FSharpComposableQuery
overview & demo

James Cheney
(with Phil Wadler, Sam Lindley, Yordan Stoyanov)
University of Edinburgh

F#unctional Programming Meetup
September 11, 2014

Work supported by Royal Society, UoE, Google and EPSRC

Motivation

e Database programming involves generating
query "code" (SQL) at run time

e Naive approach: compose SQL as strings
e Maximal control, performance tuning

e But:

e Type-unsafe

e can lead to security vulnerabilities (SQL
injection)

LINQ

e Language-Integrated Query (LINQ)
e Microsoft C# (Meijer et al. 2006)

e and F# (Syme 2006)

e Based on comprehension syntax (a.k.a. "do" notation,
computation expressions, etc.)

e and quotation <@ @>
e which explicitly separates query from normal code
e Type-safety inherited from source language

e Type providers (run-time type information in IDE) make this
especially handy

LINQ (F#) example

tasks
(emp tsk
“Alex” “build”
employees ::Bert”’, ::build" "
dpt name salary) “gora” ..Ebfc'ﬂ,?d
“Product” | “Alex” | 40,000 sCarar | oar
“Product” “Bert” 60,000 “Cora” “dissemble”
“Research” “Cora” 50,000 “Cora” “enthuse”
“Research” “Drew” 70,000 “Drew” “3bstract”
“Sales” “Erik” 200,000 “Drew” | “enthuse”
“Sales” “Fred” 95,000 “Epik" “eqll”
L Sales Gina 155,000) “Erik” “enthuse”

query { for x in employees
where (x.salary > 50000)
yield {name=x.name} }

LINQ (F#) example

tasks
(emp tsk
“Alex” “build”
employees ::Bert”” ::build" "
dpt name salary) “gora” ..Ebfcﬂ,?d
“Product” | “Alex” | 40,000 sCarar | oar
“Product” “Bert” 60,000 “Cora” “dissemble”
“Research” “Cora” 50,000 “Cora” “enthuse”
“Research” “Drew” 70,000 “Drew” “3bstract”
“Sales” “Erik” 200,000 “Drew” | “enthuse”
“Sales” “Fred” 95,000 “Erik” “eqll”
_ “Sales Gina 155,000) “Erik” “enthuse”

query { for x in employees
where (x.salary > 50000)
yield {name=x.name} }

T —
select name

from employees e
where e.salary > 50000

LINQ (F#) example

tasks
(emp tsk
“Alex” “build”
employees ::Bert”” ::build" "
dpt name salary) “gora” ..Ebfcﬂ,?d
“Product” | “Alex” | 40,000 sCarar | oar
“Product” “Bert” 60,000 “Cora” “dissemble”
“Research” “Cora” 50,000 “Cora” “enthuse”
“Research” “Drew” 70,000 “Drew” “3bstract”
“Sales” “Erik” 200,000 “Drew” | “enthuse”
“Sales” “Fred” 95,000 “Erik” “eqll”
_ “Sales Gina 155,000) “Erik” “enthuse”

Name

Bert

Drew

query { for x in employees
where (x.salary > 50000)
yield {name=x.name} }

Erik

Fred

T —
select name

from employees e
where e.salary > 50000

Gina

Dynamic/composable
queries In F#?

|

1= stackoverflow
Dynamic SQL queries with F# 3.0?

4. | have tried to use FLINQ but it is rather out of date with F# 3.0 beta,

3 Can someone give me some pointers on how to create dynamic SQL queries in F#?
A 4

sql f*#

1 sha ed e edited Aug 18 at 21:43 asked Apr 15'12 at 0:18

' Ruben Bartelink Arthur Greef
243k »3+79¢117 124 »7

Dynamic / composable
querles In F#?

l_J stackoverﬂow

How do you compose query expressions in F#?

I've been looking at query expressions here hitp://msdn.microsoft.com/en-us/library/vstudio/hh225374.aspx

And I've been wondering why the following is legitimate

let testQuery = query {
for number in netflix.Titles do
where (number.Name.Contains("Test"))

}

But you can't really do something like this

let christmasPredicate = fun (x:Catalog.ServiceTypes.Title) -> x.Name.Contains(“"Christm
let testQuery = query {

for number in netflix.Titles do

where christmasPredicate

Surely F# allows composability like this so you can reuse a predicate?? What if | wanted Christmas titles
combined with another predicate like before a specific date? | have to copy and paste my entire query? C# is
completely unlike this and has several ways to build and combine predicates

f# computation-expression query-expressions

> edit flag edited Dec 11 '12 at 19:38 asked Dec 11 '12 at 19:02

S ns Ramon Shir o, brian
334,841 #2+16939 o 452 92017
L — —

Dynamic / composable
querles In F#?

S stackoverflow

How do you compose query expressions in F#?

I've been looking at query expressions here hitp://msdn.microsoft.com/en-us/library/vstudio/hh225374.aspx

And I've been wondering why the following is legitimate

let testQuery = query {
for number in netflix.Titles do
where (number.Name.Contains("Test"))

}

But you can't really do something like this

let christmasPredicate @alog.ServiceTypes.Title) -> x.Name.Contai@

let testQuery = query {
for number in netflix.Titles do
where christmasPredicate

Surely F# allows composability like this so you can reuse a predicate?? What if | wanted Christmas titles
combined with another predicate like before a specific date? | have to copy and paste my entire query? C# is
completely unlike this and has several ways to build and combine predicates

f# computation-expression query-expressions

edit | flag edited Dec 11 '12 at 19:38 asked Dec 11 "12 at 19:02
S ns Ramon Shir i, brian
Sxx134,841 #2216 939 o 452 92017

Queries with
function "parameters"?

e A way to (de)compose queries into reusable
chunks?

e (avoid repeating yourself)

e This could be very usetul

e a form of staged computation/meta-programming

e Queries could be constructed dynamically
e including constructing queries of different "shape"
e goes beyond simple int/string parameters

e yet still strongly typed

LINQ example

tasks
(emp tsk)
“Alex” “build”
employees “Bert” “build”
(dpt name salary) "Cora” “ab§tract"
m 5 o 5 “Cora” “build”
Product Alex 40,000 “Cora” feall”
“Product” “Bert” 60,000 “Cora” “dissemble”
“Research” “Cora” 50,000 “Cora” tenthuse”
“Research” “Drew” 70,000 “Drew” “bstract”
“Sales” “Erik” 200,000 “Drew” venthuse”
“Sales” “Fred” 95,000 YE ik heall”
. “Sales Gina 155,000) YE ik “enthuse”
“Fred” “call”
“Gina” “call”
. “Gina” “dissemble”)

quotation| et elem = <¢ fun x xs ->

query { for y in xs
<:(§22 <§zz:> exists(y = x) } ©>
let canDo = <@ fun name tsk ->
(/ielem) tsk (for t in tasks
where (t.emp = name)
. yield t.tsk) @©>
ant|qu0te query { for x in employees

where ((/,canDo) x.name "build")

(%) yield {name=x.name} }

I II=——

LINQ example

tasks
(emp tsk)
“Alex” “build”
employees “Bert” “build”
p N “Cora” “abstract”
dpt name salary “Cora” “build”
“Product” “Alex” 40,000 “Co:a” “ uI||”
“Product” “Bert” 60,000 “Cgrz” “Z?ssemble”
“Research” “Cora” 50,000 “Cora” “e:1th <"
“Research” “Drew” 70,000 “Drew” “abstruact”
“Sales” “Erik” | 200,000 ‘D Vol huse”
“Sales” “Fred” | 95,000 | LEUSE
“Sales” “Gina” | 155,000 Erik call
\ 00)| i | enchuse name
“Fred” “call”
“Gina’ “call” I
. “Gina” “dissemble”) A eX
qUOtat|On let elem = <0 fun x xs -> Bert
query { for y in xs
<@ @> exists(y = x) } @> Cor'a
let canDo = <@ fun name tsk ->

(Jielem) tsk (for t in tasks
where (t.emp = name)
yield t.tsk) @©>

antIqUOte query { for x in employees

where ((/,canDo) x.name "build")

(%) yield {name=x.name} }

e —

Normalization

e Monadic comprehensions (including
nonrecursive higher-order functions) can be
normalized

e Worked out by Wong for Kleisli system, extended
to higher-order in Links by Cooper

e Translation to SQL then straightforward

e However (surprisingly), LINQ (F#) doesn't
fully support this normalization

e our ICFP '13 paper shows how to add this

Normalisation: symbolic evaluation

(fun(z) - N) M

{0 =M}.4;

for x in (yield M) do N

for y in (for zin Ldo M) do N
for z in (if L then M) do N
forzin [] do N
forzin(LeM)doN

if true then M/

if false then M/

¢

¢

¢

¢

¢

¢

for xin L do (for y in M do N)
if L then (for x in M do N)

(forzin LdoN) @ (forxin M do N)

Nlx := M|
M;
Nlx := M|
[]
M
[]

slide stolen from Phil Wadler's talk

Normalisation: ad hoc rewriting

forzinLdo(M@N) — (forzin Ldo M) @ (for xin L do N)
forcinLdo[] — []
if Lthen (M @ N) — (if Lthen M) @ (if L then N)
if Lthen[] — []
if L then (for zin M do N) — for zin M do (if L then)
if L then (if M thenN) — if (L && M) then N

slide stolen from Phil Wadler's talk

Example

let elem = <@ fun x xs ->
query { for y in xs
exists (y=x) } @>
let canDo = <@ fun name tsk ->
(%elem) tsk (for t in tasks
where (t.emp = name)
yield t.tsk) @>
query { for x in employees
where ((%canDo) x.name "build")
yield {name = x.name}

Example

let elem = <@ fun X xs ->

~

let canDo = <@ fun name tsk ->
1 (fun x xs ->
query { for y in xs
exists (y=x) })
tsk (for t in tasks
q where (t.emp = name)
yield t.tsk) @>
query { for x in employees
— where ((%canDo) x.name "build")
yield {name = x.name}

Example

let elem = <@ fun X xs ->

~

let canDo = <@ fun name tsk ->
l L £
query { for x in employees
where (
(fun x xs ->
q query { for y in xs
exists (y=x) })
qu
) X.name "build")
yield {name = x.name}

Example

let elem = <@ fun X xs ->

1

let canDo = <@ fun name tsk ->

qu

query { for x in employees

where ((fun name tsk -> <<:

(fun x xs ->
query { for y in xs
exists (y=x) })
tsk (for t in tasks
where (t.emp = name)
yield t.tsk)) x.name "build")
yield {name = x.name}

N

-~

o

2N

This is what LINQ

normally sees.

Note B-redexes!

J

X (failure or query avalanche)

Example

let elem = <@ fun X xs ->

~

let canDo = <@ fun name tsk ->
l L £
query { for x in employees
where (
(fun x xs ->
q query { for y in xs
exists (y=x) })
qu
) X.name "build")
yield {name = x.name}

Example

let elem = <@ fun X xs ->

~

qu

let canDo = <@ fun name tsk ->

L £

query { for x in employees
where (

query { for x in employees
where (
query { for y in

exists (y=) }
) X.name "build")

yield {name = x.name}

Example

let elem = <@ fun X xs ->

~

let canDo = <@ fun name tsk ->
l L £
query { for x in employees
where (
query { for x in employees
q where (
query { for x in employees
qu where (query { for y in
X .name
exists (y= "build") })

yield {name = x.name}

Example

let elem = <@ fun X xs ->

~

let canDo = <@ fun name tsk ->
l L £
query { for x in employees
where (
query { for x in employees
q where (
query { for x in employees
qu
— query { for x in employees
where (query {
X .name
exists (t.tsk = "build") })

yield {name = x.name}

Example

let elem = <@ fun X xs ->

~

let canDo = <@ fun name tsk ->
l L £
query { for x in employees
where (
query { for x in employees
q where (
query { for x in employees
qu
— query { for x in employees
where (query {
X .name
exists (t.tsk = "build") })

yield {name = x.name}

SELECT xX.name
FROM employees x
WHERE EXISTS (SELECT t.tsk FROM tasks t WHERE t.emp = xX.name)

FSharpComposableQuery
library

e A library that implements normalization
from our ICFP paper

e "No assembly required"”

e Replaces standard QueryBuilder query operator

e including (subtle) overloading tricks (thanks to
Don Syme for helping with this)

e Tested on a wide range of query expressions

e Should preserve or improve on default behavior

Demo

e Tutorial examples from ICFP paper

Conclusions

F# 3.0's LINQ capabilities are powerful, but have some (ad

hoc?) limitations

e Quotation and higher-order functions can be used to compose queries

e But, existing LINQ implementation doesn't always handle these

correctly or efficiently

Normalization techniques developed in other contexts can help

Presented FSharpComposableQuery

e adrop-in library that augments F#'s LINQ facilities with better
support for query composition and higher-order functions

https://github.com/fsprojects/FShar

p.Ling.ComposableQuery

http://www.nuget.org/packages/FSharpComposableQuery/

https://github.com/fsprojects/FSharp.Linq.ComposableQuery
https://github.com/fsprojects/FSharp.Linq.ComposableQuery

