
FSharpComposableQuery 
overview & demo

James Cheney
(with Phil Wadler, Sam Lindley, Yordan Stoyanov)

University of Edinburgh

F#unctional Programming Meetup
September 11, 2014

Work supported by Royal Society, UoE, Google and EPSRC



Motivation
• Database programming involves generating 

query "code" (SQL) at run time

• Naive approach: compose SQL as strings

• Maximal control, performance tuning

• But: 

• Type-unsafe

• can lead to security vulnerabilities (SQL 
injection)



LINQ
• Language-Integrated Query (LINQ)

• Microsoft C# (Meijer et al. 2006)

• and F# (Syme 2006)

• Based on comprehension syntax (a.k.a. "do" notation, 
computation expressions, etc.)

• and quotation <@ @> 

• which explicitly separates query from normal code

• Type-safety inherited from source language

• Type providers (run-time type information in IDE) make this 
especially handy
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Abstract
Language-integrated query techniques have been explored in a
number of different language designs. We consider two differ-
ent, type-safe approaches employed by Links and F#. Both ap-
proaches provide rich dynamic query generation capabilities, and
thus amount to a form of heterogeneous staged computation, but to
date there has been no formal investigation of their relative expres-
siveness. We present two core calculi Eff and Quot, respectively
capturing the essential aspects of language-integrated querying us-
ing effects in Links and quotation in LINQ. We show via transla-
tions from Eff to Quot and back that the two approaches are equiv-
alent in expressiveness. Based on the translation from Eff to Quot,
we extend a simple Links compiler to handle queries.

Categories and Subject Descriptors D.3.1 [Formal Definitions
and Theory]; D.3.2 [Language Classifications]: Applicative (func-
tional) languages; H.2.3 [Languages]: Query languages

Keywords language-integrated query; effects; quotation

1. Introduction
Increasingly, programming involves coordinating data and compu-
tation among several layers, such as server-side, client-side and
database layers of a typical three-tier Web application. The inter-
action between the host programming language (e.g. Java, C#, F#,
Haskell or some other general-purpose language) running on the
server and the query language (e.g. SQL) running on the database
is particularly important, because the relational model and query
language provided by the database differ from the data structures
of most host languages. Conventional approaches to embedding
database queries within a general-purpose language, such as Java’s
JDBC, provide the programmer with precise control over perfor-
mance but are subject to typing errors and security vulnerabili-
ties such as SQL injection attacks [35]. Object-relational mapping
(ORM) tools and libraries, such as Java’s Hibernate, provide a pop-
ular alternative by wrapping database access and update in type-
safe object-oriented interfaces, but this leads to a loss of control
over the structure of generated queries, which makes it difficult to
understand and improve performance [14].
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employees

dpt name salary

“Product” “Alex” 40,000
“Product” “Bert” 60,000
“Research” “Cora” 50,000
“Research” “Drew” 70,000
“Sales” “Erik” 200,000
“Sales” “Fred” 95,000
“Sales” “Gina” 155,000

tasks

emp tsk

“Alex” “build”

“Bert” “build”

“Cora” “abstract”

“Cora” “build”

“Cora” “call”

“Cora” “dissemble”

“Cora” “enthuse”

“Drew” “abstract”

“Drew” “enthuse”

“Erik” “call”

“Erik” “enthuse”

“Fred” “call”

“Gina” “call”

“Gina” “dissemble”

Figure 1. Sample Data

To avoid these so-called impedance mismatch problems, a num-
ber of language-integrated query techniques for embedding queries
into general-purpose programming languages have emerged, which
seek to reconcile the goals of type-safety and programmer control.
Two distinctive styles of language-integrated query have emerged:

• Employ some form of static analysis or type system to iden-
tify parts of programs that can be turned into queries (e.g.
Kleisli [38], Links [8], Batches for Java [36]).

• Extend a conventional language with explicit facilities for
quotation or manipulation of query code (e.g. LINQ [21],
Ur/Web [5], Database-Supported Haskell [13]).

Links is an example of the first approach. It uses a type-and-
effect system [32] to classify parts of programs as executable only
on the database, executable only on the host programming lan-
guage, or executable anywhere. For example, consider the em-
ployee and task data in tables in Figure 1. The following code

for (x <- employees)

where(x.salary > 50000)

[(name=x.name)]

retrieves the names of employees earning over $50,000, specif-
ically [“Bert”,“Drew”,“Erik”,“Fred”,“Gina”]. In Links, the
same code can be run either on the database (if employees and
tasks are tables) or in the host language. If executed as a query,
the interpreter generates a single (statically defined) SQL query
that can take advantage of the database’s indexing or other query
optimisation; if executed in-memory, the expression will by default
be interpreted as a quadratic nested loop. (Efficient in-memory im-
plementations of query expressions are also possible [16].)

LINQ (F#) example

In contrast, in Microsoft’s LINQ (supported in C#, F#, and some
other .NET languages), the programming language is extended
with query-like syntax. For example, the same query as above can
be written in F# as:

query { for x in employees

where (x.salary > 50000)

yield {name=x.name} }

This is just syntactic sugar for code that builds and manipulates
quotations. In F#, this facility is built explicitly on top of language
support for quotation [22, 29] and its computation expression syn-
tax [26]. The above F# query expression is implemented by quot-
ing the code inside the query{ ... } brackets and translating it
(at run time) to C# values of type Expression<T>, which are con-
verted to SQL by the .NET LINQ to SQL library.

The above example is rather simplistic: the query is static,
that is, does not depend on any run-time data. Static queries can
be handled easily even by libraries such as JDBC, and systems
such as Links and LINQ provide the added benefit of type-safety.
However, most queries are generated dynamically, depending on
some run-time data. The ability to generate dynamic queries is
essential for database programming. Libraries such as JDBC allow
queries to be parameterized over base type values such as strings or
integers, ensuring that values are correctly escaped to prevent SQL
injection attacks. Both Links and LINQ go significantly further:
they allow constructing dynamic queries using �-abstraction and
run-time normalisation, while retaining type safety and preventing
SQL injection. However, this capability comes with its own pitfalls:
it can be difficult to predict when an expression can be turned into
a single query.

To address this problem, Cooper [7] showed how to extend
Links so that performance-critical code can be highlighted with
the query keyword. Links will statically check that the enclosed
expression will definitely translate to a single query (neither failing
at run-time, nor generating multiple queries). We refer to this as the
single-query guarantee. In database theory, conservativity results
due to Wong [37] and others provided a single-query guarantee
in the case of first-order queries: any query expression having flat
input and output types can be turned into an SQL query. This idea
provided the basis for the Kleisli system [38], which was a source
of inspiration to Links; the single-query guarantee was generalised
to the higher-order case by Cooper [7], who also gave a static type-
and-effect system that showed how to embed queries in a higher-
order general-purpose language. Subsequent work on Links [19]
generalised this to use row typing and effect polymorphism.

The possibility of generating LINQ queries dynamically in ad
hoc cases was discussed by Syme [29] and Petricek [24, 25]. The
F# and LINQ to SQL libraries in Microsoft .NET do not provide a
single-query guarantee for dynamic queries; instead, they attempt
to generate a single query but sometimes fail or generate multiple
queries. In our recent paper [4] we showed that Cooper’s approach
to normalisation for Links can be transferred to provide systematic
support for abstraction in LINQ in F#, providing a single-query
guarantee. In the rest of this paper, we consider the F# LINQ
approach with this extension.

Nevertheless, there are still apparent differences between the
approaches. For example, in LINQ, a query expression cannot be
(easily) reused as ordinary code. This potentially leads to the need
to write (essentially) the same code twice, once for ordinary use and
once for use on the database. Code duplication can interfere with
the use of functional abstraction to construct queries. For example,
the following Links code

fun elem(x,xs) {

not(empty(for (y <- xs) where (x == y) [()]))

}

fun canDo(name,tsk) {

elem("build", for (t <- tasks)

where (t.emp == name)

[t.tsk])

}

query { for (x <- employees)

where (canDo(x.name,"build"))

[(name=x.name)] }

defines functions elem and canDo that test respectively whether
a value is an element of a collection and whether an employee
can do a certain task. The Links effect system correctly determines
that elem can be run anywhere, and that canDo can be run on the
database. When the query is to be executed, Links normalises the
query by inlining elem and canDo and performing other transfor-
mations to generate a single SQL query [7]. In contrast, naively
executing this code might involve loading all of the data from the
employees table, and running one subquery to compute canDo for
each employees row in-memory.

In F#, it is possible to do something similar, but only by explic-
itly quoting elem and canDo.

let elem = <@ fun x xs ->

query { for y in xs

exists(y = x) } @>

let canDo = <@ fun name tsk ->

(%elem) tsk (for t in tasks

where (t.emp = name)

yield t.tsk) @>

query { for x in employees

where ((%canDo) x.name "build")

yield {name=x.name} }

The quoted version of elem is spliced into the query using antiquo-
tation (%elem). If we need the elem function in both query and
non-query code, its code must be duplicated, or we need to eval-
uate or generate compiled code for it at runtime. (F#’s quotation
library does include Eval and Compile functions that can be used
for this purpose, but it is not clear that these actually generate effi-
cient code at runtime, nor is it convenient to write this boilerplate
code.)

It is important to note that SQL does not natively support
general recursion or first-class functional abstraction (although
there are recent proposals to support the latter [15]). Nonrecur-
sive lambda-abstraction is supported in query expressions in Links
and F#, but it is eliminated in the process of generating an SQL
query. Recursive functions can also be used to construct queries
from data in the host language, in both Links and LINQ, but care
is needed to make the staging explicit. For example, in F# we can
define a predicate that tests whether an employee can do all tasks
in some list as follows:

let rec canDoAll(tsks) =

match tsks with

[] -> <@ fun name -> true @>

| tsk::tsks’ -> <@ fun name ->

(%canDo) name tsk && (%canDoAll tsks’) name @>

query {

for x in employees

where ((%canDoAll ["build","call"]) x.name)

yield {name=x.name} }

This is also possible in Links, but we need to use function abstrac-
tion and hoist subcomputations to satisfy the effect type system:

fun canDoAll(tsks) {

switch (tsks) {

case [] -> fun (name) {true}
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To avoid these so-called impedance mismatch problems, a num-
ber of language-integrated query techniques for embedding queries
into general-purpose programming languages have emerged, which
seek to reconcile the goals of type-safety and programmer control.
Two distinctive styles of language-integrated query have emerged:

• Employ some form of static analysis or type system to iden-
tify parts of programs that can be turned into queries (e.g.
Kleisli [38], Links [8], Batches for Java [36]).

• Extend a conventional language with explicit facilities for
quotation or manipulation of query code (e.g. LINQ [21],
Ur/Web [5], Database-Supported Haskell [13]).

Links is an example of the first approach. It uses a type-and-
effect system [32] to classify parts of programs as executable only
on the database, executable only on the host programming lan-
guage, or executable anywhere. For example, consider the em-
ployee and task data in tables in Figure 1. The following code

for (x <- employees)

where(x.salary > 50000)

[(name=x.name)]

retrieves the names of employees earning over $50,000, specif-
ically [“Bert”,“Drew”,“Erik”,“Fred”,“Gina”]. In Links, the
same code can be run either on the database (if employees and
tasks are tables) or in the host language. If executed as a query,
the interpreter generates a single (statically defined) SQL query
that can take advantage of the database’s indexing or other query
optimisation; if executed in-memory, the expression will by default
be interpreted as a quadratic nested loop. (Efficient in-memory im-
plementations of query expressions are also possible [16].)

LINQ (F#) example

In contrast, in Microsoft’s LINQ (supported in C#, F#, and some
other .NET languages), the programming language is extended
with query-like syntax. For example, the same query as above can
be written in F# as:

query { for x in employees

where (x.salary > 50000)

yield {name=x.name} }

This is just syntactic sugar for code that builds and manipulates
quotations. In F#, this facility is built explicitly on top of language
support for quotation [22, 29] and its computation expression syn-
tax [26]. The above F# query expression is implemented by quot-
ing the code inside the query{ ... } brackets and translating it
(at run time) to C# values of type Expression<T>, which are con-
verted to SQL by the .NET LINQ to SQL library.

The above example is rather simplistic: the query is static,
that is, does not depend on any run-time data. Static queries can
be handled easily even by libraries such as JDBC, and systems
such as Links and LINQ provide the added benefit of type-safety.
However, most queries are generated dynamically, depending on
some run-time data. The ability to generate dynamic queries is
essential for database programming. Libraries such as JDBC allow
queries to be parameterized over base type values such as strings or
integers, ensuring that values are correctly escaped to prevent SQL
injection attacks. Both Links and LINQ go significantly further:
they allow constructing dynamic queries using �-abstraction and
run-time normalisation, while retaining type safety and preventing
SQL injection. However, this capability comes with its own pitfalls:
it can be difficult to predict when an expression can be turned into
a single query.

To address this problem, Cooper [7] showed how to extend
Links so that performance-critical code can be highlighted with
the query keyword. Links will statically check that the enclosed
expression will definitely translate to a single query (neither failing
at run-time, nor generating multiple queries). We refer to this as the
single-query guarantee. In database theory, conservativity results
due to Wong [37] and others provided a single-query guarantee
in the case of first-order queries: any query expression having flat
input and output types can be turned into an SQL query. This idea
provided the basis for the Kleisli system [38], which was a source
of inspiration to Links; the single-query guarantee was generalised
to the higher-order case by Cooper [7], who also gave a static type-
and-effect system that showed how to embed queries in a higher-
order general-purpose language. Subsequent work on Links [19]
generalised this to use row typing and effect polymorphism.

The possibility of generating LINQ queries dynamically in ad
hoc cases was discussed by Syme [29] and Petricek [24, 25]. The
F# and LINQ to SQL libraries in Microsoft .NET do not provide a
single-query guarantee for dynamic queries; instead, they attempt
to generate a single query but sometimes fail or generate multiple
queries. In our recent paper [4] we showed that Cooper’s approach
to normalisation for Links can be transferred to provide systematic
support for abstraction in LINQ in F#, providing a single-query
guarantee. In the rest of this paper, we consider the F# LINQ
approach with this extension.

Nevertheless, there are still apparent differences between the
approaches. For example, in LINQ, a query expression cannot be
(easily) reused as ordinary code. This potentially leads to the need
to write (essentially) the same code twice, once for ordinary use and
once for use on the database. Code duplication can interfere with
the use of functional abstraction to construct queries. For example,
the following Links code

fun elem(x,xs) {

not(empty(for (y <- xs) where (x == y) [()]))

}

fun canDo(name,tsk) {

elem("build", for (t <- tasks)

where (t.emp == name)

[t.tsk])

}

query { for (x <- employees)

where (canDo(x.name,"build"))

[(name=x.name)] }

defines functions elem and canDo that test respectively whether
a value is an element of a collection and whether an employee
can do a certain task. The Links effect system correctly determines
that elem can be run anywhere, and that canDo can be run on the
database. When the query is to be executed, Links normalises the
query by inlining elem and canDo and performing other transfor-
mations to generate a single SQL query [7]. In contrast, naively
executing this code might involve loading all of the data from the
employees table, and running one subquery to compute canDo for
each employees row in-memory.

In F#, it is possible to do something similar, but only by explic-
itly quoting elem and canDo.

let elem = <@ fun x xs ->

query { for y in xs

exists(y = x) } @>

let canDo = <@ fun name tsk ->

(%elem) tsk (for t in tasks

where (t.emp = name)

yield t.tsk) @>

query { for x in employees

where ((%canDo) x.name "build")

yield {name=x.name} }

The quoted version of elem is spliced into the query using antiquo-
tation (%elem). If we need the elem function in both query and
non-query code, its code must be duplicated, or we need to eval-
uate or generate compiled code for it at runtime. (F#’s quotation
library does include Eval and Compile functions that can be used
for this purpose, but it is not clear that these actually generate effi-
cient code at runtime, nor is it convenient to write this boilerplate
code.)

It is important to note that SQL does not natively support
general recursion or first-class functional abstraction (although
there are recent proposals to support the latter [15]). Nonrecur-
sive lambda-abstraction is supported in query expressions in Links
and F#, but it is eliminated in the process of generating an SQL
query. Recursive functions can also be used to construct queries
from data in the host language, in both Links and LINQ, but care
is needed to make the staging explicit. For example, in F# we can
define a predicate that tests whether an employee can do all tasks
in some list as follows:

let rec canDoAll(tsks) =

match tsks with

[] -> <@ fun name -> true @>

| tsk::tsks’ -> <@ fun name ->

(%canDo) name tsk && (%canDoAll tsks’) name @>

query {

for x in employees

where ((%canDoAll ["build","call"]) x.name)

yield {name=x.name} }

This is also possible in Links, but we need to use function abstrac-
tion and hoist subcomputations to satisfy the effect type system:

fun canDoAll(tsks) {

switch (tsks) {

case [] -> fun (name) {true}

select name
from employees e
where e.salary > 50000
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To avoid these so-called impedance mismatch problems, a num-
ber of language-integrated query techniques for embedding queries
into general-purpose programming languages have emerged, which
seek to reconcile the goals of type-safety and programmer control.
Two distinctive styles of language-integrated query have emerged:

• Employ some form of static analysis or type system to iden-
tify parts of programs that can be turned into queries (e.g.
Kleisli [38], Links [8], Batches for Java [36]).

• Extend a conventional language with explicit facilities for
quotation or manipulation of query code (e.g. LINQ [21],
Ur/Web [5], Database-Supported Haskell [13]).

Links is an example of the first approach. It uses a type-and-
effect system [32] to classify parts of programs as executable only
on the database, executable only on the host programming lan-
guage, or executable anywhere. For example, consider the em-
ployee and task data in tables in Figure 1. The following code

for (x <- employees)

where(x.salary > 50000)

[(name=x.name)]

retrieves the names of employees earning over $50,000, specif-
ically [“Bert”,“Drew”,“Erik”,“Fred”,“Gina”]. In Links, the
same code can be run either on the database (if employees and
tasks are tables) or in the host language. If executed as a query,
the interpreter generates a single (statically defined) SQL query
that can take advantage of the database’s indexing or other query
optimisation; if executed in-memory, the expression will by default
be interpreted as a quadratic nested loop. (Efficient in-memory im-
plementations of query expressions are also possible [16].)
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Bert
Drew
Erik
Fred
Gina

In contrast, in Microsoft’s LINQ (supported in C#, F#, and some
other .NET languages), the programming language is extended
with query-like syntax. For example, the same query as above can
be written in F# as:

query { for x in employees

where (x.salary > 50000)

yield {name=x.name} }

This is just syntactic sugar for code that builds and manipulates
quotations. In F#, this facility is built explicitly on top of language
support for quotation [22, 29] and its computation expression syn-
tax [26]. The above F# query expression is implemented by quot-
ing the code inside the query{ ... } brackets and translating it
(at run time) to C# values of type Expression<T>, which are con-
verted to SQL by the .NET LINQ to SQL library.

The above example is rather simplistic: the query is static,
that is, does not depend on any run-time data. Static queries can
be handled easily even by libraries such as JDBC, and systems
such as Links and LINQ provide the added benefit of type-safety.
However, most queries are generated dynamically, depending on
some run-time data. The ability to generate dynamic queries is
essential for database programming. Libraries such as JDBC allow
queries to be parameterized over base type values such as strings or
integers, ensuring that values are correctly escaped to prevent SQL
injection attacks. Both Links and LINQ go significantly further:
they allow constructing dynamic queries using �-abstraction and
run-time normalisation, while retaining type safety and preventing
SQL injection. However, this capability comes with its own pitfalls:
it can be difficult to predict when an expression can be turned into
a single query.

To address this problem, Cooper [7] showed how to extend
Links so that performance-critical code can be highlighted with
the query keyword. Links will statically check that the enclosed
expression will definitely translate to a single query (neither failing
at run-time, nor generating multiple queries). We refer to this as the
single-query guarantee. In database theory, conservativity results
due to Wong [37] and others provided a single-query guarantee
in the case of first-order queries: any query expression having flat
input and output types can be turned into an SQL query. This idea
provided the basis for the Kleisli system [38], which was a source
of inspiration to Links; the single-query guarantee was generalised
to the higher-order case by Cooper [7], who also gave a static type-
and-effect system that showed how to embed queries in a higher-
order general-purpose language. Subsequent work on Links [19]
generalised this to use row typing and effect polymorphism.

The possibility of generating LINQ queries dynamically in ad
hoc cases was discussed by Syme [29] and Petricek [24, 25]. The
F# and LINQ to SQL libraries in Microsoft .NET do not provide a
single-query guarantee for dynamic queries; instead, they attempt
to generate a single query but sometimes fail or generate multiple
queries. In our recent paper [4] we showed that Cooper’s approach
to normalisation for Links can be transferred to provide systematic
support for abstraction in LINQ in F#, providing a single-query
guarantee. In the rest of this paper, we consider the F# LINQ
approach with this extension.

Nevertheless, there are still apparent differences between the
approaches. For example, in LINQ, a query expression cannot be
(easily) reused as ordinary code. This potentially leads to the need
to write (essentially) the same code twice, once for ordinary use and
once for use on the database. Code duplication can interfere with
the use of functional abstraction to construct queries. For example,
the following Links code

fun elem(x,xs) {

not(empty(for (y <- xs) where (x == y) [()]))

}

fun canDo(name,tsk) {

elem("build", for (t <- tasks)

where (t.emp == name)

[t.tsk])

}

query { for (x <- employees)

where (canDo(x.name,"build"))

[(name=x.name)] }

defines functions elem and canDo that test respectively whether
a value is an element of a collection and whether an employee
can do a certain task. The Links effect system correctly determines
that elem can be run anywhere, and that canDo can be run on the
database. When the query is to be executed, Links normalises the
query by inlining elem and canDo and performing other transfor-
mations to generate a single SQL query [7]. In contrast, naively
executing this code might involve loading all of the data from the
employees table, and running one subquery to compute canDo for
each employees row in-memory.

In F#, it is possible to do something similar, but only by explic-
itly quoting elem and canDo.

let elem = <@ fun x xs ->

query { for y in xs

exists(y = x) } @>

let canDo = <@ fun name tsk ->

(%elem) tsk (for t in tasks

where (t.emp = name)

yield t.tsk) @>

query { for x in employees

where ((%canDo) x.name "build")

yield {name=x.name} }

The quoted version of elem is spliced into the query using antiquo-
tation (%elem). If we need the elem function in both query and
non-query code, its code must be duplicated, or we need to eval-
uate or generate compiled code for it at runtime. (F#’s quotation
library does include Eval and Compile functions that can be used
for this purpose, but it is not clear that these actually generate effi-
cient code at runtime, nor is it convenient to write this boilerplate
code.)

It is important to note that SQL does not natively support
general recursion or first-class functional abstraction (although
there are recent proposals to support the latter [15]). Nonrecur-
sive lambda-abstraction is supported in query expressions in Links
and F#, but it is eliminated in the process of generating an SQL
query. Recursive functions can also be used to construct queries
from data in the host language, in both Links and LINQ, but care
is needed to make the staging explicit. For example, in F# we can
define a predicate that tests whether an employee can do all tasks
in some list as follows:

let rec canDoAll(tsks) =

match tsks with

[] -> <@ fun name -> true @>

| tsk::tsks’ -> <@ fun name ->

(%canDo) name tsk && (%canDoAll tsks’) name @>

query {

for x in employees

where ((%canDoAll ["build","call"]) x.name)

yield {name=x.name} }

This is also possible in Links, but we need to use function abstrac-
tion and hoist subcomputations to satisfy the effect type system:

fun canDoAll(tsks) {

switch (tsks) {

case [] -> fun (name) {true}

select name
from employees e
where e.salary > 50000
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Queries with 
function "parameters"?
• A way to (de)compose queries into reusable 

chunks?

• (avoid repeating yourself)

• This could be very useful

• a form of staged computation/meta-programming

• Queries could be constructed dynamically

• including constructing queries of different "shape"

• goes beyond simple int/string parameters

• yet still strongly typed
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Abstract
Language-integrated query techniques have been explored in a
number of different language designs. We consider two differ-
ent, type-safe approaches employed by Links and F#. Both ap-
proaches provide rich dynamic query generation capabilities, and
thus amount to a form of heterogeneous staged computation, but to
date there has been no formal investigation of their relative expres-
siveness. We present two core calculi Eff and Quot, respectively
capturing the essential aspects of language-integrated querying us-
ing effects in Links and quotation in LINQ. We show via transla-
tions from Eff to Quot and back that the two approaches are equiv-
alent in expressiveness. Based on the translation from Eff to Quot,
we extend a simple Links compiler to handle queries.

Categories and Subject Descriptors D.3.1 [Formal Definitions
and Theory]; D.3.2 [Language Classifications]: Applicative (func-
tional) languages; H.2.3 [Languages]: Query languages

Keywords language-integrated query; effects; quotation

1. Introduction
Increasingly, programming involves coordinating data and compu-
tation among several layers, such as server-side, client-side and
database layers of a typical three-tier Web application. The inter-
action between the host programming language (e.g. Java, C#, F#,
Haskell or some other general-purpose language) running on the
server and the query language (e.g. SQL) running on the database
is particularly important, because the relational model and query
language provided by the database differ from the data structures
of most host languages. Conventional approaches to embedding
database queries within a general-purpose language, such as Java’s
JDBC, provide the programmer with precise control over perfor-
mance but are subject to typing errors and security vulnerabili-
ties such as SQL injection attacks [35]. Object-relational mapping
(ORM) tools and libraries, such as Java’s Hibernate, provide a pop-
ular alternative by wrapping database access and update in type-
safe object-oriented interfaces, but this leads to a loss of control
over the structure of generated queries, which makes it difficult to
understand and improve performance [14].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
PEPM ’14, January 20–21, 2014, San Diego, CA, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2619-3/14/01. . . $15.00.
http://dx.doi.org/10.1145/2543728.2543738

employees

dpt name salary

“Product” “Alex” 40,000
“Product” “Bert” 60,000
“Research” “Cora” 50,000
“Research” “Drew” 70,000
“Sales” “Erik” 200,000
“Sales” “Fred” 95,000
“Sales” “Gina” 155,000

tasks

emp tsk

“Alex” “build”

“Bert” “build”

“Cora” “abstract”

“Cora” “build”

“Cora” “call”

“Cora” “dissemble”

“Cora” “enthuse”

“Drew” “abstract”

“Drew” “enthuse”

“Erik” “call”

“Erik” “enthuse”

“Fred” “call”

“Gina” “call”

“Gina” “dissemble”

Figure 1. Sample Data

To avoid these so-called impedance mismatch problems, a num-
ber of language-integrated query techniques for embedding queries
into general-purpose programming languages have emerged, which
seek to reconcile the goals of type-safety and programmer control.
Two distinctive styles of language-integrated query have emerged:

• Employ some form of static analysis or type system to iden-
tify parts of programs that can be turned into queries (e.g.
Kleisli [38], Links [8], Batches for Java [36]).

• Extend a conventional language with explicit facilities for
quotation or manipulation of query code (e.g. LINQ [21],
Ur/Web [5], Database-Supported Haskell [13]).

Links is an example of the first approach. It uses a type-and-
effect system [32] to classify parts of programs as executable only
on the database, executable only on the host programming lan-
guage, or executable anywhere. For example, consider the em-
ployee and task data in tables in Figure 1. The following code

for (x <- employees)

where(x.salary > 50000)

[(name=x.name)]

retrieves the names of employees earning over $50,000, specif-
ically [“Bert”,“Drew”,“Erik”,“Fred”,“Gina”]. In Links, the
same code can be run either on the database (if employees and
tasks are tables) or in the host language. If executed as a query,
the interpreter generates a single (statically defined) SQL query
that can take advantage of the database’s indexing or other query
optimisation; if executed in-memory, the expression will by default
be interpreted as a quadratic nested loop. (Efficient in-memory im-
plementations of query expressions are also possible [16].)

In contrast, in Microsoft’s LINQ (supported in C#, F#, and some
other .NET languages), the programming language is extended
with query-like syntax. For example, the same query as above can
be written in F# as:

query { for x in employees

where (x.salary > 50000)

yield {name=x.name} }

This is just syntactic sugar for code that builds and manipulates
quotations. In F#, this facility is built explicitly on top of language
support for quotation [22, 29] and its computation expression syn-
tax [26]. The above F# query expression is implemented by quot-
ing the code inside the query{ ... } brackets and translating it
(at run time) to C# values of type Expression<T>, which are con-
verted to SQL by the .NET LINQ to SQL library.

The above example is rather simplistic: the query is static,
that is, does not depend on any run-time data. Static queries can
be handled easily even by libraries such as JDBC, and systems
such as Links and LINQ provide the added benefit of type-safety.
However, most queries are generated dynamically, depending on
some run-time data. The ability to generate dynamic queries is
essential for database programming. Libraries such as JDBC allow
queries to be parameterized over base type values such as strings or
integers, ensuring that values are correctly escaped to prevent SQL
injection attacks. Both Links and LINQ go significantly further:
they allow constructing dynamic queries using �-abstraction and
run-time normalisation, while retaining type safety and preventing
SQL injection. However, this capability comes with its own pitfalls:
it can be difficult to predict when an expression can be turned into
a single query.

To address this problem, Cooper [7] showed how to extend
Links so that performance-critical code can be highlighted with
the query keyword. Links will statically check that the enclosed
expression will definitely translate to a single query (neither failing
at run-time, nor generating multiple queries). We refer to this as the
single-query guarantee. In database theory, conservativity results
due to Wong [37] and others provided a single-query guarantee
in the case of first-order queries: any query expression having flat
input and output types can be turned into an SQL query. This idea
provided the basis for the Kleisli system [38], which was a source
of inspiration to Links; the single-query guarantee was generalised
to the higher-order case by Cooper [7], who also gave a static type-
and-effect system that showed how to embed queries in a higher-
order general-purpose language. Subsequent work on Links [19]
generalised this to use row typing and effect polymorphism.

The possibility of generating LINQ queries dynamically in ad
hoc cases was discussed by Syme [29] and Petricek [24, 25]. The
F# and LINQ to SQL libraries in Microsoft .NET do not provide a
single-query guarantee for dynamic queries; instead, they attempt
to generate a single query but sometimes fail or generate multiple
queries. In our recent paper [4] we showed that Cooper’s approach
to normalisation for Links can be transferred to provide systematic
support for abstraction in LINQ in F#, providing a single-query
guarantee. In the rest of this paper, we consider the F# LINQ
approach with this extension.

Nevertheless, there are still apparent differences between the
approaches. For example, in LINQ, a query expression cannot be
(easily) reused as ordinary code. This potentially leads to the need
to write (essentially) the same code twice, once for ordinary use and
once for use on the database. Code duplication can interfere with
the use of functional abstraction to construct queries. For example,
the following Links code

fun elem(x,xs) {

not(empty(for (y <- xs) where (x == y) [()]))

}

fun canDo(name,tsk) {

elem("build", for (t <- tasks)

where (t.emp == name)

[t.tsk])

}

query { for (x <- employees)

where (canDo(x.name,"build"))

[(name=x.name)] }

defines functions elem and canDo that test respectively whether
a value is an element of a collection and whether an employee
can do a certain task. The Links effect system correctly determines
that elem can be run anywhere, and that canDo can be run on the
database. When the query is to be executed, Links normalises the
query by inlining elem and canDo and performing other transfor-
mations to generate a single SQL query [7]. In contrast, naively
executing this code might involve loading all of the data from the
employees table, and running one subquery to compute canDo for
each employees row in-memory.

In F#, it is possible to do something similar, but only by explic-
itly quoting elem and canDo.

let elem = <@ fun x xs ->

query { for y in xs

exists(y = x) } @>

let canDo = <@ fun name tsk ->

(%elem) tsk (for t in tasks

where (t.emp = name)

yield t.tsk) @>

query { for x in employees

where ((%canDo) x.name "build")

yield {name=x.name} }

The quoted version of elem is spliced into the query using antiquo-
tation (%elem). If we need the elem function in both query and
non-query code, its code must be duplicated, or we need to eval-
uate or generate compiled code for it at runtime. (F#’s quotation
library does include Eval and Compile functions that can be used
for this purpose, but it is not clear that these actually generate effi-
cient code at runtime, nor is it convenient to write this boilerplate
code.)

It is important to note that SQL does not natively support
general recursion or first-class functional abstraction (although
there are recent proposals to support the latter [15]). Nonrecur-
sive lambda-abstraction is supported in query expressions in Links
and F#, but it is eliminated in the process of generating an SQL
query. Recursive functions can also be used to construct queries
from data in the host language, in both Links and LINQ, but care
is needed to make the staging explicit. For example, in F# we can
define a predicate that tests whether an employee can do all tasks
in some list as follows:

let rec canDoAll(tsks) =

match tsks with

[] -> <@ fun name -> true @>

| tsk::tsks’ -> <@ fun name ->

(%canDo) name tsk && (%canDoAll tsks’) name @>

query {

for x in employees

where ((%canDoAll ["build","call"]) x.name)

yield {name=x.name} }

This is also possible in Links, but we need to use function abstrac-
tion and hoist subcomputations to satisfy the effect type system:

fun canDoAll(tsks) {

switch (tsks) {

case [] -> fun (name) {true}

quotation 
<@ @>

antiquote 
(% )
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Abstract
Language-integrated query techniques have been explored in a
number of different language designs. We consider two differ-
ent, type-safe approaches employed by Links and F#. Both ap-
proaches provide rich dynamic query generation capabilities, and
thus amount to a form of heterogeneous staged computation, but to
date there has been no formal investigation of their relative expres-
siveness. We present two core calculi Eff and Quot, respectively
capturing the essential aspects of language-integrated querying us-
ing effects in Links and quotation in LINQ. We show via transla-
tions from Eff to Quot and back that the two approaches are equiv-
alent in expressiveness. Based on the translation from Eff to Quot,
we extend a simple Links compiler to handle queries.

Categories and Subject Descriptors D.3.1 [Formal Definitions
and Theory]; D.3.2 [Language Classifications]: Applicative (func-
tional) languages; H.2.3 [Languages]: Query languages
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1. Introduction
Increasingly, programming involves coordinating data and compu-
tation among several layers, such as server-side, client-side and
database layers of a typical three-tier Web application. The inter-
action between the host programming language (e.g. Java, C#, F#,
Haskell or some other general-purpose language) running on the
server and the query language (e.g. SQL) running on the database
is particularly important, because the relational model and query
language provided by the database differ from the data structures
of most host languages. Conventional approaches to embedding
database queries within a general-purpose language, such as Java’s
JDBC, provide the programmer with precise control over perfor-
mance but are subject to typing errors and security vulnerabili-
ties such as SQL injection attacks [35]. Object-relational mapping
(ORM) tools and libraries, such as Java’s Hibernate, provide a pop-
ular alternative by wrapping database access and update in type-
safe object-oriented interfaces, but this leads to a loss of control
over the structure of generated queries, which makes it difficult to
understand and improve performance [14].
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dpt name salary

“Product” “Alex” 40,000
“Product” “Bert” 60,000
“Research” “Cora” 50,000
“Research” “Drew” 70,000
“Sales” “Erik” 200,000
“Sales” “Fred” 95,000
“Sales” “Gina” 155,000

tasks

emp tsk

“Alex” “build”
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Figure 1. Sample Data

To avoid these so-called impedance mismatch problems, a num-
ber of language-integrated query techniques for embedding queries
into general-purpose programming languages have emerged, which
seek to reconcile the goals of type-safety and programmer control.
Two distinctive styles of language-integrated query have emerged:

• Employ some form of static analysis or type system to iden-
tify parts of programs that can be turned into queries (e.g.
Kleisli [38], Links [8], Batches for Java [36]).

• Extend a conventional language with explicit facilities for
quotation or manipulation of query code (e.g. LINQ [21],
Ur/Web [5], Database-Supported Haskell [13]).

Links is an example of the first approach. It uses a type-and-
effect system [32] to classify parts of programs as executable only
on the database, executable only on the host programming lan-
guage, or executable anywhere. For example, consider the em-
ployee and task data in tables in Figure 1. The following code

for (x <- employees)

where(x.salary > 50000)

[(name=x.name)]

retrieves the names of employees earning over $50,000, specif-
ically [“Bert”,“Drew”,“Erik”,“Fred”,“Gina”]. In Links, the
same code can be run either on the database (if employees and
tasks are tables) or in the host language. If executed as a query,
the interpreter generates a single (statically defined) SQL query
that can take advantage of the database’s indexing or other query
optimisation; if executed in-memory, the expression will by default
be interpreted as a quadratic nested loop. (Efficient in-memory im-
plementations of query expressions are also possible [16].)

In contrast, in Microsoft’s LINQ (supported in C#, F#, and some
other .NET languages), the programming language is extended
with query-like syntax. For example, the same query as above can
be written in F# as:

query { for x in employees

where (x.salary > 50000)

yield {name=x.name} }

This is just syntactic sugar for code that builds and manipulates
quotations. In F#, this facility is built explicitly on top of language
support for quotation [22, 29] and its computation expression syn-
tax [26]. The above F# query expression is implemented by quot-
ing the code inside the query{ ... } brackets and translating it
(at run time) to C# values of type Expression<T>, which are con-
verted to SQL by the .NET LINQ to SQL library.

The above example is rather simplistic: the query is static,
that is, does not depend on any run-time data. Static queries can
be handled easily even by libraries such as JDBC, and systems
such as Links and LINQ provide the added benefit of type-safety.
However, most queries are generated dynamically, depending on
some run-time data. The ability to generate dynamic queries is
essential for database programming. Libraries such as JDBC allow
queries to be parameterized over base type values such as strings or
integers, ensuring that values are correctly escaped to prevent SQL
injection attacks. Both Links and LINQ go significantly further:
they allow constructing dynamic queries using �-abstraction and
run-time normalisation, while retaining type safety and preventing
SQL injection. However, this capability comes with its own pitfalls:
it can be difficult to predict when an expression can be turned into
a single query.

To address this problem, Cooper [7] showed how to extend
Links so that performance-critical code can be highlighted with
the query keyword. Links will statically check that the enclosed
expression will definitely translate to a single query (neither failing
at run-time, nor generating multiple queries). We refer to this as the
single-query guarantee. In database theory, conservativity results
due to Wong [37] and others provided a single-query guarantee
in the case of first-order queries: any query expression having flat
input and output types can be turned into an SQL query. This idea
provided the basis for the Kleisli system [38], which was a source
of inspiration to Links; the single-query guarantee was generalised
to the higher-order case by Cooper [7], who also gave a static type-
and-effect system that showed how to embed queries in a higher-
order general-purpose language. Subsequent work on Links [19]
generalised this to use row typing and effect polymorphism.

The possibility of generating LINQ queries dynamically in ad
hoc cases was discussed by Syme [29] and Petricek [24, 25]. The
F# and LINQ to SQL libraries in Microsoft .NET do not provide a
single-query guarantee for dynamic queries; instead, they attempt
to generate a single query but sometimes fail or generate multiple
queries. In our recent paper [4] we showed that Cooper’s approach
to normalisation for Links can be transferred to provide systematic
support for abstraction in LINQ in F#, providing a single-query
guarantee. In the rest of this paper, we consider the F# LINQ
approach with this extension.

Nevertheless, there are still apparent differences between the
approaches. For example, in LINQ, a query expression cannot be
(easily) reused as ordinary code. This potentially leads to the need
to write (essentially) the same code twice, once for ordinary use and
once for use on the database. Code duplication can interfere with
the use of functional abstraction to construct queries. For example,
the following Links code

fun elem(x,xs) {

not(empty(for (y <- xs) where (x == y) [()]))

}

fun canDo(name,tsk) {

elem("build", for (t <- tasks)

where (t.emp == name)

[t.tsk])

}

query { for (x <- employees)

where (canDo(x.name,"build"))

[(name=x.name)] }

defines functions elem and canDo that test respectively whether
a value is an element of a collection and whether an employee
can do a certain task. The Links effect system correctly determines
that elem can be run anywhere, and that canDo can be run on the
database. When the query is to be executed, Links normalises the
query by inlining elem and canDo and performing other transfor-
mations to generate a single SQL query [7]. In contrast, naively
executing this code might involve loading all of the data from the
employees table, and running one subquery to compute canDo for
each employees row in-memory.

In F#, it is possible to do something similar, but only by explic-
itly quoting elem and canDo.

let elem = <@ fun x xs ->

query { for y in xs

exists(y = x) } @>

let canDo = <@ fun name tsk ->

(%elem) tsk (for t in tasks

where (t.emp = name)

yield t.tsk) @>

query { for x in employees

where ((%canDo) x.name "build")

yield {name=x.name} }

The quoted version of elem is spliced into the query using antiquo-
tation (%elem). If we need the elem function in both query and
non-query code, its code must be duplicated, or we need to eval-
uate or generate compiled code for it at runtime. (F#’s quotation
library does include Eval and Compile functions that can be used
for this purpose, but it is not clear that these actually generate effi-
cient code at runtime, nor is it convenient to write this boilerplate
code.)

It is important to note that SQL does not natively support
general recursion or first-class functional abstraction (although
there are recent proposals to support the latter [15]). Nonrecur-
sive lambda-abstraction is supported in query expressions in Links
and F#, but it is eliminated in the process of generating an SQL
query. Recursive functions can also be used to construct queries
from data in the host language, in both Links and LINQ, but care
is needed to make the staging explicit. For example, in F# we can
define a predicate that tests whether an employee can do all tasks
in some list as follows:

let rec canDoAll(tsks) =

match tsks with

[] -> <@ fun name -> true @>

| tsk::tsks’ -> <@ fun name ->

(%canDo) name tsk && (%canDoAll tsks’) name @>

query {

for x in employees

where ((%canDoAll ["build","call"]) x.name)

yield {name=x.name} }

This is also possible in Links, but we need to use function abstrac-
tion and hoist subcomputations to satisfy the effect type system:

fun canDoAll(tsks) {

switch (tsks) {

case [] -> fun (name) {true}

name
Alex
Bert
Cora

quotation 
<@ @>

antiquote 
(% )



Normalization
• Monadic comprehensions (including 

nonrecursive higher-order functions) can be 
normalized

• Worked out by Wong for Kleisli system, extended 
to higher-order in Links by Cooper

• Translation to SQL then straightforward

• However (surprisingly), LINQ (F#) doesn't 
fully support this normalization

• our ICFP '13 paper shows how to add this



Normalisation: symbolic evaluation

(fun(x)! N) M  N [x := M ]

{` = M}.`i  Mi

for x in (yield M) do N  N [x := M ]

for y in (for x in L do M) do N  for x in L do (for y in M do N)

for x in (if L then M) do N  if L then (for x in M do N)

for x in [] do N  []

for x in (L @M) do N  (for x in L do N) @ (for x in M do N)

if true then M  M

if false then M  []

slide stolen from Phil Wadler's talk



Normalisation: ad hoc rewriting

for x in L do (M @N) ,! (for x in L do M) @ (for x in L do N)

for x in L do [] ,! []

if L then (M @N) ,! (if L then M) @ (if L then N)

if L then[] ,! []

if L then (for x in M do N) ,! for x in M do (if L then N)

if L then (if M then N) ,! if (L && M) then N

slide stolen from Phil Wadler's talk



Example
let elem = <@ fun x xs -> 
                 query { for y in xs
                         exists (y=x) } @>
let canDo = <@ fun name tsk -> 
                 (%elem) tsk (for t in tasks
                              where (t.emp = name)
                              yield t.tsk ) @>
query { for x in employees
        where ((%canDo) x.name "build")
        yield {name = x.name}
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let canDo = <@ fun name tsk -> 
                 (fun x xs -> 
                    query { for y in xs
                            exists (y=x) }) 
                    tsk (for t in tasks
                              where (t.emp = name)
                              yield t.tsk ) @>
query { for x in employees
        where ((%canDo) x.name "build")
        yield {name = x.name}

query { for x in employees
        where ((fun name tsk -> 
                 (fun x xs -> 
                    query { for y in xs
                            exists (y=x) }) 
                    tsk (for t in tasks
                              where (t.emp = name)
                              yield t.tsk )) x.name "build")
        yield {name = x.name}

This is what LINQ 
normally sees.

Note β-redexes!

X (failure or query avalanche)



Example
let elem = <@ fun x xs -> 
                 query { for y in xs
                         exists (y=x) } @>
let canDo = <@ fun name tsk -> 
                 (%elem) tsk (for t in tasks
                              where (t.emp = name)
                              yield t.tsk ) @>
query { for x in employees
        where ((%canDo) x.name "build")
        yield {name = x.name}

let canDo = <@ fun name tsk -> 
                 (fun x xs -> 
                    query { for y in xs
                            exists (y=x) }) 
                    tsk (for t in tasks
                              where (t.emp = name)
                              yield t.tsk ) @>
query { for x in employees
        where ((%canDo) x.name "build")
        yield {name = x.name}

query { for x in employees
        where ((fun name tsk -> 
                 (fun x xs -> 
                    query { for y in xs
                            exists (y=x) }) 
                    tsk (for t in tasks
                              where (t.emp = name)
                              yield t.tsk )) x.name "build")
        yield {name = x.name}



Example
let elem = <@ fun x xs -> 
                 query { for y in xs
                         exists (y=x) } @>
let canDo = <@ fun name tsk -> 
                 (%elem) tsk (for t in tasks
                              where (t.emp = name)
                              yield t.tsk ) @>
query { for x in employees
        where ((%canDo) x.name "build")
        yield {name = x.name}

let canDo = <@ fun name tsk -> 
                 (fun x xs -> 
                    query { for y in xs
                            exists (y=x) }) 
                    tsk (for t in tasks
                              where (t.emp = name)
                              yield t.tsk ) @>
query { for x in employees
        where ((%canDo) x.name "build")
        yield {name = x.name}

query { for x in employees
        where ((fun name tsk -> 
                 (fun x xs -> 
                    query { for y in xs
                            exists (y=x) }) 
                    tsk (for t in tasks
                              where (t.emp = name)
                              yield t.tsk )) x.name "build")
        yield {name = x.name}

query { for x in employees
        where ((fun name tsk -> 
                 query { for y in (for t in tasks
                                   where (t.emp = name)
                                   yield t.tsk )                            
                         exists (y= tsk) } 
                    ) x.name "build")
        yield {name = x.name}



Example
let elem = <@ fun x xs -> 
                 query { for y in xs
                         exists (y=x) } @>
let canDo = <@ fun name tsk -> 
                 (%elem) tsk (for t in tasks
                              where (t.emp = name)
                              yield t.tsk ) @>
query { for x in employees
        where ((%canDo) x.name "build")
        yield {name = x.name}

let canDo = <@ fun name tsk -> 
                 (fun x xs -> 
                    query { for y in xs
                            exists (y=x) }) 
                    tsk (for t in tasks
                              where (t.emp = name)
                              yield t.tsk ) @>
query { for x in employees
        where ((%canDo) x.name "build")
        yield {name = x.name}

query { for x in employees
        where ((fun name tsk -> 
                 (fun x xs -> 
                    query { for y in xs
                            exists (y=x) }) 
                    tsk (for t in tasks
                              where (t.emp = name)
                              yield t.tsk )) x.name "build")
        yield {name = x.name}

query { for x in employees
        where ((fun name tsk -> 
                 query { for y in (for t in tasks
                                   where (t.emp = name)
                                   yield t.tsk )                            
                         exists (y= tsk) } 
                    ) x.name "build")
        yield {name = x.name}

query { for x in employees
        where (query { for y in (for t in tasks
                                   where (t.emp = x.name)
                                   yield t.tsk )                            
                       exists (y= "build") } )
        yield {name = x.name}



Example
let elem = <@ fun x xs -> 
                 query { for y in xs
                         exists (y=x) } @>
let canDo = <@ fun name tsk -> 
                 (%elem) tsk (for t in tasks
                              where (t.emp = name)
                              yield t.tsk ) @>
query { for x in employees
        where ((%canDo) x.name "build")
        yield {name = x.name}

let canDo = <@ fun name tsk -> 
                 (fun x xs -> 
                    query { for y in xs
                            exists (y=x) }) 
                    tsk (for t in tasks
                              where (t.emp = name)
                              yield t.tsk ) @>
query { for x in employees
        where ((%canDo) x.name "build")
        yield {name = x.name}

query { for x in employees
        where ((fun name tsk -> 
                 (fun x xs -> 
                    query { for y in xs
                            exists (y=x) }) 
                    tsk (for t in tasks
                              where (t.emp = name)
                              yield t.tsk )) x.name "build")
        yield {name = x.name}

query { for x in employees
        where ((fun name tsk -> 
                 query { for y in (for t in tasks
                                   where (t.emp = name)
                                   yield t.tsk )                            
                         exists (y= tsk) } 
                    ) x.name "build")
        yield {name = x.name}

query { for x in employees
        where (query { for y in (for t in tasks
                                   where (t.emp = x.name)
                                   yield t.tsk )                            
                       exists (y= "build") } )
        yield {name = x.name}

query { for x in employees
        where (query { for t in tasks
                       where (t.emp = x.name)
                       exists (t.tsk = "build") } )
        yield {name = x.name}



Example
let elem = <@ fun x xs -> 
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let canDo = <@ fun name tsk -> 
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                              yield t.tsk ) @>
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SELECT x.name
FROM employees x
WHERE EXISTS (SELECT t.tsk FROM tasks t WHERE t.emp = x.name)



FSharpComposableQuery 
library

• A library that implements normalization 
from our ICFP paper

• "No assembly required"

• Replaces standard QueryBuilder query operator

• including (subtle) overloading tricks (thanks to 
Don Syme for helping with this)

• Tested on a wide range of query expressions

• Should preserve or improve on default behavior



Demo
• Tutorial examples from ICFP paper



Conclusions
• F# 3.0's LINQ capabilities are powerful, but have some (ad 

hoc?) limitations

• Quotation and higher-order functions can be used to compose queries

• But, existing LINQ implementation doesn't always handle these 
correctly or efficiently

• Normalization techniques developed in other contexts can help

• Presented FSharpComposableQuery

• a drop-in library that augments F#'s LINQ facilities with better 
support for query composition and higher-order functions

• https://github.com/fsprojects/FSharp.Linq.ComposableQuery

• http://www.nuget.org/packages/FSharpComposableQuery/

https://github.com/fsprojects/FSharp.Linq.ComposableQuery
https://github.com/fsprojects/FSharp.Linq.ComposableQuery

