taken this demo from David MacKay, although don’t know its origin.



Card prediction

3 cards with coloured faces:

1. one white and one black face

2. two black faces

3. two white faces

I shuffle cards and turn them over randomly. I select a card

and way-up uniformly at random and place it on a table.

Question: You see a black face. What is the probability

that the other side of the same card is white?

P (x2 =W |x1 =B) = 1/3, 1/2, 2/3, other, don’t know?



Roadmap

— Probability fundamentals

— Inferring a physical parameter

— Probabilistic models and machine learning

— Graphical models

— Monte Carlo basics, probabilistic inference in practice



Probability fundamentals

The sum rule:

P (A=a) =
∑

b∈AB

P (A=a,B=b)



Probability fundamentals

The sum rule:

P (A=a) =
∑

b∈AB

P (A=a,B=b)

Compressed:

P (a) =
∑

b

P (a, b)

Situation made explicit:

P (a | c) =
∑

b

P (a, b | c)



Probability fundamentals

The product rule:

P (a, b) = P (a | b)P (b) = P (b | a)P (a)



Probability fundamentals

The product rule:

P (a, b) = P (a | b)P (b) = P (b | a)P (a)

P (a, b | c) = P (a | b, c)P (b | c) = P (b | a, c)P (a | c)

Applied recursively, “the chain rule”:

P (a, b, c, d) = P (a)P (b | a)P (c | a, b)P (d | a, b, c)

P (x) = P (x1)
D∏

d=2

P (xd |x<d)
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∑

bP (a, b)
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Probability fundamentals

Sum rule: P (a) =
∑

bP (a, b)

Product rule: P (a, b) = P (a | b)P (b) = P (b | a)P (a)

Bayes rule:

P (a | b) =
P (b | a)P (a)

P (b)



Probability fundamentals

Sum rule: P (a) =
∑

bP (a, b)

Product rule: P (a, b) = P (a | b)P (b) = P (b | a)P (a)

Bayes rule:

P (a | b) =
P (b | a)P (a)

P (b)

Probability of everything:

P (a | b) ∝ P (a, b)

∝
∑

c

P (a, b, c)



Card prediction

3 cards with coloured faces:

1. one white and one black face

2. two black faces

3. two white faces

I shuffle cards and turn them over randomly. I select a card

and way-up uniformly at random and place it on a table.

Question: You see a black face. What is the probability

that the other side of the same card is white?

P (x2 =W |x1 =B) = 1/3, 1/2, 2/3, other?



Notes on the card prediction problem:

This card problem is Ex. 8.10a), MacKay’s textbook, p142.

It is not the same as the famous ‘Monty Hall’ puzzle: Ex. 3.8–9 and

http://en.wikipedia.org/wiki/Monty_Hall_problem

The Monty Hall problem is also worth understanding. Although the

card problem is (hopefully) less controversial and more

straightforward. The process by which a card is selected should be

clear: P (c) = 1/3 for c = 1, 2, 3, and the face you see first is chosen at

random: e.g., P (x1=B | c=1) = 0.5.

Many people get this puzzle wrong on first viewing, including more

than half of previous summer school audiences (it’s easy to mess up

given limited time). If you got the answer right immediately, maybe it

will be an example to help in your own teaching.



How do we solve it formally?

Use Bayes rule?

P (x2 =W |x1 =B) =
P (x1 =B |x2 =W) P (x2 =W)

P (x1 =B)

The boxed term is no more obvious than the answer!

Bayes rule is used to ‘invert’ forward generative processes

that we understand.

The first step to solve inference problems is to write down a

model of your data.



The card game model

Cards: 1) B|W, 2) B|B, 3) W|W

P (c) =

{
1/3 c = 1, 2, 3

0 otherwise.

P (x1 =B | c) =





1/2 c = 1

1 c = 2

0 c = 3

Bayes rule can ‘invert’ this to tell us P (c |x1 =B);

infer the generative process for the data we have.



Inferring the card

Cards: 1) B|W, 2) B|B, 3) W|W

P (c |x1 =B) =
P (x1 =B | c)P (c)

P (x1 =B)
∝ P (x1 =B | c)P (c)

∝





1/2 · 1/3 = 1/6 c = 1

1 · 1/3 = 1/3 c = 2

0 c = 3

=

{
1/3 c = 1

2/3 c = 2

Q “But aren’t there two options given a black face, so it’s 50–50?”
A There are two options, but the likelihood for one of them is 2× bigger



Predicting the next outcome

For this problem we can spot the answer, for more complex

problems we want a formal means to proceed.

P (x2 |x1 =B)?

Need to introduce c to use expressions we know:

P (x2 |x1 =B) =
∑

c∈1,2,3

P (x2, c |x1 =B)

=
∑

c∈1,2,3

P (x2 |x1 =B, c)P (c |x1 =B)

Predictions we would make if we knew the card, weighted

by the posterior probability of that card. P (x2=W | x1=B) = 1/3



Strategy for solving inference and prediction problems:

When interested in predicting something y, we often find we can’t

immediately write down mathematical expressions for P (y |data).

So we introduce stuff, z, that is related to the data and/or y:

P (y |data) =
∑

z P (y, z |data)

by using the sum rule. And then split it up:

P (y |data) =
∑

z P (y | z,data)P (z |data)

using the product rule. If knowing extra stuff z we can predict y, we

are set: weight all such predictions by the posterior probability of the

stuff (P (z |data), found with Bayes rule).

Sometimes the extra stuff summarizes everything we need to know to

make a prediction:

P (y | z,data) = P (y | z)
although not in the card game above.



Not convinced?

Not everyone believes the answer to the card game question.

Sometimes probabilities are counter-intuitive. I’d encourage you to

write simulations of these games if you are at all uncertain. Here is an

Octave/Matlab simulator I wrote for the card game question:

cards = [1 1;

0 0;

1 0];

num cards = size(cards, 1);

N = 0; % Number of times first face is black

kk = 0; % Out of those, how many times the other side is white

for trial = 1:1e6

card = ceil(num cards * rand());

face = 1 + (rand < 0.5);

other face = (face==1) + 1;

x1 = cards(card, face);

x2 = cards(card, other face);

if x1 == 0

N = N + 1;

kk = kk + (x2 == 1);

end

end

approx probability = kk / N



The probability of everything

c x1 x2 P (c, x1, x2)

1 B B 0

1 B W 1/6

1 W B 1/6

1 W W 0

2 B B 1/3

2 B W 0

2 W B 0

2 W W 0

3 B B 0

3 B W 0

3 W B 0

3 W W 1/3

Cards: 1) B|W, 2) B|B, 3) W|W

P (x2 |x1 =B)

∝
∑

c

P (c, x1 =B, x2)

∝
{

0 + 1/3 + 0 x2 = B

1/6 + 0 + 0 x2 = W

=

{
2/3 x2 = B

1/3 x2 = W



Final theory: real-valued variables

Probability densities:

P (a < X < b) =

∫ b

a

p(x) dx

P (x−δ/2 < X < x+δ/2) ≈ p(x)δ



Transformations
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z = 2x

P (z=4) = P (x=2)

p(z=4) 6= p(x=2)

p(z=4) = p(x=2)
2

Probability densities:

∫
p(x) dx = 1



Nonlinear transformations

For 1–1 mappings between small elements δx and δz:

p(x) δx = p(z) δz

Taking limits:

p(z) = p(x(z))

∣∣∣∣
dx

dz

∣∣∣∣ = p(x(z))

/∣∣∣∣
dz

dx

∣∣∣∣

Example:

p(σ2) =
p(log σ2)

σ2

Multivariate version with Jacobian:

p(z) = p(x)

∣∣∣∣∣∣∣

∂x1
∂z1

∂x1
∂z2

. . . ∂x1
∂zD

... ... . . . ...
∂xD
∂z1

∂xD
∂z2

. . . ∂xD
∂zD

∣∣∣∣∣∣∣



delta functions
Let z = 2x again

Discrete:

P (z |x) = I(z=2x) = δz,2x =

{
1 z = 2x

0 otherwise

(Kronecker delta)

Continuous:

p(z |x) = δ(z − 2x) = lim
σ2→0
N (z; 2x, σ2)

(Dirac delta)

p(z=2x |x) =∞, not 1!



deltas and change of variables

Let z=2x, or p(z |x) = δ(z − 2x)

p(z) =

∫
p(x, z) dx

=

∫
p(x) δ(z − 2x) dx

δ ⇒“z=2x”⇒“x= z/2”

but p(z) 6= p(x= z/2)



deltas and change of variables

Let z=2x, or p(z |x) = δ(z − 2x)

p(z) =

∫
p(x, z) dx

=

∫
p(x) δ(z − 2x) dx

δ ⇒“z=2x”⇒“x= z/2”

but p(z) 6= p(x= z/2)

Change of variables, u=2x, x=u/2, dx = du/2

p(z) =

∫
p(x=u/2) δ(z − u) du/2

= 1
2 p(x= z/2) , as before



Summary: real-valued variables

Be careful with determinism, however expressed:

— changes of variables

— distributions constrained to a manifold

— Gaussians with low-rank covariance matrices

— MCMC updates within a subspace
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— Probability fundamentals

— Inferring a physical parameter

— Probabilistic models and machine learning

— Graphical models

— Monte Carlo basics, probabilistic inference in practice



Infer motion from a snapshot

In 1D, stars do simple harmonic motion (SHM)

Common orbital frequency ω

⇒ mass black hole

Thanks: David W. Hogg (NYU) first told me this problem



SHM equations and model

Positions and velocities:

xn = An sin(ωt+ φn)

vn = dxn
dt = Anω cos(ωt+ φn)
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SHM equations and model

Positions and velocities:

xn = An sin(ωt+ φn)

vn = dxn
dt = Anω cos(ωt+ φn)

Evaluate at t = 0 (wlog)

xn = An sinφn

vn = Anω cosφn



SHM equations and model

xn = An sinφn , vn = Anω cosφn

stars n=1..N

φ(n)
A(n)ω

x(n) ,v(n)

Priors:

logω ∼ Uniform[logωmin, logωmax]

φn ∼ Uniform[0, 2π]

logAn ∼ Uniform[logAmin, logAmax]

p(ω, {An, φn, xn, vn})
= p(ω)

∏

n

p(An) p(φn) p(xn, vn |ω,An, φn)



Inferring the frequency

p(ω | {xn, vn}) ∝
∫

dA

∫
dφ p(ω, {An, φn, xn, vn})

Substitute and integrate delta functions carefully. . .

or. . .

p(ω | {xn, vn}) ∝ p(ω)

∫
dA

∫
dφ p({An, φn, xn, vn} |ω)

∝ p(ω)
∏

n

p(xn, vn |ω)

where p(xn, vn |ω) is p(An, φn) divided by a simple Jacobian of a transformation
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P (ω | {xn, vn})



The mistake

Reasonable prior for one amplitude (fine):

p(logAn) =
1

logAmax − logAmin

Amin < An < Amax

Does not extend to:

p({logAn}Nn=1) =
∏

n

1

logAmax − logAmin

Amin < An < Amax, ∀n



Fixing the graphical model

stars n=1..N

φ(n)
A(n)ω

x(n) ,v(n)

stars n=1..N

A(n) φ(n)

θ

ω

x(n) ,v(n)

p(ω, θ, {An, φn, xn, vn})
= p(ω) p(θ)

∏

n

p(φn) p(An | θ) p(xn, vn |ω,An, φn)
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Acceleration law around the sun

a(r) = −A
(
r

r0

)−α

From a snapshot:
8 planet positions and velocities



Solarsystem snapshot model

major planets in solar system, n=1..8

A

θe

e(n) ε(n)

θε

φ(n)α

r(n) ,v (n)
r ,v (n)

t



Inferences about the Sun



Priors on nusiance distributions
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Priors on nusiance distributions
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Gravitational exponent



Try it for yourself

Practical exercise:

http://iainmurray.net/teaching/09mlss/
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— Inferring a physical parameter

— Probabilistic models and machine learning

— Graphical models

— Monte Carlo basics, probabilistic inference in practice



Probabilistic modellers claim. . .

Easy to include rich structure / knowledge

Can handle missing/unlabelled/noisy data

Should be Bayesian when have really limited data:
individual users/entities of a large system

limited trials to set neural net learning rates / hyperparameters

Automatic complexity control (“Occam’s razor”)



Polyhedral dice

One die chosen uniformly at random:

D ∈ {d4, d6, d8, d10, d12, d20}
(subscript gives number of sides)

Rolled 5 times, giving rolls:
R = [2, 7, 6, 1, 5]

Q1) What’s the most probable die given the data?

Q2) What’s
P (d10 |R)

P (d20 |R)
?

Image credit: Sabbut from es, http://commons.wikimedia.org/wiki/File:Dados_4_a_20_caras.jpg



Discrete model choice

Automatic complexity control means not having to cross-validate lots of choices at all
levels of a model. It’s great! However, many people are (with reason!) suspicious of
using the ‘correct’ probability theory way to choose whole models.

Marginal likelihood:

P (D |M) =

∫
P (D | θ,M) p(θ |M) dθ

Cross-validation:
Safer? Look at performance on held-out data.

That’s the way to make people believe your model is better

(if you can do it)



Communicating with probabilities

Probability theory tells us how to combine information

Speech recognition
— acoustics combined across time via HMM

— acoustics and language model probabilities combined

However, in practice there a bunch of hacks.

— Hidden Markov Model emitting ‘deltas’ is hard to justify model

— acoustic model’s probabilities not trusted:

probabilities raised to power <1 (log-probs scaled/fudged)



Roadmap

— Probability fundamentals

— Inferring a physical parameter

— Probabilistic models and machine learning

— Graphical models

— Monte Carlo basics, probabilistic inference in practice



Directed graphical models

Useful for whiteboard discussions

Split up assumptions: check them

Encode dependencies / conditional independences



Directed graphical models

All distributions follow product rule:

P (a, b, c, d) = P (a)P (b | a)P (c | a, b)P (d | a, b, c)

P (x) = P (x1)

D∏

d=2

P (xd |x<d)

Fully Visible Bayesian Networks

• Good at estimating       (tractable)

• Not as good a model as RBMs

W

x̂

x

ck

x1 x2 x3 x4

General graphical model
Fully Visible Sigmoid 
Belief Net (FVSBN)

p(x)

p(x) =
�

k

p(xk|x<k)
�xk

p(xk = 1|x<k)This model is always true!

Removing an edge implies

independence structure



“Explaining away”

Classic example:

s

d5d3 d4d1 d2

Many diseases dk
may cause symptom s

Beliefs about parents of observed node become dependent



More induced dependencies

stars n=1..N

A(n) φ(n)

θ

ω

x(n) ,v(n)

Learning about “irrelevant” stuff, helps pin down ω



Losing dependencies

Separation from past:

yx z

x⊥⊥ z | y
The Naive Bayes model:

x2

c

x1

x1⊥⊥x2 | c



“Bayes Ball” examples
A double-header: two games of Bayes Ball

X

Y

Z

X

W

Y

Z

no active paths one active path

X⊥⊥Y |Z X 6⊥⊥Y | {W,Z}

23

Slide 23 lec2, of Mark Paskin’s graphical models course
http://ai.stanford.edu/~paskin/gm-short-course/



Undirected graphical models

x1 x2

x3

x1 x2

x3

fi

x1 x2

x3

x1 x2

x3

x1 x2x1

x3

x2

x3

x1 x2

x3

Different factorizations of the probabilities of everything:

P (x1)P (x2)P (x3 |x1, x2)

1
Zf(x1, x2, x3)

1
Zfa(x1, x2) fb(x1, x3) fc(x2, x3)



Undirected is often easier

No need to choose ordering

Message-passing-based inference is simpler

Independence rules simpler:
— remove observed vars and edges to them

— conditionally dependent iff path between vars

No “explaining away”



Exponential family models

p(x | θ) =
1

Z(θ)
g(x) exp

(∑

k

θkφk(x)

)

Learning signal:

∂ 1
N

∑
n logP (x(n) | θ)
∂θk

= Edata[φk]− EP (x | θ)[φk]

Maximum likelihood matches statistics φ

Finds maximum entropy distribution that does so



Undirected downsides

Potts models with 10 colors at the critical coupling

P (x | J, h) =
1

Z(J, h)

∏

(i,j)

φ(xi, xj; J)
∏

i

φ(xi;h)



Gaussians are undirected models

P (x |Σ, µ=0) ∝ exp
(
− 1/2

∑

i,j

Σ−1
i,j xixj

)

∝
∏

i,j

exp
(
−1/2Σ−1

i,j xixj
)

=
1

Z

∏

i,j

φi,j(xi, xj)

Latent Gaussian Models:
— tractable Gaussian as undirected backbone

— observation model matches data (e.g., discrete)



PMF FOR NBA BASKETBALL
BOS CHA CLE MIA OKC ORL PHI UTA

BOS

CHA

CLE

MIA

OKC

ORL

PHI

UTA

93

96

104

104

119

89

91

111

Zm,n

Zn,m

= Score of team m against n.

= Score of team n against m.

Offense Defense

Saturday, June 19, 2010



Gaussian Process PriorsGP Priors

um(x)

0 2 4 6 8 10
−5

0

5

vm(x)
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Ym,n(x) = u>m(x)vn(x)
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