
JCBmacs Documentation

Copyright c© 2011 J. C. Bradfield

1

This is the documentation for JCBmacs (thank you, Aidan Kehoe), which is a fork of
XEmacs 21.4, using Unicode as its main internal character representation. (As with recent
GNU Emacs, it can also represent all the traditional character sets, independently from
Unicode. It is therefore highly backward-compatible.)

This documentation is still cursory, and is split into three parts: stuff the
non-programming user needs to know, stuff the Lisp programmer needs to know, and stuff
the C programmer needs to know.

2 JCBmacs documentation

Chapter 1: User-level changes 3

1 User-level changes

There are, intentionally, very few changes immediately obvious in a vanilla JCBmacs.
The most obvious is that if you visit a file that is in utf-8, JCBmacs will recognize it, and
the symbol ‘U8’ will appear at the left of the modeline in the coding-system slot. Also,
of course, utf-8 is available as a coding system for explicit choice. (So should the other
Unicode coding systems, but for no reason other than laziness, they aren’t there yet.)

If you have been used to using the mule-ucs package for Unicode support, you should
not try to use it with JCBmacs. An appropriate snippet in your init file is:

(if (fboundp ’unicode-precedence-list)
t

(require ’un-define)
(require ’unicode)
(set-coding-category-system ’utf-8 ’utf-8))

which works because both JCBmacs and recent XEmacs 21.5 define unicode-

precedence-list.

For compatibility, JCBmacs retains the traditional XEmacs default coding system of
ISO-2022. Assuming you are in the modern world, you will want to change this to utf-8,
which you can do with the following entry in your ‘.xemacs/init.el’ file:

(setq-default buffer-file-coding-system ’utf-8)

You will probably also want to make utf-8 the highest priority coding system, which can
be done by

(set-coding-priority-list (cons ’utf-8 (delq ’utf-8 (coding-priority-list))))

When editing, all the usual XEmacs input methods still work. Characters are inserted
in their native character sets, so, for example, Big5 and GB2312 characters are distinct. As
yet, there is no automatic folding of characters into UCS in the Emacs buffer. If the buffer
is in the utf-8 coding system, all characters will be converted to Unicode on save. Thus,
the simplest method to convert the buffer to Unicode is to save the file and then revert the
buffer.

Any Unicode character may be inserted with the command insert-ucs-character,
which is bound to C-x U (note the upper-case U). Interactively, a UCS code point in hex-
adecimal is read from the minibuffer.

For choosing fonts, JCBmacs allows flexibility in using legacy and Unicode fonts. Its be-
haviour is controlled by the (awkwardly named) variable display-fonts-per-character.
If you have Unicode fonts but not legacy fonts, you will probably want to set this to 3. If
you have plenty of legacy fonts, but not good Unicode coverage, set it to 2. The default
value of 1 is appropriate for systems with good font coverage of both legacy and Unicode
characters.

JCBmacs implements visual-line-mode, similar to that in GNU Emacs.

4 JCBmacs documentation

Chapter 2: Lisp-level changes 5

2 Lisp-level changes

This chapter describes the changes visible at the Lisp level. It follows the structure of
the Lisp Reference Manual.

2.1 Lisp Data Types

The following primitive types have changed:

2.1.1 Characters

The integer values of characters (above 255) have changed. For UCS values, the integer
value is the UCS codepoint. For legacy characters, the integer value is not useful. Character
(and string) read syntax is extended with \x and \u escapes: these may be followed by up
to 8 hexadecimal digits (for compatibility with Gnu Emacs syntax), but will give an error
if the resulting integer is not a valid character (for \x) or is not a Unicode character (for
\u). Unlike GNU Emacs, it is not possible to follow the digits with ‘\ ’ (escaped space) to
terminate the digit string; if you need to follow a \u or \x by a hex digit character, you
must either use a full eight digits, or terminate with an escaped newline.

2.1.2 Char tables

Char tables have been extended as follows:

The types of ranges that can be assigned values are, for Mule characters:

all Mule and Unicode characters (represented by t)

all Mule characters (represented by ’mule)

an entire charset

a single row in a two-octet charset (represented by a vector of two elements: a two-octet
charset and a row number; the row must be an integer, not a character)

a single character

For Unicode characters, the ranges are

all UCS characters (represented by ’ucs)

a 14-bit segment of UCS (represented by a vector of two elements: the starting point
of the segment, and the size 0x4000 of the segment);

a 7-bit segment of UCS (represented by a vector of two elements: the starting point of
the segment, and the size 0x80);

a single character

Display tables have changed similarly.

2.1.3 Charsets and Coding Systems

These have changed. See MULE Section 2.7.1 [Charsets], page 7 and MULE Section 2.7.4
[Coding Systems], page 8

6 JCBmacs documentation

2.2 Byte Compilation

Warning: JCBmacs byte-compiled files may not be understood by XEmacs 21.4, be-
cause the esc-quoted coding system used for byte-compiled files has been extended to allow
Unicode characters.

2.3 Read and Print

One of the major gotchas of XEmacs is that if data is corrupted because of a wrong
choice of coding system during i/o, you get no warning.

It is technically infeasible to return an error, as en-/de-coding happens in a place far
removed from the function doing the i/o. However, JCBmacs will throw up a warning (in
the *Warnings* buffer) whenever invalid input is read, or a character cannot be written
to output in the current coding system. Such warnings should always be investigated.
(The VM mail reader used to have many such errors, leading to major data corruption for
multilingual users.)

2.4 Searching and Matching

Unfortunately no change has been made to the searching and matching functionality,
except to disable ‘fastmap’ optimization, which is too hard to support. (It doesn’t seem to
matter, though.)

What ought to happen is: implementation of standard modern Unicode regexp con-
structs, and ‘folding’ of character sets so that equivalent characters are not distinguished.

More urgently, incremental search needs to work with input methods. This, alas, seems
to be a hard problem. GNU Emacs has it working, but their input methods are lower level.
It’s probably the only way.

2.5 Fonts

In XEmacs, fonts are usually associated with charsets; in traditional X fonts, the last part
of the XLFD identifies the charset (not quite, but close enough), and the first matching font
is used to display any character in the charset. A consequence of this is that each charset
needs complete coverage in its font. This doesn’t work too well with Unicode, as most fonts
have partial coverage, e.g. simplified Chinese, or Greek, or Armenian.

Therefore JCBmacs, by default, looks for fonts by the individual character, and chooses
the first matching font that actually contains a glyph for the character. Optionally, it can
also fold legacy characters into Unicode glyphs, and vice versa. This process is controlled
by the variable display-fonts-per-character, whose documentation gives more details.

As part of handling such matters, and to provide basic handling of combining characters
(diacritics etc.), various display properties are defined per character. This will ultimately be
the Unicode property database, but at present it’s a chartab, which is not exposed to Lisp.
Currently defined properties are individually exported by functions char-display-get-*

and char-display-set-*. This interface is likely to change.

The traditional X Window font system predates multi-plane Unicode, and limits fonts
to 65536 glyphs. Therefore, JCBmacs makes the technically unfounded but pragmatically

Chapter 2: Lisp-level changes 7

reasonable decision to steal the CHARSET ENCODING field of the XLFD for Unicode
fonts to give the plane. So a *-iso10646-1 font is assumed to be plane 1, and a plane 2
font can be named *-iso10646-2, and so on.

2.6 Emacs Display

For no reason other than that I wanted it, JCBmacs implements a ‘long lines mode’,
which is actually called visual-line-mode. The documentation is in the function. There
is currently a bug in the cursor handling, which leaves ghost cursors at the ends of lines.

2.7 MULE

2.7.1 Charsets

The term legacy charset means the traditional XEmacs charsets, i.e. those other than
Unicode.

XEmacs charsets are (apart from one or two special cases) either 94, 96, 94x94 or 96x96.
JCBmacs adds the UCS charset, which is a one-dimensional charset with 1114112 characters,
and, for internal use, charsets for each plane of the UCS, which are 256x256 charsets.

There are additions and changes to the properties that charsets have, as follows:

registry See Section 2.5 [Fonts], page 6 for how JCBmacs (ab)uses the registry for Uni-
code fonts.

to_ucs This property specifies a chartab for converting characters in this charset to
UCS. If it is nil, the chartab stored in mule-to-ucs is used (this chartab is
generated from mapping tables by Lisp initialization code).

from_ucs This property is a chartab for conversion from UCS to this chartab. It will be
filled in by Lisp initialization code from mapping tables. This chartab should
not be shared between different charsets. Conversion from UCS to legacy uses
the chartab in the global variable ucs-to-mule, which is constructed from
from_ucs entries in the user’s preferred priority order.

shadow A shadow charset is a mirror of a real charset, but may have different name,
registry and direction properties. shadow is the real charset that this charset
is shadowing. This was introduced for allowing more control of fonts, but is
probably unnecessary, evil and to be deleted.

chars This property may additionally have the values 1114112 or 256.

The following new basic charset function exists (but may be removed):

Functionmake-shadow-charset charset-or-name name doc-string props
This function makes a charset shadowing an existing charset. charset-or-name is the
charset to be shadowed. The other arguments are as for make-charset. Only the
short-name, long-name, registry and direction properties are recognized.

8 JCBmacs documentation

The following additional charsets are predefined in the C code:

Name Type Fi Gr Dir Registry
--
ucs 1114112 0 l2r ISO10646
ucs-plane-0 256x256 0 l2r ISO10646
...
ucs-plane-16 256x256 0 l2r ISO10646

The UCS plane charsets are for internal use, and may be removed in future, or at least
hidden from lisp. The l2r and graphic properties are not meaningful.

The composite charset is not defined.

The ethiopic and ascii-r2l charsets are no longer defined in Lisp.

2.7.2 MULE Characters

If the make-char function is called with the ucs charset, arg1 may be any UCS codepoint.
make-char with a shadow or UCS plane charset is not supported.

Similarly, char-octet returns the codepoint of a UCS character.

2.7.3 Composite Characters

All support for composite characters has been removed.

2.7.4 Coding Systems

There is a utf-16 coding system type, and a gb18030 type. The ucs-4 and utf-16

types recognize the following additional properties:

little-endian

Non-nil if little-endian format is used; otherwise big-endian.

bom If this is nil, no byte order mark is accepted or generated. If it is t, a byte order
mark is accepted on input and generated on output. If it is any other value, a
byte order mark is accepted on input, but not generated on output.

The Chinese gb18030 coding system is predefined in C. Since it is defined to be a
mapping of Unicode, characters read with it are in the UCS charset, not in the legacy
Chinese charsets, even when they are part of the legacy charsets.

The escape-quoted coding system has been extended to use the ISO2022 Unicode escape
sequence for UCS characters.

All built-in coding systems will throw a warning if they encounter an error: undecodable
bytes on decoding, or an unencodable character on encoding.

Functions relevant to conversion between legacy charsets and UCS are:

Functionset-ucs-char codepoint character
makes character the preferred legacy version of the UCS codepoint

Functionucs-char codepoint
returns the preferred legacy version of the UCS codepoint, or nil if not set

Chapter 2: Lisp-level changes 9

Functionset-char-ucs character codepoint
makes character map to UCS codepoint, both in the from-ucs property of character’s
charset and in the global mule-to-ucs chartab.

Functionchar-ucs character
returns the UCS codepoint corresponding to character, or nil if not set.

2.7.5 Input Methods

In order that input methods can work in isearch and other such places, they have been
reimplemented along the same lines as GNU Emacs, and ‘isearch-mode.el’ adjusted ac-
cordingly. The implementation is a bit hacky.

In ‘event-mod.h’, a fake modifier bit XEMACS_MOD_INPUT is added, which allows events
to be labelled as coming from an input method rather than from the outside. It has the
Lisp name input, and is ignored by keymap lookup. Input methods store their output in
a lisp variable, whence they are processed by the main event stream in priority to external
events.

The following variables control input methods:

Variableinput-method-function
If this function is defined, a keypress event is passed to this function instead of being
dispatched in the normal way. The function should return an event or list of events
to be processed in place of the original event. Such events are dispatched normally,
ahead of all other pending command events. This variable is reset to nil if any error
occurs in the execution of the function.

Variableunread-post-input-method-events
Variable containing the list of events from an input method. These events are dis-
patched ahead of all other event sources, and are never given to an input method.
Input methods should (for FSF compatibility) simply return events, rather than di-
rectly adding them to this list.

Variableinput-method-previous-message
Variable containing previous contents of echo area (before current event).

Instead of the ‘quail.el’ provided with XEmacs 21.4, a replacement file is preloaded.
This file was taken from the last GPL2 GNU Emacs, and then adapted for the input
method implementatin used here. The adaptation is not complete: keyboard translation
is not implemented (does anybody use it?), and the conversion needed for Japanese input
methods is not implemented.

2.7.6 CCL

CCL should be obsolete, but backward compatibility requires it to be supported. Since
CCL has access to the internal representation of XEmacs characters and buffers, this is a
problem. JCBmacs solves this problem by assuming that all coding system CCL is legacy,
and translating between JCBmacs and XEmacs representations when invoking CCL coding

10 JCBmacs documentation

systems. A corollary of this is that CCL coding systems cannot access UCS characters.
If anyone ever wished to use CCL in the context of UCS, it would be easy to add a new
property to coding systems to disable the representation conversion.

Sample index entry . 3

i

Table of Contents

1 User-level changes . 3

2 Lisp-level changes . 5
2.1 Lisp Data Types . 5

2.1.1 Characters . 5
2.1.2 Char tables . 5
2.1.3 Charsets and Coding Systems 5

2.2 Byte Compilation . 6
2.3 Read and Print . 6
2.4 Searching and Matching . 6
2.5 Fonts . 6
2.6 Emacs Display . 7
2.7 MULE . 7

2.7.1 Charsets . 7
2.7.2 MULE Characters . 8
2.7.3 Composite Characters . 8
2.7.4 Coding Systems . 8
2.7.5 Input Methods . 9
2.7.6 CCL . 9

ii JCBmacs documentation

	User-level changes
	Lisp-level changes
	Lisp Data Types
	Characters
	Char tables
	Charsets and Coding Systems

	Byte Compilation
	Read and Print
	Searching and Matching
	Fonts
	Emacs Display
	MULE
	Charsets
	MULE Characters
	Composite Characters
	Coding Systems
	Input Methods
	CCL

