
The essence of language-integrated query

James Cheney
The University of Edinburgh

jcheney@inf.ed.ac.uk

Sam Lindley
University of Strathclyde
sam.lindley@strath.ac.uk

Philip Wadler
The University of Edinburgh

wadler@inf.ed.ac.uk

Abstract
Language-integrated query is receiving renewed attention, in part
because of its support through Microsoft’s LINQ framework. We
present a theory of language-integrated query based on quotation
and normalisation of quoted terms. Our technique supports abstrac-
tion over values and predicates, composition of queries, dynamic
generation of queries, and queries with nested intermediate data.
Higher-order features prove useful even for constructing first-order
queries. We prove that normalisation always succeeds in translat-
ing any query of flat relation type to SQL. We present experimental
results confirming our technique works, even in situations where
Microsoft’s LINQ framework either fails to produce an SQL query
or, in one case, produces an avalanche of SQL queries.

Computing Classification Software and its engineering → Soft-
ware notations and tools → General programming languages →
Language features

Keywords lambda calculus, LINQ, F#, quotation, anti-quotation

1. Introduction
A quarter-century ago, Copeland and Maier (1984) decried the
“impedance mismatch” between database and conventional pro-
gramming models, and Atkinson and Buneman (1987) spoke of
“The need for a uniform language” (their emphasis), and observed
that “Databases and programming languages have developed al-
most independently of one another for the past twenty years.”
Smooth integration of database queries with programming lan-
guages, also known as language-integrated query, remains an open
problem. Language-integrated query is receiving renewed atten-
tion, in part because of its support through Microsoft’s LINQ
framework (Meijer et al. 2006; Syme 2006).

The problem is simple: two languages are more than twice
as difficult to use as one language. Most programming languages
support nested data and data abstraction, while most relational
databases only support flat tables over concrete data. Any task in-
volving both requires that the programmer keep in mind two rep-
resentations of the same underlying data, converting between them
and synchronising updates to either. This pervasive bookkeeping
adds to the mental burden on the programmer and leads to complex
code, bugs, and security holes such as SQL injection attacks.

[Copyright notice will appear here once ’preprint’ option is removed.]

Most database developers work in two languages. Wrapper li-
braries, such as JDBC, provide raw access to high-performance
SQL, but the resulting code is difficult to maintain. Object-
relational mapping frameworks, such as Hibernate, provide an
object-oriented view of the data that makes code easier to maintain
but sacrifices performance (Goldschmidt et al. 2008). Workarounds
to recover performance, such as framework-specific query lan-
guages, reintroduce the drawbacks of the two-language approach.

We present a theory of language-integrated query based on quo-
tation and normalisation of quoted terms, called Idealised LINQ.
Microsoft LINQ was released as a part of .NET Framework 3.5
in November 2007, and LINQ continues to evolve with new re-
leases. LINQ translates query expressions in the source language
into queries in a target language such as SQL or XQuery. In this
paper we focus on SQL. However, we believe the ideas in this pa-
per adapt to systems other than Microsoft LINQ, to targets other
than SQL, and even to domains other than database queries.

There are variants of LINQ for C#, Visual Basic, and F#, among
others. Idealised LINQ corresponds most closely to LINQ for F#.
We choose F# as a basis because it supports the features we require:
lambda abstraction, records and lists, comprehension notation, and
quotation and anti-quotation. Idealised LINQ can easily be adapted
to any language with these features. For instance, we believe similar
ideas could be adapted to C#, though more clumsily.

Existing implementations of LINQ can be unpredictable, as the
documentation does not describe which terms will successfully
translate to SQL and which will not. We show that some terms
which translate in the F# 2.0 release do not translate in the F# 3.0
release, and vice versa; and that at least one term generates an
avalanche of queries, in the sense of Grust et al. (2010), where
one LINQ query translates to a large number of SQL queries. In
contrast, our technique is predictable, as it guarantees that every
term of flat type containing only certain constructs will successfully
translate to a single SQL query. Further, our technique improves the
expressiveness of existing systems, as it translates terms that fail to
translate under F# 2.0 or F# 3.0.

The contributions of this paper are:

• We present a theory of language-integrated query based on quo-
tation and normalisation, and through a series of examples we
demonstrate that our technique supports abstraction over values
and predicates, composition of queries, dynamic generation of
queries, and nesting, and present a larger example demonstrat-
ing translation of XPath (Sections 2, 3, and 4).

• We develop the formal theory and prove that normalisation
always succeeds in translating any query of flat type to SQL
(Section 5).

• We observe that one should abstract when possible in the quoted
language rather than the host language, as this supports the use
of closed quotations rather than open quotations, and we show
that closed quotations can simulate open quotations. Though it
seems obvious in retrospect, that one should abstract when pos-

1 2013/3/29

people
name age
“Alex” 60
“Bert” 55
“Cora” 33
“Drew” 31
“Edna” 21
“Fred” 60

couples
her him
“Alex” “Bert”
“Cora” “Drew”
“Edna” “Fred”

Figure 1. People as a database

{people =
[{name = “Alex” ; age = 60};
{name = “Bert” ; age = 55};
{name = “Cora” ; age = 33};
{name = “Drew”; age = 31};
{name = “Edna”; age = 21};
{name = “Fred” ; age = 60}];

couples =
[{her = “Alex” ; him = “Bert” };
{her = “Cora” ; him = “Drew”};
{her = “Edna”; him = “Fred” }]}

Figure 2. People as data

sible in the quoted language came as a surprise to us; previously,
we had assumed one should abstract when possible in the host
language. (Section 6 and 7).

• We compare Idealised LINQ to Microsoft’s LINQ, and present
experimental results confirming our technique works in practice
(Sections 8 and 9).

Section 10 discusses related work, and Section 11 concludes.
Our results are obtained by adapting existing methods rather

than by developing novel methods. SQL corresponds closely to
the comprehension notation found in many functional languages
(Trinder and Wadler 1989; Buneman et al. 1994). Conservativity
results for nested relational algebra show that if a term is of flat
type, then it normalises to a form that corresponds directly to SQL
(Wong 1996; Libkin and Wong 1997). These techniques were ap-
plied to practical database query languages in Kleisli (Wong 2000),
Ferry (Grust et al. 2009), and Links (Cooper 2009; Lindley and
Cheney 2012). Our previous work on Links integrates a general-
purpose programming language with a query language by means
of effect types. Here we adapt our Links results to use quotation: a
useful step, since many languages support quotation but few sup-
port effect types.

We restrict our theory to queries that contain sequence compre-
hensions, emptiness tests, and sequence union, and must be of flat
type, returning a sequence of records of scalars. We believe exten-
sions to a larger range of queries should be tractable. Extensions
of comprehensions to support sorting, grouping, and aggregation
have been proposed by Peyton Jones and Wadler (2007), transla-
tion of queries involving sorting, grouping, and aggregation have
been studied by Libkin and Wong (1997) and Grust et al. (2009),
and translation of queries with a nested result have been described
by Grust et al. (2010).

The title of this paper and the name Idealised LINQ tip a hat to
Reynolds (1981). Our implementation, examples, and experimental
data are available online (Cheney et al. 2012).

2. Fundamentals
We consider a simplified programming language, based loosely on
F# (Syme et al. 2012), featuring records and list comprehensions.
We review the relationship between comprehensions and database
queries and then introduce the use of quotation to construct queries.

2.1 Comprehensions and queries
For purposes of illustration, we consider a simple database con-
taining two tables, shown in Figure 1. The first table, people, has
columns for name and age, and the second table, couples, has
columns for her and him. (Schema update will be required once
equal marriage legislation passes in Scotland.) Here is an SQL
query that finds the name of every woman that is older than her
mate, paired with the difference in ages.

select w.name as name,w.age−m.age as diff
from couples as c, people as w, people as m
where c.her = w.name and c.him = m.name and

w.age > m.age

It returns the following table:

name diff
“Alex” 5
“Cora” 2

Assuming the people table is indexed with name as a key, this
query can be answered in time O(|couples|).

The database is represented in Idealised LINQ as a record of
tables, where each table is represented as a list of rows, and each
row is represented as a record of scalars.

type DB = {people : {name : string; age : int} list;
couples : {her : string; him : string} list}

We use lists to represent tables, and will not consider the order of
their elements as significant. We follow the notational conventions
of F#, writing lists in square brackets and records in curly braces.

Our language includes a construct that takes the name of the
database and returns its content as a data structure.

let db′ : DB = database(“People”)

If “People” is the name of the database in Figure 1, then db′ is
bound to the value shown in Figure 2. We stick a prime on the name
to warn that this is too naive: typically, the database will be too large
to read into main memory. We consider a feasible alternative in the
next section.

Many programming languages provide a comprehension nota-
tion over lists offering operations analogous to those provided by
SQL over tables (Trinder and Wadler 1989; Buneman et al. 1994).
In Idealised LINQ the analogue of the previous SQL query is writ-
ten as follows.

let differences′ : {name : string; diff : int} list =
for c in db′.couples do
for w in db′.people do
for m in db′.people do
if c.her = w.name && c.him = m.name &&

w.age > m.age then
yield {name : w.name; diff : w.age−m.age}

Evaluating differences′ returns the value

[{name = “Alex”; diff = 5}; {name = “Cora”; diff = 2}]

which corresponds to the table returned by the previous SQL query.
Again, we stick a prime on the name to warn that this tech-
nique is too naive: typically, in-memory evaluation of a compre-
hension does not take advantage of indexing, and so requires time

2 2013/3/29

O(|couples| · |people|2). We consider a feasible alternative in the
next section.

Here we use three constructs, similar to those supported in the
sequence expressions of F#. The term for x in M do N binds x
to each value in the list M and computes the list N , concatenating
the results; in mathematical notation, we write

⊎
{N | x ∈ M};

note that x is free in M but bound in N . The term if L then M
evaluates boolean L and returns list M if it is true and the empty
list otherwise. The term yieldM returns a singleton list containing
the value of M .

Many languages support similar notation, including Haskell,
Python, C#, and F#. The Idealised LINQ term

for x in L do for y inM do if P then yield N

is equivalent to the mathematical notation

{N | x ∈ L, y ∈M, P}
or the F# sequence expression

seq {for x in L do for y inM do if P then yield N}.
The last is identical to Idealised LINQ, save it is preceded by the
keyword seq and surrounded by braces.

2.2 Query via quotation
Idealised LINQ allows programmers to access databases using a
notation nearly identical to the naive approach of the previous sec-
tion, but generating efficient queries in SQL. The recipe for con-
version is as follows. First, we wrap the reference to the database
inside quotation brackets, <@ · · · @>.

let db : Expr<DB > = <@ database(“People”) @>

Next, we wrap the query inside quotation brackets, <@ · · · @>, and
wrap occurrences of any externally bound variable, such as db, in
anti-quotation brackets, (% · · ·).

let differences : Expr< {name : string; diff : int} list > =
<@ for c in (%db).couples do

for w in (%db).people do
for m in (%db).people do
if c.her = w.name && c.him = m.name &&

w.age > m.age then
yield {name : w.name; diff : w.age−m.age} @>

Finally, to get the answer we evaluate the term

run(differences) (1)

Evaluating (1) takes the quoted expression, normalises it, translates
the normalised expression to SQL, evaluates the SQL query on
the database, and imports the resulting table as a data structure.
In this case, the quoted expression is already in normal form, and
it translates into the SQL in the previous section, and so returns
the table and answer seen previously. We drop the warning primes,
because the answer is computed feasibly by access to the database.

The notation <@ · · · @> indicates quotation, which views an ex-
pression of type A as a data structure of type Expr<A > that repre-
sents the expression as an abstract syntax tree. The notation (% · · ·)
indicates anti-quotation, which splices a value of type Expr<A >
into a quoted expression at a point expecting a quoted term of type
A. Database access, indicated by the keyword database, denotes
the value of the database viewed as a record of tables, where each
table is a list of rows, and each row is a record of scalars. Database
access is only permitted within quotation, as its use outside quota-
tion would require reading the entire database into main memory,
which is in general infeasible. Query evaluation, indicated by the
keyword run, takes an expression of type Expr<A >, normalises
it, translates the normalised expression to SQL, evaluates the SQL

query on the database, and imports the result as a data structure of
type A.

Some restrictions are required on the abstract syntax tree in a
run expression in order to ensure that it may be successfully trans-
lated to SQL. First, all database literals within a given query must
refer to a single database on which the query is to be evaluated.
Second, the return type must be a flat relation type, that is, a list
of records with fields of scalar type. Third, the expression must not
contain operations that cannot be converted to SQL, such as recur-
sion. (Technically, SQL supports some forms of recursion, such as
transitive closure, but current LINQ systems do not.) Fourth, we re-
strict our attention to queries built from sequence comprehensions,
emptiness tests, and sequence union. In Idealised LINQ, the first
condition is dynamically checked, and the other three are statically
checked. In Microsoft LINQ, all checks are dynamic.

Idealised LINQ captures the essence of query processing in
Microsoft LINQ, particularly as it is expressed in F#. However, the
details of Microsoft LINQ are more complicated, involving three
types Expression<A>, IEnumerable<A> and IQueryable<A> that
play overlapping roles, together with implicit type-based coercions
including a type-based approach to quotation in C# and Visual
Basic, plus special additional query notations in C#, Visual Basic,
and F# 3.0. We relate our model to the pragmatics of LINQ in
Section 8.

2.3 Abstracting over values
Our quoted language supports abstraction. Here is a query that finds
the names of all people with ages in a given range, inclusive of the
lower bound but exclusive of the upper bound.

type Names = {name : string} list
let range : Expr< (int, int)→ Names > =
<@ fun(a, b)→ for w in (%db).people do

if a ≤ w.age && w.age < b then
yield {name : w.name} @>

To keep things simple, we insist that the answer type always corre-
sponds to a table, so here we return a list of records with a name
field, rather than just a list of strings.

Here we have abstracted in the quoted language rather than the
host language. As we shall see, this is essential to being able to
reuse queries flexibly in constructing other queries. As we explain
in Section 6, we recommend abstracting in the quoted language
rather that the host language whenever possible, because it supports
composition.

Here we use the usual F# notation for function abstraction.
Function applications inside queries normalise by beta reduction:

(fun(x)→ N)(M) N [x := M],

where N [x := M] denotes the capture-avoiding substitution of
terms M for variables x in term N .

We form a specific query by instantiating the parameters:

run(<@ (%range)(30, 40) @>) (2)

Evaluating (2) finds everyone in their thirties:

[{name = “Cora”}; {name = “Drew”}]

In this case, the term passed to run is not quite in normal form: it
requires one step of beta-reduction, substituting the actuals 30 and
40 for the formals a and b.

3 2013/3/29

2.4 Abstracting over a predicate
In general, we may abstract over an arbitrary predicate.

let satisfies : Expr< (int→ bool)→ Names > =
<@ fun(p)→ for w in (%db).people do

if p(w.age) then
yield {name : w.name} @>

A predicate over ages is denoted by a function from integers to
booleans. We form a specific query by instantiating the predicate:

run(<@ (%satisfies)(fun(x)→ 30 ≤ x && x < 40) @>) (3)

Evaluating (3) yields the same query as (2). In this case, the term
passed to run requires two steps of beta-reduction to normalise.
The first step replaces p by the function, and enables the second
step, which replaces x by w.age.

We can instantiate the query with any predicate, so long as it
only contains operators available in SQL:

run(<@ (%satisfies)(fun(x)→ x mod 2 = 0) @>) (4)

Evaluating (4) finds everyone whose age is even. It would not work
if, say, the predicate invoked recursion. For Idealised LINQ, we
statically check that quoted terms can be translated to SQL; in
Microsoft LINQ, query translation fails at run-time on quotations
containing operations with no SQL equivalent.

2.5 Composing queries
Uniformly defining queries as quotations makes it easy to compose
queries. Say that given two names, we wish to find the names of
everyone at least as old as the first but no older than the second.
To express this concisely, we define an auxiliary query that finds a
person’s age.

let getAge : Expr< string→ int list > =
<@ fun(s)→ for u in (%db).people do

if u.name = s then yield u.age @>

If names are keys, this will return at most one age. It returns a list of
integers, not a list of records, so it is not suitable for use as a query
on its own, but may be used inside other queries. We may now form
our query by composing two uses of the auxiliary getAge with the
query range.

let compose : Expr< (string, string)→ Names > =
<@ fun(s, t)→ for a in (%getAge)(s) do

for b in (%getAge)(t) do
(%range)(a, b) @>

We form a specific query by instantiating the parameters.

run(<@ (%compose)(“Edna”, “Bert”) @>) (5)

Evaluating (5) yields the value:

[{name = “Cora”}; {name = “Drew”}; {name = “Edna”}]
Unlike the previous examples, normalisation of this query requires
rules other than beta-reduction; it is described in detail in Sec-
tion 5.4.

2.6 Dynamically generated queries
We now consider dynamically generated queries. The following
algebraic datatype represents predicates over integers as abstract
syntax trees.

type Predicate =
| Above of int
| Below of int
| And of Predicate× Predicate
| Or of Predicate× Predicate
| Not of Predicate

We take Above(a) to denote all ages greater than or equal to a,
and Below(a) to denote all ages strictly less than a, so each is the
negation of the other.

For instance, the following trees both specify predicates that
select everyone in their thirties:

let t0 : Predicate = And(Above(30),Below(40))
let t1 : Predicate = Not(Or(Below(30),Above(40)))

Given a tree representing a predicate we can compute the quo-
tation of a function representing the predicate. We make use of the
lift operator, which lifts a value of some base type O into a quoted
expression of type Expr<O >. The definition is straightforward.

let rec P(t : Predicate) : Expr< int→ bool > =
match t with
| Above(a)→ <@ fun(x)→ (%lift(a)) ≤ x @>
| Below(a)→ <@ fun(x)→ x < (%lift(a)) @>
| And(t, u)→ <@ fun(x)→ (%P(t))(x) && (%P(u))(x) @>
| Or(t, u) → <@ fun(x)→ (%P(t))(x) || (%P(u))(x) @>
| Not(t) → <@ fun(x)→ not((%P(t))(x)) @>

For instance, P(t0) returns

<@ fun(x)→ (fun(x)→ 30 ≤ x)(x) &&
(fun(x)→ x < 40)(x) @>

Applying normalisation to the above simplifies it to

<@ fun(x)→ 30 ≤ x && x < 40 @>.

Note how normalisation enables modular construction of a dynamic
query.

We can combine P with the previously defined satisfies to find
all people that satisfy a given predicate:

run(<@ (%satisfies)(%P(t0)) @>) (6)

Evaluating (6) yields the same query as (2) and (3). We may also
instantiate to a different predicate:

run(<@ (%satisfies)(%P(t1)) @>) (7)

Evaluating (7) yields the same answer as (6), though it normalises
to a slightly different term, where the test 30 ≤ w.age && w.age <
40 is replaced by not(w.age < 30 || 40 ≤ w.age).

This series of examples demonstrates our key result: including
abstraction in the quoted language and normalising quoted terms
supports abstraction over values, abstraction over predicates, com-
position of queries, and dynamic generation of queries.

3. Nesting
We now consider nested data, and show further advantages of the
use of normalisation before execution of a query.

For purposes of illustration, we consider a simplified database
representing an organisation, with tables listing departments, em-
ployees belonging to each department, and tasks performed by each
employee. Its type is Org, defined as follows.

type Org = {departments : {dpt : string} list;
employees : {dpt : string; emp : string} list;
tasks : {emp : string; tsk : string} list }

We bind a variable to a reference to the relevant database.

let org : Expr<Org > = <@ database(“Org”) @>

The corresponding data is shown in Figure 3.

4 2013/3/29

{departments =
[{dpt = “Product”}; {dpt = “Quality”};
{dpt = “Research”}; {dpt = “Sales”}];

employees =
[{dpt = “Product”; emp = “Alex”};
{dpt = “Product”; emp = “Bert”};
{dpt = “Research”; emp = “Cora”};
{dpt = “Research”; emp = “Drew”};
{dpt = “Research”; emp = “Edna”};
{dpt = “Sales”; emp = “Fred”}];

tasks =
[{emp = “Alex”; tsk = “build”};
{emp = “Bert”; tsk = “build”};
{emp = “Cora”; tsk = “abstract”};
{emp = “Cora”; tsk = “build”};
{emp = “Cora”; tsk = “design”};
{emp = “Drew”; tsk = “abstract”};
{emp = “Drew”; tsk = “design”};
{emp = “Edna”; tsk = “abstract”};
{emp = “Edna”; tsk = “call”};
{emp = “Edna”; tsk = “design”};
{emp = “Fred”; tsk = “call”}]}

Figure 3. Organisation as flat data

[{dpt = “Product”; employees =
[{emp = “Alex”; tasks = [“build”]}
{emp = “Bert”; tasks = [“build”]}]};

{dpt = “Quality”; employees = []};
{dpt = “Research”; employees =
[{emp = “Cora”; tasks = [“abstract”; “build”; “design”]};
{emp = “Drew”; tasks = [“abstract”; “design”]};
{emp = “Edna”; tasks = [“abstract”; “call”; “design”]}]};

{dpt = “Sales”; employees =
[{emp = “Fred”; tasks = [“call”]}]}]

Figure 4. Organisation as nested data

The following parameterised query finds departments where
every employee can perform a given task u.

let expertise′ : Expr< string→ {dpt : string} list > =
<@ fun(u)→

for d in (%org).departments do
if not(exists(

for e in (%org).employees do
if d.dpt = e.dpt && not(exists(

for t in (%org).tasks do
if e.emp = t.emp && t.tsk = u then yield { })

)) then yield { })
)) then yield {dpt = d.dpt} @>

Evaluating

run(<@ (%expertise’)(“abstract”) @>) (8)

finds departments where every employee can abstract:

[{dpt = “Quality”}; {dpt = “Research”}]

There are no employees in the Quality department, so it will be
contained in the result of this query regardless of the task specified.

Query expertise′ works as follows. The innermost for returns an
empty record for each task t performed by employee e that is equal
to u; it contains no elements if employee e cannot perform task

u. The middle for returns an empty record for each employee e in
department d that cannot perform task u; it contains no elements
if every employee in department d can perform task u. Therefore,
the outermost for returns departments where every employee can
perform task u. We stick a prime on the name to warn that the query
is hard to read. Using nested intermediate data structures will help
us formulate a more readable equivalent.

3.1 Nested structures
An alternative way to represent an organisation uses nesting, where
each department record contains a list of employees and each em-
ployee record contains a list of tasks:

type NestedOrg =
{dpt : string; employees :
{emp : string; tasks : string list} list} list

We convert the first representation into the second as follows:

let nestedOrg : Expr<NestedOrg > =
<@ for d in (%org).departments do

yield {dpt = d.dpt; employees =
for e in (%org).employees do
if d.dpt = e.dpt then
yield {emp = e.emp; tasks =

for t in (%org).tasks do
if e.emp = t.emp then
yield t.tsk}}} @>

If org is bound to the data in Figure 3, then nestedOrg is bound to
the data in Figure 4. We cannot write run(nestedOrg) to compute
this value directly, because run requires an argument that is flat,
and the type of nestedOrg is nested. However, it can be convenient
to use nestedOrg to formulate other queries, as we now show.

3.2 A query over a nested structure
For convenience, we define several higher-order queries. The first
takes a predicate and a list and returns true if the predicate holds
for any item in the list.

let any : Expr< (A list, A→ bool)→ bool > =
<@ fun(xs, p)→

exists(for x in xs do if p(x) then yield { }) @>
The second takes a predicate and a list and returns true if the
predicate holds for all items in the list. It is defined in terms of
any using De Morgan duality.

let all : Expr< (A list, A→ bool)→ bool > =
<@ fun(xs, p)→

not((%any)(xs, fun(x)→ not(p(x)))) @>

The third takes a value and a list and returns true if the value
appears in the list. It is also defined in terms of any.

let contains : Expr< (A list, A)→ bool > =
<@ fun(xs, u)→ (%any)(xs, fun(x)→ x = u) @>

All three of these resemble well-known operators from functional
programming, and similar operators with the same names are pro-
vided in Microsoft’s LINQ framework. We define all three as quo-
tations, so that they may be used in queries.

We define a query equivalent to expertise′ as follows:

let expertise : Expr< string→ {dpt : string} list > =
<@ fun(u)→

for d in (%nestedOrg)
if (%all)(d.employees,

fun(e)→ (%contains)(e.tasks, u) then
yield {dpt = d.dpt} @>

5 2013/3/29

a

b

c

#doc

d

e f

0

1

2

3 4

5 6 11

7 8 9 10

12

13

xml
id parent name pre post
0 -1 “#doc” 0 13
1 0 “a” 1 12
2 1 “b” 2 5
3 2 “c” 3 4
4 1 “d” 6 11
5 4 “e” 7 8
6 4 “f” 9 10

Figure 5. XML tree and tabular representation

let rec axis(ax : Axis) : Expr< (Node,Node)→ bool > =
match ax with
| Self→ <@ fun(s, t)→ s.id = t.id @>
| Child→ <@ fun(s, t)→ s.id = t.parent @>
| Descendant→ <@ fun(s, t)→

s.pre < t.pre && t.post < s.post @>
| DescendantOrSelf→ <@ fun(s, t)→

s.pre ≤ t.pre && t.post ≤ s.post @>
| Following→ <@ fun(s, t)→ s.post < t.pre @>
| FollowingSibling→ <@ fun(s, t)→

s.post < t.pre && s.parent = t.parent @>
| Rev(axis)→ <@ fun(s, t)→ (%axis(ax))(t, s) @>

let rec path(p : Path) : Expr< (Node,Node)→ bool > =
match p with
| Seq(p, q)→ <@ fun(s, u)→ (%any)((%db).xml,

fun(t)→ (%path(p))(s, t) && (%path(q))(t, u)) @>
| Axis(ax)→ axis(ax)
| Name(name)→ <@ fun(s, t)→

s.id = t.id && s.name = name @>
| Filter(p)→ <@ fun(s, t)→ s.id = t.id &&

(%any)((%db).xml, fun(u)→ (%path(p))(s, u)) @>

let xpath(p : Path) : Expr< int list > =
<@ for root in (%db).xml do

for s in (%db).xml do
if root.parent = -1 && (%path(p))(root, s) then
yield s.id @>

Figure 6. An evaluator for XPath

Evaluating

run(<@ (%expertise)(“abstract”) @>) (9)

yields the same query as the previous example, (8).
In order for this to work, normalisation must not only perform

beta-reduction, but also perform various reductions on sequence ex-
pressions that are well known from the literature on conservativity
results. The complete set of reductions that we require is discussed
in Section 5.

4. From XPath to SQL
As a further example of the power of our approach, we consider dy-
namic generation of SQL queries that simulate XPath queries over
XML data represented as relations. We represent tree-structured
XML in a relation using “stretched” pre-order and post-order in-
dexes; see, for example, Grust et al. (2004, sec. 4.2). Each node of
the tree corresponds to a row in a table xml with schema:

type Node =
{id : int, parent : int, name : string, pre : int, post : int}

(base) O ::= int | bool | string
(type) A,B ::= O | A→ B | {` : A} | A list | Expr<A >

(table) T ::= {` : O} list
(env’t) Γ,∆ ::= · | Γ, x : A
(term) L,M,N ::= c | op(M) | liftM | x | fun(x)→ N

| LM | rec f(x)→ N | {` = M} | L.`
| yieldM | [] |M @N | for x inM doN
| existsM | if L thenM | runM
| <@M @> | database(db) | (%M)

Figure 7. Syntax of Idealised LINQ

The id field uniquely identifies each node; the parent field refers
to the identifier of the node’s parent (or -1 for the root node); the
name field stores the element tag name; and the pre and post fields
store the position of the opening and closing brackets of the node
in its serialisation. For example, Figure 5 shows an XML tree and
its tabular representation.

The datatypes Axis and Path, defined below, represent the ab-
stract syntax of a fragment of XPath.

type Axis =
| Self
| Child
| Descendant
| DescendantOrSelf
| Following
| FollowingSibling
| Rev of Axis

type Path =
| Seq of Path× Path
| Axis of Axis
| Name of string
| Filter of Path

The Axis datatype defines the primitive forward axes and Rev
to reverse the axes (the reverse of child is parent, the reverse of
descendant is ancestor, and so on). The Path datatype defines Seq
to concatenate two paths, Axis to define an axis step, Name to test
whether an element’s name is equal to a given string, and Filter to
test whether a path expression is satisfiable from a given node.

Figure 6 gives the complete code of an evaluator for this frag-
ment of XPath, which generates one SQL query per XPath query.
The functions axis and path are defined by case analysis over the
datatypes Axis and Path, respectively; they yield predicates that
hold when two nodes are related by the given axis or path. The
function xpath translates a Path p to a query expression that re-
turns each node in the table that matches p, starting from the root.

In our tests we consider the following example paths.

xp0 = /*/* (10)
xp1 = //*/parent::* (11)
xp2 = //*[following-sibling::d] (12)
xp3 = //f[ancestor::*/preceding::b] (13)

Translation of XPath to Path is straightforward; for example, xp0 is
Seq(Axis(Child),Axis(Child)). The four queries yield the results
[2, 4], [1, 2, 4], [2], and [6], respectively on the example data in
Figure 5.

While this is a small fragment of XPath, there is no obstacle
to adding other features such as attributes, boolean operations on
filters, or tests on text data.

5. Core language
In this section we give a formal account of Idealised LINQ as
a lambda calculus with comprehension, quotation, and constructs
to access a database and run queries. Queries are constructed by
quotation, and—crucially!—the quoted term is normalised as part
of the process of issuing a query.

6 2013/3/29

Γ `M : A

CONST
Σ(c) = A

Γ ` c : A

OP

Σ(op) = (O)→ O Γ `M : O

Γ ` op(M) : O

LIFT
Γ `M : O

Γ ` liftM : Expr<O >

VAR
x : A ∈ Γ

Γ ` x : A

FUN
Γ, x : A ` N : B

Γ ` fun(x)→ N : A→ B

APP
Γ ` L : A→ B Γ `M : A

Γ ` LM : B

REC
Γ, f : A→ B, x : A ` N : B

Γ ` rec f(x)→ N : A→ B

RECORD

Γ `M : A

Γ ` {` = M} : {` : A}

PROJECT

Γ ` L : {` : A}
Γ ` L.`i : Ai

SINGLETON
Γ `M : A

Γ ` yieldM : A list

EMPTY

Γ ` [] : A list

UNION
Γ `M : A list Γ ` N : A list

Γ `M @N : A list

FOR
Γ `M : A list Γ, x : A ` N : B list

Γ ` for x inM doN : B list

EXISTS
Γ `M : A list

Γ ` existsM : bool

IF
Γ ` L : bool Γ `M : A list

Γ ` if L thenM : A list

RUN
Γ `M : Expr<T >

Γ ` runM : T

QUOTE

Γ; · `M : A

Γ ` <@M @> : Expr<A >

Γ; ∆ `M : A

CONSTQ
Σ(c) = A

Γ; ∆ ` c : A

OPQ
Σ(op) = (O)→ O Γ; ∆ `M : O

Γ; ∆ ` op(M) : O

VARQ
x : A ∈ ∆

Γ; ∆ ` x : A

FUNQ
Γ; ∆, x : A ` N : B

Γ; ∆ ` fun(x)→ N : A→ B

APPQ
Γ; ∆ ` L : A→ B Γ; ∆ `M : A

Γ; ∆ ` LM : B

RECORDQ
Γ; ∆ `M : A

Γ; ∆ ` {` = M} : {` : A}

PROJECTQ
Γ; ∆ ` L : {` : A}
Γ; ∆ ` L.`i : Ai

SINGLETONQ
Γ; ∆ `M : A

Γ; ∆ ` yieldM : A list

EMPTYQ

Γ; ∆ ` [] : A list

UNIONQ
Γ; ∆ `M : A list Γ; ∆ ` N : A list

Γ; ∆ `M @N : A list

FORQ
Γ; ∆ `M : A list Γ; ∆, x : A ` N : B list

Γ; ∆ ` for x inM doN : B list

EXISTSQ
Γ; ∆ `M : A list

Γ; ∆ ` existsM : bool

IFQ
Γ; ∆ ` L : bool Γ; ∆ `M : A list

Γ; ∆ ` if L thenM : A list

DATABASE

Σ(db) = {` : T}
Γ; ∆ ` database(db) : {` : T}

ANTIQUOTE

Γ `M : Expr<A >

Γ; ∆ ` (%M) : A

Figure 8. Typing rules for Idealised LINQ

5.1 Typing rules
The syntax of types and terms is given in Figure 7 and the typing
rules are given in Figure 8. There are two typing judgements, one
for host terms and one for quoted terms. Judgement Γ ` M : A
states that host term M has type A in type environment Γ, and
judgement Γ; ∆ ` M : A states that quoted term M has type A
in host type environment Γ and quoted type environment ∆. For
simplicity, we assume that all queries are on a single database db;
in practice, we check dynamically that each query refers to a single
database. We assume a signature Σ that maps each constant c, each
primitive operator op, and the database db to its type.

Most of the typing rules are standard, and mirrored across both
judgements. The interesting rules involve quotation. A term of base
type O can be lifted to a quoted term of type Expr<O > (LIFT).
Recursion is only available in a host term (REC), and the database
is only available in a quoted term (DATABASE). A quoted term
of table type T can be evaluated as a query (RUN). The rule for
quoting requires the quoted type environment to be empty, ensuring
quoted terms are closed (QUOTE). The rule for splicing is the only
place the host type environment Γ is referenced in the typing rules
for quoted terms (ANTIQUOTE).

5.2 Operational semantics
The syntax of values and evaluation contexts is given in Figure 9.
Values are standard, save that we add values <@ Q @>, where Q is
a quotation value, a quoted term in which all anti-quotes have been
resolved. We write [V] to abbreviate yield V1@ · · ·@yield Vn@[].
The semantics is parameterised by an interpretation δ for each
primitive operation op, and an interpretation Ω for the database
db, both of which respect types: if Σ(op) = O → O and ` V : O
and V = δ(op, V) then ` V : O, and ` Ω(db) : Σ(db).

Reduction M −→ N is the relation in Figure 10. We write
−→∗ for the reflexive and transitive closure of −→. The rules
are standard apart from those for quotation and query evaluation.
Evaluation contexts E enforce left-to-right call-by-value evalua-
tion, and quotation contexts Q are contexts over quoted terms that
have no anti-quotation to the left of the hole. Rule (lift) converts
a constant into a quoted constant, and rule (splice) resolves an
anti-quote once its body has been evaluated to a quotation. Rule
(run) evaluates a quotation value Q by first normalising Q to yield
an equivalent SQL query S = norm(Q), and then evaluating
S on the database to yield the value V = eval(Ω, S). Define
eval(Ω, Q) = V when Ω(Q) −→∗ V , where Ω(Q) replaces each
occurrence of database(db) inQ by Ω(db). The following section

7 2013/3/29

(value)
V,W ::= c | fun(x)→M | rec f(x)→M | {` = V }

| [V] | <@ Q @>
(quotation value)
P,Q,R ::= c | op(Q) | lift Q | x | fun(x)→ R | P Q

| {` = Q} | P.` | yield Q | [] | Q @R
| for x in Q doR | exists Q | if P thenQ
| database(db)

(evaluation context)
E ::= [] | op(V , E ,M) | lift E | E M | V E

| {` = V , `′ = E , `′′ = M} | E .` | yield E
| E @M | V @ E | for x in E doN | exists E
| if E thenM | run E | <@Q[(%E)] @>

(quotation context)
Q ::= [] | op(Q,Q,M) | liftQ | fun(x)→ Q

| QM | QQ | {` = Q, `′ = Q, `′′ = M}
| Q.` | yieldQ | Q @M | Q @Q
| for x inQ doN | for x in Q doQ
| existsQ | ifQ thenM | if Q thenQ | runQ

Figure 9. Values and evaluation contexts

op(V) −→ δ(op, V)
(fun(x)→ N) V −→ N [x := V]

(rec f(x)→ N) V −→ M [f := rec f(x)→ N, x := V]
{` = V }.`i −→ Vi

if true thenM −→ M
if false thenM −→ []

for x in yield V doM −→ M [x := V]
for x in [] doN −→ []

for x in L @M doN −→
(for x in L doN) @ (for x inM doN)

exists [] −→ false
exists [V] −→ true, |V | > 0

run <@ Q @> −→ eval(norm(Q)) (run)
lift c −→ <@ c @> (lift)

<@Q[(%<@ Q @>)] @> −→ <@Q[Q] @> (splice)

M −→ N

E [M] −→ E [N]

Figure 10. Operational semantics for Idealised LINQ

defines norm(Q), and shows that normalisation preserves types
and meaning: if ` Q : T and S = norm(Q) then ` S : T and
eval(Ω, S) = eval(Ω, Q).

It is straightforward to show that type soundness holds, via the
usual method of preservation and progress.

PROPOSITION 1. If Γ ` M : A and M −→ N then Γ ` N : A.
If Γ `M : A then either M is a value or M −→ N for some N .

5.3 Query normalisation
Query normalisation is central to our technique. Similar techniques
go back to Wong (1996), and the work here is based directly
on Cooper (2009) and Lindley and Cheney (2012). The query
normalisation function norm is based on two reduction relations,
symbolic reduction, P Q, and ad-hoc reduction, P ↪→ Q. We
write ∗ and ↪→∗ for the reflexive and transitive closure of
and ↪→ respectively. Define norm(P) = R when P ∗ Q and
Q ↪→∗ R, where Q and R are in normal form with respect to
and ↪→, respectively.

(fun(x)→ R) Q R[x := Q]
{` = Q}.`i Qi

for x in (yield Q) doR R[x := Q] (for-yld)
for y in (for x in P doQ) doR

for x in P do (for y in Q doR) (for-for)
for x in (if P thenQ) doR

if P then (for x in Q doR) (for-if)
for x in [] doN []

for x in (P @Q) doR
(for x in P doR) @ (for x in Q doR)

if true thenQ Q
if false thenQ []

Figure 11. Normalisation stage 1: symbolic reduction

for x in P do (Q @R) ↪→ (for-@)
(for x in P doQ) @ (for x in P doR)

for x in P do [] ↪→ []
if P then (Q @R) ↪→ (if P thenQ) @ (if P thenR)

if P then [] ↪→ []
if P then (if Q thenR) ↪→ if (P && Q) thenR (if-if)

if P then (for x in Q doR) ↪→ for x in Q do (if P thenR)
(if-for)

Figure 12. Normalisation stage 2: ad-hoc reduction

(SQL query) S ::= [] | X | X1 @X2

(collection) X ::= database(db) | yield Y | if Z then yield Y
| for x in database(db).` doX

(record) Y ::= x | {` = Z}
(base) Z ::= c | x.` | op(X) | existsS

Figure 13. Syntax of normalised terms

Symbolic reduction P Q is the compatible closure of the
rules in Figure 11. The rules are straightforward, including beta-
reduction for functions, records, and booleans, plus the usual laws
for monads with sums (Trinder 1991). Terms in normal form under
this relation satisfy the subformula property: with the exception of
predicates (such as < or exists), the type of a subterm must be a
subformula of either the type of a free variable or of the type of the
term (Prawitz 1965). Hence, symbolic reduction eliminates nesting
from a term that returns a value of table type.

Ad-hoc reduction, P ↪→ Q, is the compatible closure of the
rules in Figure 12. These reductions account for the lack of unifor-
mity in SQL. Rule (for-@), which hoists a union out of a compre-
hension body, is the only rule that is not sound for a list semantics,
since it changes the order in which elements are generated.

Rewriting preserves types and meaning.

PROPOSITION 2. If ` P : A and P Q or P ↪→ Q then
` Q : A and eval(Ω, P) = eval(Ω, Q).

The normal form of a query is easy to compute because rewrites
may be applied in any order and rewriting always terminates.

PROPOSITION 3. Both and ↪→ are confluent and strongly nor-
malising for typed terms.

The proof is straightforward. Factoring into two relations makes the
strong normalisation proof easier than in Cooper (2009).

The grammar of normalised terms, given in Figure 13, is essen-
tially isomorphic to a subset of SQL. The correspondence is not
quite exact, because SQL has no notation for empty records, and

8 2013/3/29

lacks constructs for an empty table or to access a table or table vari-
able directly (the first constructs of S, X , and Y , respectively); but
these idiosyncrasies are easy to work around, and are handled al-
ready by LINQ. It is straightforward to establish that ifQ is a closed
term of table type T , then its normalisation exists and matches the
grammar of S.

PROPOSITION 4. If ` Q : T then there exists an S such that S =
norm(Q).

5.4 An example
As an example of normalisation, we consider evaluation of query
(5) from Section 2.5.

run(<@ (%compose)(“Edna”, “Bert”) @>)

After splicing, the quotation becomes:

(fun(s, t)→
for a in (fun(s)→

for u in database(“People”).people do
if u.name = s then yield u.age)(s) do

for b in (fun(s)→
for u in database(“People”).people do
if u.name = s then yield u.age)(t) do

(fun(a, b)→
for w in database(“People”).people do
if a ≤ w.age && w.age < b then
yield {name : w.name})(a, b))

(“Edna”, “Bert”)

For stage 1 (Figure 11), applying four beta-reductions yields:

for a in (for u in database(“People”).people do
if u.name = “Edna” then yield u.age) do

for b in (for u in database(“People”).people do
if u.name = “Bert” then yield u.age) do

for w in database(“People”).people do
if a ≤ w.age && w.age < b then
yield {name : w.name}

Continuing stage 1, applying each of rules (for-for), (for-if), and
(for-yld) twice, and renaming to avoid capture, yields:

for u in database(“People”).people do
if u.name = “Edna” then
for v in database(“People”).people do
if v.name = “Bert” then
for w in database(“People”).people do
if u.age ≤ w.age && w.age < v.age then
yield {name : w.name}

For stage 2 (Figure 12), applying rule (if-for) thrice and rule (if-if)
twice yields:

for u in database(“People”).people do
for v in database(“People”).people do
for w in database(“People”).people do
if u.name = “Edna” && v.name = “Bert” &&

u.age ≤ w.age && w.age < v.age then
yield {name : w.name}

This is in normal form, and easily converted to SQL. Running it
yields the answer given previously.

6. Quoted language vs. host language
We write in a style where we abstract in the quoted language when-
ever possible. Another style, which might at first appear appealing,
is to abstract in the host language. For instance, one might redefine

range from Section 2.3 as follows.

let range′(a : Expr< int >, b : Expr< int >) : Names =
<@ for w in (%db).people do

if (%a) ≤ w.age && w.age < (%b) then
yield {name : w.name} @>

(Or one might define a variant where a and b have type int and
lifting is used, which raises similar issues.) Before, we wrote an
invocation like this:

run(<@ (%range)(30, 40) @>).

Now, we write an invocation like this:

run(range′(<@ 30 @>, <@ 40 @>)).

The latter is slightly more efficient, as it directly yields a quotation
in normal form, and no beta-reduction is required. For this reason,
we had originally assumed that one should abstract in the host
language, but late in the process of writing this paper we realised
this is a mistake. We stick a prime on the name to warn that this
form of definition hinders composition.

Let’s see what goes wrong with composition. In Section 2.5 we
used range to define compose. Attempting a revision using range′

yields the following.

let compose′ : Expr< (string, string)→ Names > =
<@ fun(s, t)→ for a in (%getAge)(s) do

for b in (%getAge)(t) do
(%range′(<@ a @>, <@ b @>)) @>

Warning: the above is not legal in F#! Previously, all the quotations
we saw were closed, since every quoted variable is bound within
the quotation; but the two quotations <@ a @> and <@ b @> passed
to range′ are open, since they contain free quoted variables. In this
case, the variables become bound after splicing into the surround-
ing quotation, but, in general, open quotations come with no guar-
antee that free variables meet their binding occurrences. For this
reason, open quotations are illegal in F#, and there is no easy way
to use range′ to define compose′.

Typing closed quotation is straightforward in current languages,
and is supported in F# or in any language with GADTs (Cheney
and Hinze 2003). In contrast, typing open quotation requires a row
type (or equivalent) to specify the type of each free variable of
the quotation, as found in experimental languages such as Ur/Web
(Chlipala 2010). We sketch the type system required for open
quotation in Section 7, and show that closed quotation can simulate
open quotation, so limiting to closed quotation loses nothing in
expressiveness.

While open quotation avoids the cost of some beta-reductions, it
does not avoid the need for the other normalisation rules discussed
in Section 5.3. Further, the cost of normalising a quoted term is low
compared to the cost of evaluating the resulting SQL query against
the database, as demonstrated in Section 9.

Thus we abstract in the quoted language when possible. We ab-
stract in the host language only when we need a feature not present
in the quoted language, such as recursion, as used to construct dy-
namic queries in Sections 2.6 and 4.

7. Open quotation
Section 6 discussed the difference between closed and open quota-
tion. Idealised LINQ, like F#, supports only closed quotation. Here
we show it is easy to generalise Idealised LINQ to support open
quotation, and we show open quotation may be simulated by closed
quotation; hence they are equally expressive. Choi et al. (2011) give
a similar result.

For the extension, we add a type environment to the type of
quoted terms, generalising Expr<A > to Expr<∆;A >, where ∆

9 2013/3/29

specifies the types of the free variables in the quoted term. Only
four typing rules need to change.

LIFT
Γ `M : O

Γ ` lift(M) : Expr< ·;O >

RUN
Γ `M : Expr< ·;T >

Γ ` runM : T

QUOTE

Γ; ∆ `M : A

Γ ` <@M @>∆ : Expr<∆;A >

ANTIQUOTE

Γ `M : Expr<∆;A >

Γ; ∆ ` (%M)∆ : A

In order to preserve the property that each term has a unique type
we add type environment annotations to quotation and antiquota-
tion expressions.

To simulate the extended language in the original, we represent
an open quotation of type Expr<∆;A > by a closed quotation of
type Expr<∆ → A >, explicitly abstracting over each of the free
variables in the quoted type environment. We specify translations
of types, host terms, and query terms from the extended language
back into the original language. There is only one case of interest
for each translation.

JExpr<∆;A >K = Expr< J∆K→ JAK >
J<@M @>∆K = <@ fun(∆)→ JMK @>

J(%M)∆K = (%M) ∆

All of the other cases are defined homomorphically. Here ∆ on the
right-hand side stands in the first line for a tuple of the types in the
environment; in the second line for a tuple of the bindings in the
environment, over which the translation is abstracted; and in the
third line for a tuple of the variables in the environment, to which
the translation is applied. All tuples must be consistently ordered,
say alphabetically on the names of the variables in ∆.

PROPOSITION 5. The translation preserves types, and the ex-
tended language is simulated by the original language.

• If Γ `M : A then JΓK ` JMK.
• If Γ; ∆ `M : A then JΓK; J∆K ` JMK : JAK.
• If Γ `M : A and M −→ N then JMK −→ JNK.
• If Γ; ∆ `M : A and M −→ N then JMK −→ JNK.

8. Comparison to Microsoft LINQ
Idealised LINQ abstracts from several distracting issues in the
implementation of Microsoft LINQ for C#, Visual Basic, and F#.

Microsoft’s LINQ library includes interfaces IEnumerable<A>
and IQueryable<A> that provide standard query operators includ-
ing selection, join, filtering, grouping, sorting, and aggregation.
These query operators are defined to act both on sequences and
on quotations that yield sequences. LINQ query expressions in C#
or Visual Basic are translated to code that calls the methods in these
interfaces. For example, a C# LINQ query

from x in e where p(x) select f(x)

translates to the sequence of calls

e.Where(x⇒ p(x)).Select(x⇒ f(x))

Depending on the context, lambda-abstractions in C# and Visual
Basic are treated either as functions or as quoted functions.

Any external data source that can implement some of the query
operations can be connected to LINQ using a query provider. Im-
plementing a query provider can be difficult, in part because of
the overhead of dealing with the Expression<A> type. Eini (2011)
characterises writing a custom query provider as “doom, gloom
with just a tad of despair”. Microsoft supplies a LINQ to SQL query
provider for SQL Server. Microsoft’s query provider is proprietary,

Example F# 2.0 F# 3.0 ILINQ norm
differences (1) 17.6 20.6 18.1 0.5
range (2) × 5.6 2.9 0.3
satisfies (3) 2.6 × 2.9 0.3
satisfies (4) 4.4 × 4.6 0.3
compose (5) × × 4.0 0.8
P(t0) (6) 2.8 × 3.3 0.3
P(t1) (7) 2.7 × 3.0 0.3
expertise′ (8) 7.2? 9.2 8.0? 0.6
expertise (9) × 66.7av 8.3? 0.9
xp0 (10) × 8.3 7.9 1.9
xp1 (11) × 14.7 13.4 1.1
xp2 (12) × 17.9 20.7? 2.2
xp3 (13) × 3744.9 3768.6? 4.4

All times in milliseconds. × marks failures.
? marks cases requiring modified F# 2.0 PowerPack library.
av marks the case where a query avalanche occurs.
|people| = 10000 |couples| = 5000
|employees| = 5000 |tasks| = 4931
|xml| = 6527

Table 1. Experimental results.

so its behaviour is a black box, but it does appear to perform some
beta-reduction and other normalisation.

As we have already described, F# supports LINQ using syn-
tactic sugar for comprehensions (called computation expressions),
quotations, and reflection. In the F# PowerPack library made avail-
able for F# 2.0, some LINQ capabilities are supported by a transla-
tor from the F# Expr<A > type to the LINQ Expression<A> type.
This implementation has some bugs and limitations, for instance, it
fails to translate arguments of exists in the test of a conditional.

F# 3.0 supports LINQ through an improved translation based
on computation expressions (Petricek and Syme 2012). In F# 3.0,
one can simply write query{ · · · } to indicate that a computation
expression should be interpreted as a query. This implementation
also has some bugs and limitations, for instance, it forbids some
uses of splicing, and does not correctly process some queries that
start with a conditional.

9. Implementation and results
To validate our design, we implemented a pre-processor that takes
any quoted F# sequence expression over the standard query oper-
ators and normalises it as described in Section 5.3. In theory, our
normaliser could be followed by either the F# 2.0 or F# 3.0 back-
end, but the bugs noted in the previous section prevent some of our
sample queries from working with each. The F# 2.0 PowerPack is
distributed as a separate library and easy to modify, while the F# 3.0
backend is built-in and difficult to modify. Hence, we opted to use
F# 2.0 LINQ syntax and a modified version of the F# 2.0 backend
with our pre-processor; we call the combination ILINQ.

All experiments were run on a Dell OptiPlex 790 with Intel Core
i5-2400 CPU at 3.10 GHz, 4GB RAM and a 7200 RPM hard drive
with 8MB cache, and using Microsoft .NET 4.0 runtime, Visual
Studio 2012 v11.0.50727.1, and SQL Server 2012, all running
on the same machine to avoid any network-related latency. All
reported times are the medians of 21 trials. All source code for the
examples, the data, and the modified F# 2.0 PowerPack library is
available online (Cheney et al. 2012).

Table 1 summarises our experimental results. We wrote and ran
versions of each example using the F# 2.0 PowerPack LINQ library,
the F# 3.0 LINQ library, and ILINQ. We randomly generated data
for the couples and organisation databases, and used an existing

10 2013/3/29

repository of XML data, with sizes as listed in the table. Each entry
in the table either indicates that the query failed (×), or gives the
total time in milliseconds for successful evaluation, including time
to generate the SQL query (or queries, in the case of an avalanche),
to evaluate the query, and to construct a value from the result. For
ILINQ, the total includes time to normalise the quoted expression;
this is also shown separately in the column labelled norm .

F# 2.0 failed on seven examples, and F# 3.0 failed on five,
though each succeeds on examples on which the other fails. The
modified PowerPack library was required in one case by F# 2.0
and in four cases by ILINQ. F# 3.0 generated an avalanche of SQL
queries for query (9); this example query involves nested interme-
diate data but its result is flat, in contrast to cases of avalanche re-
ported by Grust et al. (2010), all of which return nested results. As
predicted by Proposition 4, translation for ILINQ always succeeds
and never generates avalanches.

Generally, normalisation time is dwarfed by query evaluation
time, in some cases by several orders of magnitude. The F# type
Expr<A > maintains information irrelevant to our application, so
we elected to normalise by converting the F# type Expr<A > to our
own custom representation, normalising that, and converting back
to Expr<A >. Profiling suggests most of the time in our normaliser
is spent converting to our custom representation. The only way
to traverse Expr<A > expressions in F# is through active pattern
matching, which appears to be expensive.

To evaluate the impact of query avalanches, we reran query (9)
with F# 3.0 and ILINQ with varying numbers of departments,
ranging from 4 to 64. For F# 3.0, the number of queries performed
is d + 1 where d is the number of departments. The results are
shown in Table 14, in the appendix. Both approaches scale roughly
linearly in the number of departments (and hence, total data size);
we summarise the results in terms of the average time s to process
each department. The value of s for F# 3.0 is 12.8 milliseconds
per department, while that for ILINQ is 0.3. These results confirm
that ILINQ’s normalisation can reap significant savings by avoiding
query avalanches.

The Idealised LINQ core language does not include constructs
such as sorting, grouping, or aggregation, which are important in
practical use of LINQ. We have designed our pre-processor so that
it rewrites any subterm it recognises, and carries through other con-
structs unchanged. Our results suggest this is a practical alternative:
we tested this prototype on all 62 of the example database queries
on the F# 3.0 Query Expressions documentation page (Microsoft
2013). (There are also five tests that do not generate SQL queries,
which we excluded from the experiments.) All of these queries are
concrete, that is, none involves abstraction, and they are evaluated
on a small database of about 30 records. The results are shown in
Table 2, in the appendix. We summarise the results in terms of the
ratio r of ILINQ to F# 3.0 evaluation time. The geometric mean
of r over all tests is 1.13 (so on average ILINQ is 13% slower),
and the minimum and maximum values of r over all tests is 0.89
and 1.24, respectively (so at best ILINQ is 11% faster and at worst
24% slower). These results demonstrate that the overhead of nor-
malisation is modest, even for small data sets, and occasionally nor-
malisation improves query time, even for concrete queries. All the
translations succeeded, suggesting that normalisation does not in-
terfere with F# 3.0’s support for additional query operators.

At present, F# 3.0 does not allow overriding the default query
builder, so we cannot yet provide our implementation as a drop-in
replacement. We are discussing with the Microsoft F# team how
best to make our techniques available in a future version of F#.

10. Related work
LINQ has attracted considerable commercial interest, but has not
been extensively documented in the research literature. Meijer et al.

(2006) and Meijer (2011) give overviews of the foundations of
LINQ. Syme (2006) presents an early version of F#’s quotation
and reflection capabilities, illustrated via applications to LINQ,
GPU code generation, and runtime F# code generation. Bierman
et al. (2007) present a formalisation of several extensions to C#,
including LINQ. Eini (2011) identifies obstacles to implementing
LINQ providers for non-SQL databases. Beckman (2012) advo-
cates LINQ as an interface to cloud computing platforms. Petricek
and Syme (2012) and Syme et al. (2012) describe F# 3.0’s sequence
expressions and the related computation builder mechanism. Use of
LINQ for abstraction over values and predicates and dynamic gen-
eration of queries has been discussed in blogs and online forums,
such as Petricek (2007b,a), but has not, to our knowledge, previ-
ously been modelled formally.

Type-safe quotation and meta-programming is an active re-
search area. Davies and Pfenning (2001) introduce a calculus λ�

for closed multistage programming based on a modal logic, where
each stage uses the same language. Idealised LINQ can be viewed
as a variant with just two stages, each using a slightly different lan-
guage. Rhiger (2012) presents a calculus for multistage program-
ming with open quotations, noting that closed quotation leads to
less efficient code due to administrative redexes. In our setting,
such administrative redexes have negligible cost because we nor-
malisation time is dominated by query execution time. Choi et al.
(2011) present a translation from open to closed quotation simi-
lar to ours, aimed at supporting translation-based static analysis
for staged computation. Van den Bussche et al. (2005) present a
meta-querying system for SQL, but does not consider type safety
or language integration.

Integrating queries into a general-purpose language is also an
active research area. Ohori and Ueno (2011) introduces SML#,
which offers direct support for SQL queries, including a type sys-
tem that guarantees each query accesses only a single database.
It does not normalise queries. Chlipala (2010) introduces Ur/Web,
which uses open quotations with a sophisticated type system. It also
does not normalise queries. Ur/Web can express most of the queries
given here, though it relies on subqueries to express query compo-
sition, and it cannot express the nested query (9) of Section 3.2
(personal communication).

Grust et al. (2009, 2010) describe Ferry, a functional query
language that, like our work supports higher-order functions and
nested data, but goes beyond our work in also supporting queries
that return nested results. The Ferry team have implemented several
LINQ query providers, as well as interfacing Ferry with Links
(Ulrich 2011) and Haskell (Giorgidze et al. 2010). Henglein and
Larsen (2010) consider efficient in-memory evaluation of query-
like constructs using lazy evaluation and generic discrimination.
Combining our results with these systems appears possible, and
should be explored in future work.

11. Conclusion
We presented a simple theory of language-integrated query based
on quotation and normalisation. Through a series of examples,
we demonstrated that our technique supports abstraction over val-
ues and predicates, composition of queries, dynamic generation of
queries, and queries with nested intermediate data; and that higher-
order features proved useful even for dynamic generation of first-
order queries. We developed a formal theory, and proved that nor-
malisation always succeeds in translating any query of flat rela-
tion type to SQL. We presented experimental results confirming
our technique works in practice as predicted. We observed that for
several of our examples, Microsoft’s LINQ framework either fails
to produce an SQL query or produces an avalanche of SQL queries.

In essence, we have supplied a recipe for using a host lan-
guage to generate code in a target language. The recipe involves

11 2013/3/29

three languages: the host language (in our case, F#), the target lan-
guage (in our case, SQL), and a quoted language (in our case, es-
sentially F# again). The host language should support quotation
and anti-quotation of terms in the quoted language: in our case,
we use F# quotation. The quoted language may need to add con-
structs not in the host language (so it is as expressive as the target
language), and omit some constructs in the host language (so it
is not more expressive than the target language): in our case, the
quoted language adds the database construct but omits recursion.
The quoted language should support lambda abstraction and typ-
ing: support for lambda abstraction means it is sufficient to support
closed quotations, which in turn makes it easier to support typing.
Finally—and most importantly—one must identify an adequate set
of rewrite rules, which should at least include beta-reduction: thus
the quoted language may exploit the expressiveness of lambda ab-
straction even if the target language is first order. The rewrites may
include rules other than beta-reduction: in our case, the additional
rewrite rules support translation into SQL.

In the short term, we hope our work will be adopted to improve
the use of LINQ from F# to generate SQL. In the longer term, we
hope the recipe above may be applied to other settings, for instance,
to generate SQL from Erlang or Scala, or to generate XQuery or
code for GPUs.

References
M. P. Atkinson and O. P. Buneman. Types and persistence in database

programming languages. ACM Comput. Surv., 19(2), 1987.

B. Beckman. Why LINQ matters: cloud composability guaranteed. Com-
mun. ACM, 55(4):38–44, Apr. 2012.

G. M. Bierman, E. Meijer, and M. Torgersen. Lost in translation: formaliz-
ing proposed extensions to C#. In OOPSLA. ACM, 2007.

P. Buneman, L. Libkin, D. Suciu, V. Tannen, and L. Wong. Comprehension
syntax. SIGMOD Record, 23, 1994.

J. Cheney and R. Hinze. First-class phantom types. Computer and Informa-
tion Science Technical Report TR2003-1901, Cornell University, 2003.

J. Cheney, S. Lindley, and P. Wadler. The essence of language-integrated
query (code supplement), 2012.
http://homepages.inf.ed.ac.uk/jcheney/linq.

A. J. Chlipala. Ur: statically-typed metaprogramming with type-level record
computation. In PLDI, 2010.

W. Choi, B. Aktemur, K. Yi, and M. Tatsuta. Static analysis of multi-staged
programs via unstaging translation. In POPL ’11, pages 81–92, 2011.

E. Cooper. The script-writer’s dream: How to write great SQL in your own
language, and be sure it will succeed. In DBPL, 2009.

G. Copeland and D. Maier. Making Smalltalk a database system. SIGMOD
Rec., 14(2), 1984.

R. Davies and F. Pfenning. A modal analysis of staged computation. J.
ACM, 48(3):555–604, 2001.

O. Eini. The pain of implementing LINQ providers. Commun. ACM, 54(8):
55–61, 2011.

G. Giorgidze, T. Grust, T. Schreiber, and J. Weijers. Haskell boards the
ferry: Database-supported program execution for haskell. In IFL, 2010.
Post-proceedings to appear.

T. Goldschmidt, R. Reussner, and J. Winzen. A case study evaluation of
maintainability and performance of persistency techniques. In ICSE,
2008.

T. Grust, M. van Keulen, and J. Teubner. Accelerating XPath evaluation in
any RDBMS. ACM Trans. Database Syst., 29:91–131, 2004.

T. Grust, M. Mayr, J. Rittinger, and T. Schreiber. Ferry: Database-supported
program execution. In SIGMOD, June 2009.

T. Grust, J. Rittinger, and T. Schreiber. Avalanche-safe LINQ compilation.
PVLDB, 3(1), 2010.

F. Henglein and K. F. Larsen. Generic multiset programming with
discrimination-based joins and symbolic cartesian products. Higher-
Order and Symbolic Computation, 23(3):337–370, 2010.

L. Libkin and L. Wong. Query languages for bags and aggregate functions.
J. Comput. Syst. Sci., 55(2), 1997.

S. Lindley and J. Cheney. Row-based effect types for database integration.
In TLDI, 2012.

E. Meijer. The world according to LINQ. Commun. ACM, 54(10):45–51,
Oct. 2011.

E. Meijer, B. Beckman, and G. M. Bierman. LINQ: reconciling object,
relations and XML in the .NET framework. In SIGMOD, 2006.

Microsoft. Query expressions (F# 3.0 documentation), 2013.
http://msdn.microsoft.com/en-us/library/vstudio/-
hh225374.aspx, accessed March 18, 2013.

A. Ohori and K. Ueno. Making Standard ML a practical database program-
ming language. In ICFP, pages 307–319, 2011.

T. Petricek. Building LINQ queries at runtime in (F#), 2007a.
http://tomasp.net/blog/dynamic-flinq.aspx.

T. Petricek. Building LINQ queries at runtime in (C#), 2007b.
http://tomasp.net/blog/dynamic-linq-queries.aspx.

T. Petricek and D. Syme. Syntax Matters: Writing abstract computations in
F#. Pre-proceedings of TFP, 2012.
http://www.cl.cam.ac.uk/~tp322/drafts/notations.pdf.

S. Peyton Jones and P. Wadler. Comprehensive comprehensions. In Haskell
Workshop, 2007.

D. Prawitz. Natural Deduction: A Proof-Theoretical Study. Almqvist and
Wiksell, Stockholm, 1965.

J. C. Reynolds. The essence of Algol. In J. W. de Bakker and J. C. van
Vliet, editors, Algorithmic Languages, pages 345–372. North Holland,
October 1981.

M. Rhiger. Staged computation with staged lexical scope. In ESOP, pages
559–578, 2012.

D. Syme. Leveraging .NET meta-programming components from F#:
integrated queries and interoperable heterogeneous execution. In ML,
2006.

D. Syme, A. Granicz, and A. Cisternino. Expert F# 3.0. Apress, 2012.
ISBN 978-1-4302-4650-3.

P. Trinder. Comprehensions, a query notation for DBPLs. In Proceedings
of 3rd International Workshop on Database Programming Languages,
pages 49–62, 1991.

P. Trinder and P. Wadler. Improving list comprehension database queries.
In TENCON ’89., 1989.

A. Ulrich. A Ferry-based query backend for the Links programming
language. Master’s thesis, University of Tübingen, 2011.

J. Van den Bussche, S. Vansummeren, and G. Vossen. Towards practical
meta-querying. Inf. Syst., 30(4):317–332, 2005.

L. Wong. Normal forms and conservative extension properties for query
languages over collection types. J. Comput. Syst. Sci., 52(3), 1996.

L. Wong. Kleisli, a functional query system. J. Funct. Program., 10(1),
2000.

12 2013/3/29

A. Additional data
[Disclaimer: this appendix is here only as additional information for the referees and does not form part of the paper proper.]

0

225

450

675

900

0 10 20 30 40 50 60 70

Number of Departments vs. Evaluation Time (expertise)

Ti
m

e
(m

s)

Number of departments

F# 3.0
ILINQ

Figure 14. Query avalanche results. Each department is of size 100, with each employee assigned 0, 1, or 2 tasks at random.

Q# F# 3.0 ILINQ norm
Q1 2.0 2.4 0.3
Q2 1.5 1.7 0.2
Q5 1.7 2.1 0.3
Q6 1.7 2.1 0.3
Q7 1.5 1.8 0.2
Q8 2.3 2.4 0.2
Q9 2.3 2.7 0.3
Q10 1.4 1.7 0.2
Q11 1.4 1.7 0.2
Q12 4.4 4.9 0.4
Q13 2.5 2.9 0.4
Q14 2.5 2.9 0.3
Q15 3.5 4.0 0.5
Q16 3.5 4.0 0.5
Q17 6.2 6.7 0.4
Q18 1.5 1.8 0.2
Q19 1.5 1.8 0.2
Q20 1.5 1.8 0.2
Q21 1.6 1.9 0.3
Q22 1.6 1.9 0.3
Q23 1.6 1.9 0.3

Q# F# 3.0 ILINQ norm
Q24 1.8 2.0 0.3
Q25 1.4 1.6 0.2
Q27 1.8 2.1 0.2
Q29 1.5 1.7 0.2
Q30 1.8 2.0 0.2
Q32 2.7 3.1 0.3
Q33 2.8 3.1 0.3
Q34 3.1 3.6 0.5
Q35 3.1 3.6 0.4
Q36 2.2 2.4 0.2
Q37 1.3 1.6 0.2
Q38 4.2 4.9 0.6
Q39 4.2 4.7 0.4
Q40 4.1 4.6 0.4
Q41 6.3 7.3 0.6
Q42 4.7 5.5 0.5
Q43 7.2 6.9 0.7
Q44 5.4 6.2 0.7
Q45 2.2 2.6 0.3
Q46 2.3 2.7 0.4
Q47 2.1 2.5 0.3

Q# F# 3.0 ILINQ norm
Q48 2.1 2.5 0.3
Q49 2.4 2.7 0.3
Q50 2.2 2.5 0.3
Q51 2.0 2.4 0.3
Q52 6.1 5.9 0.4
Q53 11.9 11.2 0.6
Q54 4.4 4.8 0.4
Q55 5.2 5.6 0.4
Q56 4.6 5.1 0.5
Q57 2.5 2.9 0.4
Q58 2.5 2.9 0.4
Q59 3.1 3.6 0.5
Q60 3.6 4.4 0.7
Q61 5.8 6.3 0.3
Q62 5.4 5.9 0.2
Q63 3.4 3.8 0.4
Q64 4.3 4.9 0.6
Q65 10.2 10.1 0.4
Q66 8.9 8.7 0.6
Q67 14.7 13.1 1.1

Table 2. Comparison of F# 3.0 and ILINQ (using F# 3.0 as a back-end) on the 62 example database queries in the F# 3.0 documentation
(Microsoft 2013). There are 67 examples in total; five query expressions (Q3, Q4, Q26, Q28, Q31) are excluded because they are executed
on in-memory lists rather than generating SQL.

13 2013/3/29

