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Problem

® We know basically what to do

® "Curated databases” should provide built-in:
® archiving [Buneman et al. 04, 08, ...]
® provenance [Buneman et al.0l,06,07,08,...]

® annotation [Geerts et al. 06, ...]

® But hard to convince users to do the right
thing



Solution:
A database wiki

® Standard wiki stuff

e Wikilinks, editable pages, brain-dead syntax, page history

® New: editable, (semi)structured data with

Transclusion (via queries embedded in pages)
Annotation (discuss data, propose changes)
Stable citation, copy/paste for wiki data
Archiving - record all past versions

Provenance - automagical (?)



Implementation

® Using Links

® Other web programming languages would probably
also work (but we have in-house expertise)

® Currently:
® basic wiki stuff
® "data tree" - editable via browser & persistent

® path transclusions and type-based selection queries



Demo



and now for something completely different:

Independence Analysis
for semistructured data



Motivation

® Suppose we have multiple (cached) pages

® expressed by (XQuery/XPath) queries Q/, Q2 ...

® VWhen the database wiki is updated:

® Which queries may be affected?

® |f we can determine (quickly) that queries and
updates are independent

® then can keep using cached version of unchanged
pages
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Independence example
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for $x in /c/a
return <d>Sx</d>
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Prior work

® [Benedikt and C 09]: static independence
analysis based on schema (reg. exp. types)

® Showed effective for avoiding view maintenance

® Problem: Useless if you don't have a schema

® Some prior work on path-based "XML
projection” [Marian & Simeon 03,...],
"commutativity analysis" [Ghelli et al. 08]

® But doesn't quite solve independence problem



Current work

® [Benedikt and C 2010]: Use queries to
statically describe the set of updates that
"may destabilize" the query

e (Call this A(Q), the destabilizer (or
antiprovenance) of Q

® Targets(U) disjoint from A(Q) implies Q
independent of U

® Can be just as effective, without a schema



Key subproblem:
XPath intersection analysis

® |n the absence of schema, use paths to
statically describe sets of nodes

® cf. [Ghelli, Simeon & Rose 2008], others
® Intersection of downward paths is O(n?)

® But general problem is NP-hard



Solvers to the rescue!

® There are solvers for decidable tree logics

® MONA (decides MSO(Tree))

® Somewhat unpredictable, needs tuning

® [Geneves et al. 07]: Modal mu-calc solver

® Source not available

® Optimized version not yet available



A special case

® Our approach: novel (apparently) reduction
from EFO(Tree) to EFO(N, <).

® Most SMT solvers are very good at
EFO(N,<)-SAT (typically complete)

® Typically faster than MONA or Geneves
solver on our path intersection/
independence benchmark

® but handles a much weaker theory
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® Sibling(x,V)
®=>

® X.post < y.pre



ldea

® Desc(X,VY)
® =>

® X.pre < y.pre & X.post > y.post
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Child(x,y) =>
Desc(x,y) & not (Desc(x,x1) & Desc(xl,y)
& oo

& not (Desc(x,xXxn) & Desc(xn,y)



Comaprison for one
typical problem
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(not a comprehensive experiment!)



Experimental results

® Destabilizer-based independence analysis is
just as effective as schema-based

® succeeds/fails on different queries
® fast enough (using yices) to yield savings
® Close to exact

® < |% false positives on benchmark of over 500
problems

® (hand classified)



Respectable charts and
igures
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Figure 5: Running times for the generic analysis, in milliseconds (logarithmic scale), broken down by update and analysis level.
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Figure 6: Effectiveness of the generic analysis, expressed as a percentage of query-update pairs determined independent, broken
down by update and by analysis level.

SCH L Lo Lo+ SCH
1.IMB | 83% | 10.5% | 8.3% 10.9%
23MB | 11.0% | 14.5% | 14.9% 20.1%

Table 1: Maintenance time savings across whole benchmark
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Limitations/future work

® What if you do have a schema!

® Naive joint path and schema analysis works OK

® Smarter: destabilizer intersection modulo schema

® Schemas not expressible exactly in EFO(N)

® Can SMT approach be extended to handle schemas!?

® \What about incremental maintenance?

® ideally, want to combine static and dynamic
approaches



Conclusions

Database wikis will be A.W.E.S.O.M.E.

and will need good high-level web, XML and
constraint programming tools

Need to solve tree constraints quickly using
SMT solvers (or other decision procedures?)

in order to make R.A.D.I.C.A.L. advances in
techniques for database curation



