RADICAL 2010

RADICAL 2010
Wi iki
Everyone can use to
Store,
Organize,
Manage and
Exchange data

RADICAL 2010
Wi iki
Everyone can use to

James Cheney

StO e, University of Edinburgh
organ IZ€, Joint work with
Peter Buneman, Sam
Manage and Lindley, Heiko Mueller
Exchange data (UoE)

Michael Benedikt (Oxford)

Or:

How to train your database wiki

Or:

‘How to train-yeur—database wiki

Or:

‘How to train-yeu-database wiki

This is what happens when
James has too much coffee

Curated databases

— i <>
® Created by manual - Curated
effort Abstract >Dr5/

e Curators copy Curstor(s)

data from papers,
other DBs

= o
¥ /s \
i'_ k. i
] Y i)
’ 3§ e ; 4
- s
i P |
FEo

® Some sources
unreliable

® some curators too

Curated databases

N
PublQed S

Curated

® Created by manual

Journal/

effort Abstract DB
® Curators copy Curators)
data from papers, @K

other DBs

® Some sources
unreliable

Hi, everybody!

® some curators too

Problem

® We know basically what to do

® "Curated databases” should provide built-in:
® archiving [Buneman et al. 04, 08, ...]
® provenance [Buneman et al.0l,06,07,08,...]

® annotation [Geerts et al. 06, ...]

® But hard to convince users to do the right
thing

Solution:
A database wiki

® Standard wiki stuff

e Wikilinks, editable pages, brain-dead syntax, page history

® New: editable, (semi)structured data with

Transclusion (via queries embedded in pages)
Annotation (discuss data, propose changes)
Stable citation, copy/paste for wiki data
Archiving - record all past versions

Provenance - automagical (?)

Implementation

® Using Links

® Other web programming languages would probably
also work (but we have in-house expertise)

® Currently:
® basic wiki stuff
® "data tree" - editable via browser & persistent

® path transclusions and type-based selection queries

Demo

and now for something completely different:

Independence Analysis
for semistructured data

Motivation

® Suppose we have multiple (cached) pages

® expressed by (XQuery/XPath) queries Q/, Q2 ...

® VWhen the database wiki is updated:

® Which queries may be affected?

® |f we can determine (quickly) that queries and
updates are independent

® then can keep using cached version of unchanged
pages

Query-update
independence

DB

Query-update
independence

Q
DB — Q(DB)

Query-update
independence

Q
DB — Q(DB)

lu

Query-update
independence

Q
DB — Q(DB)

1 U
Q
U(DB) ——— Q(U(DBY))

Query-update
independence

Q
DB — Q(DB)

= 2

1 U
Q
U(DB) ——— Q(U(DBY))

Independence example

N
PN

b

for $x in /c/a
return <d>Sx</d>

Independence example

Independence example

/\ |
£ /\ —> a

Independence example

c/\ |
! /\ —> a

l

/\ |
£ /\ —> a

Independence example
c/\ |
LN —> a

l =

/\ |
£ /\ —> a

Independence nhon-

» example «
2) l

Independence nhon-

» example «
2) l

W e, &
|
29T

Independence nhon-

» example «
2) l

/\ return <d>$x</d> b/\a
| =
29T

Prior work

® [Benedikt and C 09]: static independence
analysis based on schema (reg. exp. types)

® Showed effective for avoiding view maintenance

® Problem: Useless if you don't have a schema

® Some prior work on path-based "XML
projection” [Marian & Simeon 03,...],
"commutativity analysis" [Ghelli et al. 08]

® But doesn't quite solve independence problem

Current work

® [Benedikt and C 2010]: Use queries to
statically describe the set of updates that
"may destabilize" the query

e (Call this A(Q), the destabilizer (or
antiprovenance) of Q

® Targets(U) disjoint from A(Q) implies Q
independent of U

® Can be just as effective, without a schema

Key subproblem:
XPath intersection analysis

® |n the absence of schema, use paths to
statically describe sets of nodes

® cf. [Ghelli, Simeon & Rose 2008], others
® Intersection of downward paths is O(n?)

® But general problem is NP-hard

Solvers to the rescue!

® There are solvers for decidable tree logics

® MONA (decides MSO(Tree))

® Somewhat unpredictable, needs tuning

® [Geneves et al. 07]: Modal mu-calc solver

® Source not available

® Optimized version not yet available

A special case

® Our approach: novel (apparently) reduction
from EFO(Tree) to EFO(N, <).

® Most SMT solvers are very good at
EFO(N,<)-SAT (typically complete)

® Typically faster than MONA or Geneves
solver on our path intersection/
independence benchmark

® but handles a much weaker theory

ldea

/
—
N

| 56 78910

® Sibling(x,V)
®=>

® X.post < y.pre

ldea

® Desc(X,VY)
® =>

® X.pre < y.pre & X.post > y.post

ldea

/
—
N

| 56 78910

Child(x,y) =>
Desc(x,y) & not (Desc(x,x1) & Desc(xl,y)
& oo

& not (Desc(x,xXxn) & Desc(xn,y)

Comaprison for one
typical problem

2.0
B Time (s)
1.5
1.0
0.5
0
Yices z3 CVCS3 MONA MONA [GLSO07]

(EFO(N)) (EFO(N)) (EFO(N)) (MSO) (FO(N)) (Modal mu)

(not a comprehensive experiment!)

Experimental results

® Destabilizer-based independence analysis is
just as effective as schema-based

® succeeds/fails on different queries
® fast enough (using yices) to yield savings
® Close to exact

® < |% false positives on benchmark of over 500
problems

® (hand classified)

Respectable charts and
igures

Analysis time per update (milliseconds)

| B ScCH L1 [l L2 L3 |

1E+04

e HELL |I |I |I |I |I |I LI |I il

Figure 5: Running times for the generic analysis, in milliseconds (logarithmic scale), broken down by update and analysis level.

Eﬁectiveness of generic analyses
75% | [SCH L1 | ™ L3 [L3+SCH

50%

Figure 6: Effectiveness of the generic analysis, expressed as a percentage of query-update pairs determined independent, broken
down by update and by analysis level.

SCH L Lo Lo+ SCH
1.IMB | 83% | 10.5% | 8.3% 10.9%
23MB | 11.0% | 14.5% | 14.9% 20.1%

Table 1: Maintenance time savings across whole benchmark

Respectable charts and
igures

Analysis time per update (milliseconds)

| B ScCH L1 [l L2 L3 |

1E+04

e HELL |I |I |I |I |I |I LI |I il

Figure 5: Running times for the generic analysis, in milliseconds (logarithmic scale), broken down by update and analysis level.

Eﬁectiveness of generic analyses

75% | 8 ScH L1 L2 L3 | L3+SCH

||| |||| 1L 11
] |II|II|II|

25%
UA1 UA2 A3 A4 A5 UA6 UA7 UA UB1

0%

Caveat:
Synthetic benchmark

Figure 6: Effectiveness of the generic analysis, expressed as a percentage
down by update and by analysis level.

SCH LA Lo Lo+ SCH
I.IMB | 83% | 10.5% | 8.3% 10.9%
23MB | 11.0% | 14.5% | 14.9% 20.1%

Table 1: Maintenance time savings across whole benchmark

Limitations/future work

® What if you do have a schema!

® Naive joint path and schema analysis works OK

® Smarter: destabilizer intersection modulo schema

® Schemas not expressible exactly in EFO(N)

® Can SMT approach be extended to handle schemas!?

® \What about incremental maintenance?

® ideally, want to combine static and dynamic
approaches

Conclusions

Database wikis will be A.W.E.S.O.M.E.

and will need good high-level web, XML and
constraint programming tools

Need to solve tree constraints quickly using
SMT solvers (or other decision procedures?)

in order to make R.A.D.I.C.A.L. advances in
techniques for database curation

