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What is provenance?

Informally:
History: creation, modifications; times, places,
identities
Input data that explains “why” data in output
Input data that explains “where” output data “came
from”

Formally:
Figuring this out is purpose of this talk.
Caveat: Haven’t run most of this by colleages (or
anyone) yet...
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Examples

Time/date/owner stamps in file system; system logs

Line number info in parser/compiler; “diff/patch”

Intermediate data structures for incremental
computation

Annotations/citations in scientific databases

Problem: Automated support lacking

Problem: Few guarantees, especially when data is
mobile

Danger: Solutions that give us a warm, fuzzy feeling but
no solid foundation
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Provenance Challenges

There are (at least) two significant challenges in
tracking and managing provenance
1. Policy : that is, what should we be doing, and how

can we argue that what we do is sufficient/correct?
2. Mechanism: that is, how to build systems that

efficiently capture (and exploit) some kind of
provenance information?

Most existing work focuses on (2), but without a good
answer for (1), it’s not clear how to judge whether such
approaches are solving the “right” problem.

Goal: Framework for comparing
expressiveness of tracking approaches
complexity of exact provenance problems.
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Provenance/lineage in databases

Lineage tracing (Woodruff, Stonebraker 1997)
Required external “inverse” functions

Lineage for DB views (Cui, Wiener, Widom 2000,2003)
Defined lineage for arbitrary relational calculus
queries
Doesn’t work well for negation, aggregation

“Why-” and “where-” provenance (Buneman, Khanna,
Tan 2001)

Distinguished “source” of copied data from “witness”
(similar to lineage)
Where-provenance sensitive to query syntax.
Later related to view annotation propagation/deletion
problem (PODS 2002)
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Provenance in the presence of updates

Copy-paste provenance (Buneman, Chapman, Cheney,
Vansummeren 2006, 2007)

View database(s) as tree-structured namespace
Model data updates as atomic insert, delete, copy
operations
Define & store provenance links showing “where
data came from”
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Complaints/questions

Syntactic definitions without semantic foundation (esp.
where-provenance, copy-paste)

Focus on implementing “something reasonable”
efficiently, not on what makes a solution reasonable.

What makes some interesting-seeming data
“provenance”?

How can we generalize provenance to full query
languages (or other computational settings?)

A Logical Approach to Data Provenance – p.7/46



New principles

Provenance is metadata describing properties of the
query

It should tell us both
(Value correctness) How the actual output value was
actually computed. (“What happened?”)
(Dependency correctness) How the output value
depends on the input. (“What would happen if ...?”)

It should be defined in terms of the semantics, not the
syntax, of the operation

although we can ultimately only compute (or
approximate) the provenance using syntactic
representation.
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Defining dependency

Notions of dependency are important in many settings
In database theory, functional, inclusion, multivalued
dependencies are used in database design.
In incremental computation, dependency graphs
help identify what parts of computation to rebuild
when inputs change.
In program analysis/automated debugging,
dependences among program variables, functions,
etc. play central role.
Dependences also arise naturally in probability
theory, differential calculus

The notion of dependency we want is similar to, but not
equal to, any of the above.
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Framework

Consider simple case: data stored in key-value maps

(Labels) x, y ∈ Lab

(Values) v ∈ V al

(Signatures) Σ ⊆ Lab

(States) σ : Σ→ V al

(State sets) [[Σ]] = {σ : Σ→ V al}

(Functions) F ∈ [[Σ]]→ [[Σ′]]

We’ll often cheat and write
σ : Σ for σ ∈ [[Σ]]

F : Σ→ Σ′ for F ∈ [[Σ]]→ [[Σ′]].
Σ = x, y, . . . instead of {x} ⊎ {y} ⊎ . . ..
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Examples

Insertion: ins x = v : Σ→ Σ, x

Σ Σ

vx

...

Deletion: del x : Σ, x→ Σ

Σ Σ

vx

...

Copying: x := y : Σ, x, y → Σ, x, y

Σ Σ

vx

wy

wx

wy

...
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Dependency

Definition 1. Given F : Σ→ Σ′, we say that x′ ∈ Σ′ depends on
x ∈ Σ if

∃σ : Σ, v ∈ V al.F (σ)(x′) 6= F (σ[x := v])(x′)

That is, x′ depends on x in F if changing x in the input
can change x′ in the output.

Definition 2. Given F : Σ→ Σ′, we say that x′ ∈ Σ′ is constant if for
some v,

∀σ : Σ.F (σ)(x′) = v
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Examples

F = idΣ: every x ∈ Σ depends on itself (only).
Σ Σ

...
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Examples

F = idΣ: every x ∈ Σ depends on itself (only).

F = ins x = v : Σ→ Σ, x: every y ∈ Σ depends on itself
(only), x depends on nothing and is constant.

Σ Σ

vx

...
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Examples

F = idΣ: every x ∈ Σ depends on itself (only).

F = ins x = v : Σ→ Σ, x: every y ∈ Σ depends on itself
(only), x depends on nothing and is constant.

F = del x : Σ, x→ Σ: every y ∈ Σ depends on itself
(only), x doesn’t exist in output.

Σ Σ

vx
...
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Examples

F = idΣ: every x ∈ Σ depends on itself (only).

F = ins x = v : Σ→ Σ, x: every y ∈ Σ depends on itself
(only), x depends on nothing and is constant.

F = del x : Σ, x→ Σ: every y ∈ Σ depends on itself
(only), x doesn’t exist in output.

F = x := y : Σ, x, y → Σ, x, y: every z ∈ Σ, y depends on
itself; x depends on y.

Σ Σ

vx

wy

wx

wy

...
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Examples

F = idΣ: every x ∈ Σ depends on itself (only).

F = ins x = v : Σ→ Σ, x: every y ∈ Σ depends on itself
(only), x depends on nothing.

F = del x : Σ, x→ Σ: every y ∈ Σ depends on itself
(only), x doesn’t exist in output.

F = x := y : Σ, x, y → Σ, x, y: every z ∈ Σ, y depends on
itself; x depends on y.

Σ Σ

vx

wy

wx

wy

...

Hey! Those arrows in the “informal” diagrams seem to
correspond to dependences!

This is not a coincidence.
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Composition

What about the composition of two functions?

If x′ depends on x in F : Σ→ Σ′, and x′′ depends on x′

in G : Σ′ → Σ′′, does x′′ depend on x in G ◦ F?

In general: No.

Example:

[[x := ¬y]] � x← y, y ← y

[[z := x ∨ y]] � z ← x, z ← y

[[x := ¬y; z := x ∨ y]] ◦G 6� z ← y

Without compositionality, we can’t do much.

Insert-delete-copy dependences turn out to be
compositional.
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New notation

Let’s introduce more compact/suggestive notation.

Think of F as a model

Think of assertions such as “x′ depends on x” as
formulas x′ ← x

Write “x′ depends on x in F ” as F � x′ ← x

Write “x′ constant in F ” as F � const(x′)

Can also allow FO connectives ∧,∨,⊃, and quantifiers
(over Σ, Σ′); semantics standard.

Let IDC be the set of functions constructible by
composing insert, delete, and copy operations.

Write S � φ for ∀F ∈ S.F � φ.
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Identical dependences

For insert-delete-copy operations, dependences are of
a special form.

Definition 3. Given F : Σ→ Σ′, we say that x′ ∈ Σ′ is identically
dependent on x ∈ Σ (F � x′ ⇐ x) if F (σ)(x′) = σ(x) for every
σ : Σ.

Lemma 4 (Identity dependences unique).
� x′

1
⇐ x ∧ x′

2
⇐ x ⊃ x1 = x2.

Lemma 5 (Identity dependences compose). If F � x′ ⇐ x and
G � x′′ ⇐ x′ then G ◦ F � x′′ ⇐ x.

Theorem 6. If IDC � (x′ ← x) ⇐⇒ (x′ ⇐ x).
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Complexity

For IDC functions u : Σ1 → Σ2, we can decide whether
[[u]] � x′ ⇐ x in PTIME

Idea: Evaluate u symbolically
Consider symbolic states σ∗ : Σ′ → Σ ∪ {⊥}

Start with id
∗

Σ = [x1 := x1, . . . , xn := xn], if
Σ = {x1, . . . , xn}

Given u : Σ′ → Σ′′, evaluate
P [[u]] : (Σ′ → Σ)→ (Σ′′ → Σ) as follows:

P [[ins x := v]](σ∗) = σ∗[x := ⊥]

P [[del x]](σ∗) = σ∗ − x

P [[x := y]](σ∗) = σ∗[x := y]

P [[u;u′]](σ∗) = P [[u′]](P [[u]](σ∗))
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Correctness of provenance tracking

Example:

P [[ins w = 1;x := z; del z]](id∗x,y,z) = [w := ⊥, x := z, y := y]

Claim: Symbolic evaluation of

Theorem 7. If u ∈ IDC , then

1. [[u]] � x⇐ y iff P [[u]](id∗Σ)(x) = y and

2. [[u]] � const(x) iff P [[u]](id∗Σ)(x) = ⊥.

That is, the provenance-tracking analysis captures
exactly the true dependence information.
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So far, so good... so what?

I claim that we now fully understand
dependences/provenance for IDC updates.

This is kind of unexciting since IDC is an utterly trivial
model of computation.

Way more limited than previously studied query
languages or other treatments of provenance (e.g.
trees, relations)

So let’s see how far we can push this approach.

Things get more interesting if we consider
Functions on domain (∧,∨,+, ∗)
Conditionals (if then else)
Structured data (trees, sets/relations)
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Built-in functions on domain

Generalization #1: Suppose we allow primitive
functions over domain V al.

Example: V al = (B, 0, 1,∧,∨,¬). Call this IDC + B.

Example: V al = (Z, 0, 1,+,−, ·, zero?). Call this IDC + Z

Many other possible constraint domains (R, Rlin, etc.)

Effect on complexity?
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Built-ins: complexity

In general, complexity depends on domain.

For finite domains, generally remains decidable.

Theorem 8. For any F ∈ IDC + B, deciding whether← is
NP -complete; deciding⇐ or const is co-NP -complete.

Proof. Upper bounds straightforward. For lower bounds, let P (~y)
be a Boolean formula.

[[x := P (~y) ∧ x]] � x← x iff P satisfiable

[[x := P (~y)]] � const(x) iff P valid

[[x := P (~y) ∧ x]] � x⇐ x iff P valid
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Built-ins: complexity

For infinite domains, can easily be undecidable:

Theorem 9. There exists F ∈ IDC + Z such that deciding
whether F � x← x is undecidable.

Proof idea: Let P (~y) = 0 be a Diophantine equation over
~y. Let F be

F = zero?(P (~y)) · x

where zero?(0) = 1, zero?(n) = 0 otherwise

If P has a solution, then x depends on x; otherwise not.
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Built-ins: How to fix

What can we do in practice?

Option #1: Seek decidable/tractable conservative
approximation to true set of dependences

Simple approach: each output may depend on all inputs
read

Examples:

x := x3 + y + 1 =⇒ MayDep(x) = {x, y}

z := ¬y;x := y ∨ z =⇒ MayDep(x) = {y}

x := 1 =⇒ MayDep(x) = {}

Note that analysis result can depend on syntax, but
“true” dependences do not.
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Built-ins: How to fix

What can we do in practice?

Option #2: Generalize dependence formulas to include
expressions

Say that x′ identically depends on expression e
(F � x⇐ e if F (σ)(x′) = [[e]]σ for every σ.

Examples:

[[x := y3 + y + 1]] � x⇐ y3 + y + 1

[[z := ¬y;x := y ∨ z]] � x⇐ y ∨ ¬y

[[x := 1]] � x⇐ 1

This is exact & compositional, but hard to decide
implications/equivalences among dependences.

A Logical Approach to Data Provenance – p.28/46



Conditionals

Generalization #1: Conditionals (if then else).

u ::= · · · | if c then u1 else u2

c ::= x = v | x = y

Call this language IDC + if.

Non-identity dependences become possible.

e.g. in
F = if x = 1 then y = 1 else z = w

y, z depend on x, and z also depends on w, but y, z are
not always copies of x (or w).
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Conditionals: complexity

Perhaps unsurprisingly, as soon as we have
conditionals, testing for data dependence becomes
(co)NP-hard.

Theorem 10. For F ∈ IDC + if, deciding← is NP -hard;
deciding⇐ and const is co-NP -hard.

Proof sketch: Encode 3SAT instance P using
conditionals; set things up so that identity dependence
holds iff P is valid, or data dependence exists iff P is
satisfiable.

if P then x := x else x := 0

if P then x := 0 else x := x
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Conditionals: how to fix?

In order to regain a measure of compositionality, we
consider conditional dependences.

Idea: Limit the states we consider according to
conditions we encounter.

For example, recall

F = if x = 1 then y = 1 else z = w

Over states σ satisfying x = 1, F � const(y) ∧ z ⇐ z.

Also, over states σ satisfying x 6= 1, F � y ⇐ y ∧ z ⇐ w.
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Conditional dependences

We generalize models so that F can be a partial
function. States σ : Σ range only over F ’s domain.

We introduce new dependence formulas c 
 φ, where φ
is a dependence logic formula and c is a formula over
input signature Σ.

Definition 11. We say that F satisfies φ under condition c (written
F, S �
 φ if F ◦ δc � φ, where

δc(σ) =

{

σ (c � σ)

⊥ (c 6� σ)

That is, c 
 φ holds in a model if φ holds with respect to
possible input states satisfying c.
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Tracking conditional dependences

For a IDC + if update, consider conditional, annotated
states c 
 σ∗

Track ordinary operations on σ∗ as usual (ignoring c).

Track if-then-else statements as follows:

[[if c′ then u1 else u2]](c 
 σ∗) =

{

[[u1]](c ∧ c′ 
 σ∗) σ∗
� c′

[[u2]](c ∧ ¬c′ 
 σ∗) σ∗ 6� c′

(Note: I’m cheating here; c′ needs to be specialized
using provenance information in σ∗)

Generates valid conditional dependency information;
may not tell us anything about F ’s behavior off c
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Trees

Generalization #3: Consider states with hierarchical
structure (trees) rather than just flat structure.

Values are now either base values or finite partial
tree-valued maps.

Tree = µX.V al ⊎ (Lab ⇀fin X)

Consider insert-delete-copy operations on trees:

p ::= ǫ | p.x

u ::= ins x = v into p | del x from p | p := q

Problem: operations can now fail (if path missing).

Consider partial functions F : Tree ⇀ Tree
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Trees: problems

Because of subtree copying, data can grow
exponentially with update size

(ins a = q, b = q into p; q := p; del a, b from p)n

So, “obvious” algorithms for computing dependences
exponential

However, no obvious (co-)NP -hardness reduction...

If we leave out subtree copying, then trees are no more
complicated (or interesting) than flat maps.
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Trees: problems

Previous definition of identity dependence is “global”.

F � p⇐ q

means that entire subtree p is a copy of q.

Easy to violate using nested copying:

a := c/d; ins b = v into a; a/b := c/e

Here, the result tree a depends on the input, but is not a
copy of a part of the input.

But a is a composite of copies.

That is, each part of a is “locally” identified with part of
the input.
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Local dependences

Two values T and U are similar modulo C ⊂ Lab
(T ∼C U ) if either
1. they are equal data values, or
2. they are both trees, and dom(T )− C = dom(U)− C.

Define local dependences as follows:

Definition 12. Given a function F : Tree ⇀ Tree, path q is
locally dependent on path p (written F � q ←֓ p) if there exists a
finite C ⊆ Lab such that, whenever T ∈ dom(F ), p ∈ T , we have
q ∈ F (T ), and F (T ).q ∼C T.p.

Idea: T.p and F (T ).q are the same “almost everywhere”
(i.e., except for a finite number of children explicitly
modified by F ).
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Trees: good news!

Example: Insertion. [[ins x = v into p]] � p ←֓ p since
C = {x} works.

Example: Deletion. [[del x from p]] � p ←֓ p since C = {x}
works.

Local dependency is compositional.

Theorem 13. If F,G : Tree ⇀ Tree and F � q ←֓ p and
G � r ←֓ q then G ◦ F � r ←֓ p.

Proof. Definition chasing; if G(F (T )).r ∼D F (T ).q and
F (T ).q ∼C T.p then G(F (T )).r ∼C∪D T.p.
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Trees: good news!

All dependences in IDC(Tree) operations are
generated by local dependences. “I depend on you if
my descendant locally depends on your descendant”

Conjecture 14 (Babysitting). Let F ∈ IDC(Tree) be given. Then

F � q ← p if and only if there exist q′ ≥ q, p′ ≥ p such that
F � q′ ←֓ p′.

Pretty sure this is true, but not sure how to prove it yet...

q
p

local
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Trees: good news!

Assuming conjecture, can compute full dependence
information in PTIME from local dependences.

Local dependence info worst-case exponential, but this
seems pathological

Could fix this by allowing “moving” (cut-paste)
subtrees but not “duplicating” (copy-paste)

Also, identity dependences can be computed from local
dependences; skip details
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Trees: computing provenance

For pure IDC(Tree) operations, can easily compute
local dependences “online” (looking at data)

This is expensive (lots of redundant edges); much
better to compute “interesting” edges “offline”

This is exactly what we implemented in [Buneman,
Chapman, Cheney 2006]

Warm, fuzzy feeling can be justified with some math!

c/d := a; b/c := a/b
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Trees: computing provenance

For pure IDC(Tree) operations, can easily compute
local dependences “online” (looking at data)

This is expensive (lots of redundant edges); much
better to compute “interesting” edges “offline”

This is exactly what we implemented in [Buneman,
Chapman, Cheney 2006]

Warm, fuzzy feeling can be justified with some math!

c/d := a; b/c := a/b
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Trees: computing provenance

For pure IDC(Tree) operations, can easily compute
local dependences “online” (looking at data)

This is expensive (lots of redundant edges); much
better to compute “interesting” edges “offline”

This is exactly what we implemented in [Buneman,
Chapman, Cheney 2006]

Warm, fuzzy feeling can be justified with some math!

c/d := a; b/c := a/b
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Trees: computing provenance

For pure IDC(Tree) operations, can easily compute
local dependences “online” (looking at data)

This is expensive (lots of redundant edges); much
better to compute “interesting” edges “offline”

This is exactly what we implemented in [Buneman,
Chapman, Cheney 2006]

Warm, fuzzy feeling can be justified with some math!

c/d := a; b/c := a/b
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Conclusions

Provenance tracking:
important problem
many competing solutions
few design principles
few dimensions for formal comparison

This talk:
“complete” formal foundation for dirt simple
computational model
considered “baby step” extensions in several
directions
bad news: conditionals, built-in functions lead to high
complexity
good news: copying, trees well-behaved.
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Conclusions

Despite my early doubts, logic and semantics crucial to
understanding and elucidating approaches to data
provenance problem.

Crucial ingredient: concept of data dependence

Recent work: developed a dynamic provenance tracking
technique for general (nested) relational queries

Future work: combine features considered so far, “scale
up” to real query languages, other models of
computation...
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