Equivariant Unification

James Cheney

University of Edinburgh

Abstract. Nominal logic is a variant of first-order logic with special facilities for
reasoning about names and binding based on the underlying concepts of swapping
and freshness. It serves as the basis of logic programming and term rewriting tech-
nigues that provide similar advantages to, but remain simpler than, higher-order
logic programming or term rewriting systems. Previous work on nominal rewrit-
ing and logic programming has relied on nominal unification, that is, unification
up to equality in nominal logic. However, because of nominal logic’s equivari-
ance property, these applications require a stronger form of unification, which we
call equivariant unificationUnfortunately, equivariant unification and matching
areNP-hard decision problems. This paper presents an algorithm for equivari-
ant unification that produces a complete set of finitely many solutions, as well as
NP decision procedure and a version that enumerates solutions one at a time. In
addition, we present a polynomial time algorithm &wapping-freeequivariant
matching, that is, for matching problems in which the swapping operation does
not appear.

1 Introduction

Gabbay and Pitts [6] introduced a novel approach to formalizing and reasoning about
abstract syntax involving bound names, based on the fundamental ideas of name-swap-
ping and freshness. We call this approaciminal abstract syntafNAS). Initially, this
approach was based on FM-set theory, a variant of standard ZF-set theory originally de-
veloped to prove the independence of the Axiom of Choice. However, Pitts [7] showed
that this radical step can be avoided by incorporating the ideas of nominal abstract syn-
tax into a logic (callechominal logig whose intended semantics is based on FM set
theory but rests on standard mathematical foundations.

The key elements of nominal logic are: a collection of infinitely many term sym-
bolsa,b,... € Name called names a binary relation# called freshnesghat can
hold between a name and a valuesveapping functior{a b)-¢ that exchanges the val-
ues of names andb in ¢; and anabstraction functior{a)x that takes a name and
value. Abstractions are considered equal up-tequivalence; for exampl@) f (a, c) =
(b)f(b,c).

Nominal logic has been used as a basis for logic programming [1, 3] and term
rewriting systems [4]. So far, these techniques have relied upon the (efficiently im-
plementablepominal unificatioralgorithm of Urban, Pitts, and Gabbay [11] as a fun-
damental tool, just as first-order unification is used in ordinary logic programming and
term rewriting. However, as shown by Cheney [3, 2], nominal unification is not the right
tool for this job: proof search and term rewriting using nominal unification is incom-
plete.

First-order unification is complete for first-order resolution and rewriting because
ground atomic formulas are logically equivalent if and only if they are equal as terms.
But due to nominal logic’squivarianceproperty, this is not the case for nominal logic.
The equivariance property states that validity is preserved by applying name-swappings
uniformly: thatis,p(t) <= p((a b)-t). As a result, atomic formulas (such@a) and
p(b)) may be equivalent without being equal nominal terms. Similarly, if a collection
of rewriting rulest — w is used to define a relation in nominal logic, thert — u is
equivalent tda b)-t — (a b)-u.

Consider the following logic program clauses and rewriting rules:

spec(mono(T),[],T). spec(all({a)T),[a|Vs],U) :— spec(T,Vs,U).
subst(var(a), T,a) —» T subst(var(b),T,a) — var(b)
subst(app(E1, E2),T,a) — app(subst(FE1,T,a), subst(E2,T, a))
b # T F subst(lam((b)E),T,a) — lam({b)subst(E,T,a))

The spec predicate is taken from amProlog [1] program that performs ML type in-
ference. It relates a polymorphic type to a list of bound variables and a monomorphic
type, and can be used in the forward direction to instantiate the bound variables of a
polymorphic type to fresh names, or backwards to quantify the free type variables of
an inferred type. Theubst rewriting rules perform capture-avoiding substitution on
A-terms encoded using nominal abstract syntax. (Note that nominal rewriting rules can
have freshness “guards”, eg# X F | — r applies only when # X.)

Nominal unification and matching do not (and should not) take equivariance into
account. As a result, logic programs or rewriting systems may not work as desired
when nominal unification is used for backchaining or nominal matching is used for
term rewriting, respectively. The goapec(all({a)mono(tvar(a))), [b],U) has solu-
tion [U = tvar(b)] in nominal logic, but this solution cannot be found using nominal
unification. As another example, in nominal logic the first rewriting rulesfiarst im-
plies thatsubst(var(b), var(a), b) rewrites tovar(a), but there is no substitution far
makingsubst(var(a), T, a) = subst(var(b),var(a),b).

Therefore, it is necessary to unify or match modulo a stronger equational theory
that takes equivariance into account. We call these probésmivariant matchingnd
equivariant unificationrespectively. Equivariant unification is of both practical and the-
oretical interest. On the theoretical side, Cheney [2] showed that equivariant unification
is NP-hard. On the practical side, there are some interesting programs (ssgérps
that only appear to be expressible using equivariant unification. In addition, equivariant
matching seems desirable in nominal rewriting systems for clarity and simplicity. For
example, in the nominal rewriting approach advocated by Fernandez et al. [4}bttte
rewrite rules above will not work properly. Instead, the following rewrite system was
used for capture-avoiding substitution:

subst'((a)var(a),T) — T a# Bt subst'({a)var(B),T) — var(B)
subst’({(a)app(E1, E2),T) — app(subst’'({a) E1,T), subst'({a) E2,T))
b # T + subst’((a)lam((b)E),T) — lam({b)subst’ ((a)E,T))

In this paper we make two significant contributions:

— We present NP algorithm for equivariant unification that produces at most finitely
many different solutions. This is the first (terminating) algorithm to be developed
for general equivariant unificationBesides taking equivariance into account, our
algorithm solves a more general form of nominal unification problems than those
considered by [11]. This algorithm can be used to run arbitrary nominal logic pro-
grams and rewriting systems and may also be useful in analyzing such systems.

— We present a polynomial-time algorithm fewapping-freeequivariant matching
problems, that is, problems in which the swapping function symbol is not present.
This is significant because typical nominal rewriting systems that require equivari-
ance (includingsubst) are swapping-free. This algorithm can be used as the basis
of efficient nominal term rewriting for a larger class of programs than considered
by Fernandez, Gabbay, and Mackie [4].

The remainder of this paper is structured as follows. In the next section, we review
nominal equational logic. In Section 3, we introdysermutation graphsan impor-
tant tool for solving basic equivariant unification and matching problems that is used
in the rest of the paper. In Section 4, we present the equivariant unification algorithm
and sketch proofs of its important properties. Likewise, in Section 5 we present the
swapping-free equivariant matching algorithm and prove its properties. Section 6 dis-
cusses additional related work and future directions, and Section 7 concludes.

2 Background

We first consider the s@term of ground nominal terms, given by the grammar

ta= O (tu) | (1) at

The first three cases denote units, pairing, and function symbols; we represent constant
symbolsc as functions applied to unjt({)) and represent-ary function applications
f(t1,...,t,) using iterated pairingf({ty, (t2,---))). Namesa,a’ are drawn from a
countably infinite sefVame, and abstraction&)t represent terms with bound names.

Let Perm be the set of (finite) permutations of names. We wiritefor theactionof
m € Perm ont, or the result of applying to rename the names ofThe permutation
action function and equalityz: Term x Term and freshnesgt: Name x Term
relations are defined in Figure 1. Equality is syntactic equality except for abstractions,
which are considered equal modulo renaming of the bound names to a fresh name. The
freshness theory spells out when a name is fresh for (not free in) a term. In particular,
a # (a)t holds unconditionally, while # (b)¢ holds fora # b if a # t.

Our definitions freshness and equality are superficially different from those used by
Urban et al., but they are equivalent for ground terms. Urban et al. unified nominal terms
modulo an equational theory axiomatizing equality and freshness judgivigntd in
the presence of some assumptidon®f the forma # X, for namesa and variables

! Cheney [2] only established that the equivariant matching and unification profiletesms
involving only names, variables, and swappingare NP-complete, but did not present al-
gorithms or upper bounds for problems involving general nominal terms.

ma=m(a) w()=(w{t,u) = (mt,mu) wf(t)=f(rt) w(b)t= (mb)mt

(a#b) a#t aft af#u (a#b) a#t

a#b a# () a#[f(t) a#(tu) a#(at a# ()t ama ()=
th R ur t2 = ug t~u U (a#b) a#u tm~(ab)u
(tr,t2) = (u1,u2) f(t) = f(u) (@)t = (a)u (a)t ~ (b)u

Fig. 1. Swapping, equality, and freshness for ground terms

X. We instead axiomatize equality for ground terms only. Note that both freshness and
equality areequivariant that is,t ~ u O 7t = mu anda # t D 7-a # =t for any
a,t,u, .

We now generalize to non-ground nominal terms sorthate-variablesi, B, ... €
NVar andterm-variablesX, Y, ... € Var are permitted. In addition, we add explicit
syntax forpermutation termd7 applied to nominal terms, including swappings, com-
position, inversion, and permutation variablgsR,... € PVar. Consider terms of
the form:

viwu=al|A ILII:=Q|id|(ab)| oIl | T}
a,b:=1IIv tus=II-X [al| ()| &u) | f(t)] (a)t

We write FN(t), FV (t), FNV (t) and F PV (t) for the sets of names, term variables,
name variables, and permutation variables @his grammar forbids permutation terms
except immediately around names or variables. We ddfirtefor arbitrary termg as
follows:

() = O 1I-(tw) = (It Ia) - IT-f(t) = f(IT1)
II{a)t = (II-a)II-t II-(IT"-t)= ([T o II')t

Urban et al. considered a more restrictive language of nominal terms in which per-
mutation variables were not present, and requirathdd to be ground names in terms
of the formsa # t, (a b)-t, and{a)t. These restrictions were crucial for obtaining
an efficient, deterministic unification algorithm. To avoid confusion, we refer to such
terms agrounded termsand to Urban et al.’s algorithm a@gounded nominal unifica-
tion. There are several important differences between our nominal terms and grounded
terms. For our nominal terms, permutations applied to names cannot always be sim-
plified: for example,(-a cannot be simplified without knowing something ab6ut
Another difference is that name variables are permitted in any place where a name
would be permitted. Nominal unificationISP-complete for arbitrary terms [3, Ch. 7],
but tractable for grounded terms [11]. General equivariant unification and matching are
NP-complete even for grounded terms (see [2] and Section 4). However, equivariant
matching is tractable for grounded, swapping-free terms (see Section 5).

We refer to atomic formulas ~ u, a # w asconstraintsC, conjunctions and-
quantifications of constraints @soblemsS, and disjunctions of problems agtended

problemsM = ?f . An arbitrary problem involving terms that may have permu-
tation variables is called amquivariant unificatiorproblem. A problem involving no

Fig. 2. Valuations

permutation variables is calledr@minal unificatiorproblem. A problem in which all
equations involving permutation variables are of the féyrm ~ «, whereu is ground,

is called anequivariant matchingproblem. Problems argrounded name—nameor
swapping-fredf all terms are grounded, if only names, swappings, and name variables
are present, or if the swapping operation is not present, respectively.

A valuationis a functiond mapping term variables to ground terms, name variables
to ground names, and permutation variables to ground permutations. Valuations are
extended to terms as shown in Figure 2. We say that ¢ ~ u if 0(¢t) =~ 0(u);
similarly, 0 = a # tif 6(a) # 0(t). If S is a set of constraints, then we write= S if
0 E AforeachA € S,andf = 3X.S if §[X :=t| F S for somet.

We write Solv(S) for {6 | 6 = S} andSolv(M) for |J g, Solv(S). A problemS
is apre-solutionto M if Solv(S) C Solv(M), and asolutionif in addition Solv(S) #

@. A solution S to M is more generathan another solutiof' if Solv(T") C Solv(S),
andmost generaif no strictly more general solution exists. A skt’ of (pre-)solutions
to M is acompletefor M if Solv(M) = Solv(M’) andminimalif eachS € M’ isa
most general solution.

Example 1.A complete minimal set of solutions to the problgm® B)-C ~ C'is
{{C =~ AJA =~ B},{A # C,C # B}}. A complete minimal solution set to the
problem@-a # (b)C'is {{Q-a = b}, {Q-a # b,Q-a # C}}. The equivariant match-
ing problem@-(A, (a b)-A, B, (a b)-B) =~ (a, b,c,d) has no solutions. The problem
f({a)A,b) =~ f((c)d,d) has a uniqgue most general solutidrr b.

3 Permutation Graphs

In this section we consider an important data structure for representing information
about permutations, names, and freshness, calpeirautation grapl{or p-graph).

Definition 1. A p-graphG = (N,V,PV,E~,E4, Eg,...) is a structure such that
N C Name, V. C Var and PV C PVar are finite, Ex and Ey are undirected
graphs onW = N UV, and Eg, is a directed graph oV’ for each@ € PV'.

Note that the vertices of a p-graph may be either nameg, ... or name variables
A, B,.... There are three kinds of edges: undirected equality edges (written using a
double linev = w), undirected freshness edges (written as a brokenvling— w),

and directed permutation edges (writteni w). We consider the edge — w

equivalent to the formula ~ w, v —4+— w equivalent tov # w, andwv 2w

(b)

(©)

Fig. 3. (a) Example p-graphs. (b) Simplified versions. (c) Solved forms

equivalent taQ-v ~ w. We write S for the problem corresponding to the edges-of
andG for the p-graph corresponding the problém

For example, two small p-graphs are shown in Figure 3(a). Freshness and permuta-
tion edges are sometimes superimposed in these diagrams. These graphs correspond to
the problems

{Qa~AQA~bRa~B,RB~C RA~C,A+# B}
{QEANJA,QA%B,A#B7QBQQ,QA%O,QO%E,C%D,QDQQ}

Testing the satisfiability of such problems is not straightforward, because there are hid-
den consequences. For example, the first set of constraints infplies~ R-B, so
A =~ B sinceR is invertible. Similarly, in the second problem, sinde# B, we know
Q-A# Q-B,soC =~ @Q-B # Q-A =~ a. As a result of such observations, additional
edges can be added to the graph to obtain a “simpler” graph with fewer hidden conse-
quences. Our example graphs can be simplified in this way as shown in Figure 3(b).

In addition, when there is a variable equality edge involving a variable, such as
A =~ v € G, the graph can be simplified by collapsidgandv. This process is ex-
actly analogous to substituting fot in the corresponding problerfiz. The results
of collapsing the simplified example graphs are shown in Figure 3(c). The resulting
graphs are fully simplified, and testing satisfiability is trivial because there are no re-
maining hidden consequences. The first graph is clearly unsatisfiable since there is
a freshness edge corresponding to a formdilat A. On the other hand, the sec-
ond graph is satisfiable because there are no such edges. One satisfying valuation is
Q=(ac)(ab),E=a,A=b,B=D=C=c.

QééQ

Fig. 4. Simplification rule diagrams fo=F), (#%), (#%.), (#2), (=7,), (=) (respectively)

In the rest of this section, we present and prove correct an algorithm for testing
satisfiability for p-graphs based on this intuitive approach. We consider several rules
for simplifying graphs, shown in Figure 4. Each diagram consists of a solid part and
an edge formed with dotted lines. Such a diagram indicates thiahds a subgraph of
the form described by the solid part, then the dotted edge should be added. These rules
correspond to the following transformations on sets of formulas:

(Rpep) S —p Ssvmv (BER) S EvV,Qu~w Qv =uw]—, SwEw

(#2.) S —pS,a#b (EP) SwEw,Qv=w Qv =uw]|—,SvEV
where in the(~7 ;) and (#7,,) rules,v ora # b must be inS, respectively; in the
(EP,) and(EP.) rules,E € {~,#}; andS[S;] —, S, S, means “If S contains the
formulasS,, then addS; to S," .

Once the simplification rules above have been applied we can “collapse” equality
edges involving variables, as outlined in the informal example. We say that a variable
in G is solved if it appears in just one equality edgednotherwise it is unsolved; if
A =~ v € G and A is unsolved then we can solv in G by replacingA with v in
all the other edges aff. This transformation on the graph corresponds to a variable
elimination step on its corresponding constraint set:

(~P,) S, Amuv—,S[A:=v],Axv (f Ac FV(S), A#)

We defineG[A := v] as the result of removing from G and replacingd with v in all
edges of&; a collapsing step orl = v transformsG to G[A := v], A ~ v. We write
G —, G’ if G can be transformed 6’ via a simplification or collapsing step.

When considering satisfiability, solved variables can be ignored.cthapsing
¢(G) of a graphG is the graph formed by eliminating all solved vertices:(ifr) = G,
we say thats is fully collapsed.

Lemmal. If A~ v € G thenSolv(G[A := v], A = v) = Solv(G). Moreover,c(G)
is satisfiable if and only i+ is.

Proof. If 6 E G, thend E A ~ v, henced = A[A := v] for eachA € G besidesA ~ v.
Conversely, iff F G[A :=v],A = v, thenfd F A ~ v and sof F A for eachA € G.
The second part follows by induction on the number of solved variablés in

We say that a p-graph is imormal formif none of the simplification or collapsing
rules apply. A normalized graph slvedif in addition, £ and £ are disjoint. We
consider the possible forms of fully collapsed solved forms.

Proposition 1. In a fully collapsed solved fornk~. = Idyw, and eachEy, is a partial
injective function oriV.

Proof. Clearly Idy, C E. since otherwistffef) would apply. Suppose ~ w €
G. If v is a variableA, thenw must also bed because otherwise andw could be
collapsed. The case in whieh is a variable is symmetric. if andw are names, then
sinceG is normalized we must have# b € G anda = b ¢ G for any distinct names
a # b, so it must be the case that= a = w.

For the second part, 1€ € PV be given and considé¢p, w), (v, w’) € Eq. Since
G is normalized, we must haver v € G andw =~ w’ € G. By the first partw = w'.
HenceEy, is a function. Moreover, by a similar argumentif, w), (v, w) € Eg then
v =1', SOEq Is injective.

Proposition 2. A normalized p-graph is satisfiable if and only if it is solved.

Proof. For the forward direction, we prove the contrapositivezlfs normalized but
not solved, then there exisgs, w) € E4 N E~. No valuation satisfies both~ w and
v # w, SOG is unsatisfiable.

For the reverse direction, it suffices to consider only normalized, fully collapsed
graphs. By Proposition 1 must satisfyE. = Idw, and Eg must be an injective
function onW for each@.

Recall thati’ = V U N, whereN is the set of names arid = {A;, ..., A;} the
set of variables of7. Letb, ..., by bek names fresh for each other and not appearing
in N. Defined(4;) = b; for A; € V. Note thatf is a bijection betweef’ and B =
{b1,...,b;}. It extends to a bijectiod : W — BUN.Ifv = w € G thenv = w
so clearlyf(v) ~ 0(w). On the other hand, if # w € G, we must have) # w, so
0(v) # 6(w) sinced is bijective. This shows that any valuation based@atisfies the
edgesty andEy of G.

Since eaclE is injective it can be completed to a bijectiop : W — W. Define
0(Q) = 0 o mg o §~! for eachQ. Supposdv, w) € Eq. By constructionsrg (v) = w,

S0

(Q-v) = 0(Q)((v)) = 8(mq (07 (8(v)))) = 8(mq(v)) = b(w)
as desired. This completes the proof that the valuatisatisfies:.

Theorem 1 (Soundness)f G —, G’ thenSolv(G’) = Solv(G).

Proof. Supposez —,, G'. For a simplification stepii’ = G U A where A is either

v R w, v # w,0rv 2. Trivially, Solv(G’) C Solv(G) sinceG C G’. To show
thatSolv(G) C Solv(G’), we need only verify thaff = A in each case.

For the(~, ;) rule, A = v ~ v, andG F v = w. For the(#7,,) rule, A = a # b
for names # b, and clearlyG E a # b. For the(E?,) rule, we haved = 2/ F y’ and
v-L v w - w v Ew e Gfor E € {~,#}. Thenf(v) E 6(w), 6(Q)(6(w)) =
f(w') andd(Q)(8(v)) = 6(v'), so

0(v') = 6(Q)(6(v)) E 0(Q)6(w) =~ 6(w')

The cases for theE?) rules are symmetric, since permutations are invertiblezand
and+# are equivariant. The case fof=&?,,.) step is shown in Lemma 1.

var

Theorem 2 (Termination). There are no infinite sequences of simplification steps.
Moreover, p-graph normalization can be performed in polynomial time.

Proof. Each reduction step either adds an edge or solves a vert&xsimthe maximum
number of steps is bounded above(By- | PV|) - |W|?|V|. Each reduction step can be
identified and performed in polynomial time, and normalized and solved graphs can be
recognized in polynomial time.

Corollary 1 (Completeness).The relation—,, reduces any p-grapliz to a normal
form G’ which is solved if and only {7 is satisfiable; moreovefolv(G) = Solv(G').

4 Equivariant Unification

In the previous section, we considered a very limited case of equivariant unification,
namely solving systems of formulas of the foim~ w, v # w, andQ-v ~ w. We
showed that this problem can be solved in polynomial time using permutation graphs.
In this section, we give an algorithm for reducing equivariant unification for arbitrary
nominal terms to the problem of testing the satisfiability of a finite (but possibly ex-
ponential) number of permutation graphs. This algorithm can be easily be modified
to obtain a nondeterministic polynomial time procedure for testing the satisfiability of
such a problem, or as a procedure for enumerating the solutions one at a time.

We break the process into two phases. In the first phase, we simplify all problems
involving subterms of the forn), (¢, u), (a)t, f(t). After the first phase, the remaining
satisfiable subproblems are of the foarg# b, a ~ b, wherea, b are formed using only
names, variables, and permutations. In the second phase, we convert these subproblems
into p-graphs by eliminating permutations. Once each p-graph is constructed, we can
test its satisfiability as shown in the previous section.

4.1 First phase

The first phase of the algorithm (defined as a relatior) is presented as a collection
of multiset rewriting rules in Figure 5. Each rule is of the fofm—; M, and indicates
that an extended problem’; S should be rewritten to the problemt’; M.

A problem S is in solved formif it consists only of constraints of the form# b,
a =~ b, or X ~ t whereX does not appear ihor elsewhere irb; an extended problem
is solved if all its problems are solved. “Stuck” subprobleghthat are unsolved and
can take no transition can always be removed from an extended problem.

Example 2.The problemQ-((a)(A, B)) ~ (b)(b, c) reduces to a solved form as fol-
lows:

~ Q-a~ b, (Q-A,Q-B) ~ (b,c);
(Q2)(QA,QB) = (b)) = {Qa#(b QA0 B) ~ (Qab) b, Qab).c>}

Qa~bQA~b QBNC
{Qa#an#cQA (Q-ab)b,Q-B =~ (Q-ab) c}

~1) 5,0~ —1 8
f't“.,x) S,<t17t2>%(u1,uQ —1 S7t1%u1,t2%uz
~y) S, f(t) = f(u) =1 S,t=u

Fabs) S, (@)t ~ (Bju =1 { S, as’; ':, fi?al;)’)u}

Nvar) S, I-X =t — SX =", X ~ IO 't
(whereX ¢ FV(t),X € FV(5))

(#41) S,a# () =15

(#x) S,a # (u1,u2) —1 S,a # ui,a # us

(#f) S,a# f(u) =1 S,a#u

(#ane) st W {5050

Fig. 5. Equivariant unification: phase one

Some constraints in a solved form may be of the fdimX ~ IT’-X where X
is not a hame-variable so cannot be substituted with names. These constraints are al-
ways satisfiable so can be set aside. This leaa@se—nameonstraints: # b,a ~ b
involving only permutations, names, and name variables.

Theorem 3 (Soundness)f M —; M’ thenSolv(M) = Solv(M’).

Proof. The cases fof~1), (=), (=), and(=2,,) are straightforward. Fat=s), it
suffices to show thaSolv({a)t ~ (b)u) = Solv(a =~ b,t = u) U Solv(a # u,t ~
(ab)-u). Clearly, if0 F a ~ bt = u,0r0 F a # u,t ~ (a b)u, thend F (a)t = (b)u
using the rules in Figure 1. & = (a)t =~ (b)u, then there are two caseshifa) = 0(b),
thend F a =~ bt = u, 500 E MW {a = bt ~ u}. Otherwise, we must have
OFa# u,t=(ab)u,s00 F MW {a# u,t~ (ab)u}.

The cases involving freshness are straightforward, with the reasonirfgtgr)
similar to that for(~,s).

Theorem 4 (Termination). The relation—; terminates.

Proof. We define a measure on terms as follow&)) =~ 1, u((t, u)) = pu(t)+p(u)+1,
n(f(0) = p(f) + 1 u((a)t) = u(t) + 1, p(IT-X) = p(Il-a) = 0. Letu(t E u) =
p(t)+p(u) andu(S) = - 4 g n(A). Lety/(S) be the number of unsolved variables in
S. Definev(S) = (1/(S), n(S)) andv(M) = {v(S) | S € M}. Itis straightforward
to verify that if P —; P’ thenv(M) > v(M’) in the multiset order generated by the
lexicographic order ofN x N.

Lemma 2. If M is satisfiable and—;-normalized, thenM is in solved form.

Proof. We prove that ifM is unsolved and satisfiable, it is not normalized. Suppose
M is satisfiable but not solved. Then there must be some constraltuvhich is not

of the forma # b,a = b, or X =~ t whereX is solved in M. If the constraint is of
the formII-X = t whereX is a term variable antistarts with a term symbol, then we
must haved(IT-X) ~ 6(t), which can only be the case X does not appear ity so
(~var) applies. Otherwise, the constraint must be of the form v or a # u, where

(id) Slid-v] —2 S[v]
(inv) S[T™v] —2 IX.S[X], [I-X = v
(comp) S[II o II' v] —2 IX.S[-X], " v ~ X)

Sla],a’ =~ v;

(swap) Sl(aa)v] =2 Sla'),a ~ v
IX.S[X],v~ X,a# X,a' # X

(#q) S, Qu#w —23X.SQurX, X #w

Fig. 6. Equivariant unification: phase two.

t, u start with term symbols. For the casew# u, a step can be taken no matter which
term symbol is at the head of Fort ~ u, sincef E t ~ u, the head symbols dgfand
u must match, so that we can take a step. In any cése;» M’ for someM’.

Corollary 2 (Completeness).The relation—; reduces any finite equivariant unifica-
tion problem to a finite complete set of pre-solutions.

4.2 Second phase

In the second phase, we reduce hame—name constraints to p-graphs whose satisfiabil-
ity can be checked easily. As a preprocessing step, we assume that all constraints of
the formI1,-v ~ II>-w or II;-v # Il;-w are normalized tcﬁH{l olIl)wv ~ wor

(Hg1 o IT)w # w respectively. This is without loss of generality becagsand~

are preserved by applying permutations to both sides. The rules for the second phase
of equivariant unification shown in Figure 6 reduce the results of the first phase to a
form suitable for satisfiability checking via p-graphs. In several rules, we introduce
fresh existentially-quantified variables; these are required not to already appear in the
problem.

Example 3.We continue Example 2. The first subproblefha ~ b, Q-A = b, Q-B ~
¢, is already in solved form (and is satisfiable providéds a). The second problem
reduces as follows:

QA= (Qab)b,Q B~ (Qab)c,Qa#bQa#c
—9 (Q-ab)o@QAxb,(Qab)o@Q-B=cS
—9 (Qab)Cy =b,QA~C,(Q-ab)Cy~c,QB~CyS
{ Q-a=C1,b =~ b; } {(*) Q-a= Cy,bxc; }
—9 ¢ (%) Q-a~b,a~ Cy; ® 4 (%) ar (y,Qarmcg ® {9’}
(x) Qa# Ci,b# C,Cr = b Q-a# Co,b# Cy,Cy = c
whereS = Q-a # b,Q-a # candS’ = QA ~ C1,Q-B =~ Cy, 5, andM @ M’

denotes{T AT' | T € M,T" € M’}. There are a total of nine cases; however, the
starred subproblems are unsatisfiable, so there is only one solution.

Theorem 5 (Soundness)f M —y M’ thenSolv(M) = Solv(M').

Proof. There are several cases, one for each rule replagihg with M, M’ for
S —9 M. The cases fo(id), (inv), (comp), and(#¢) are straightforward. For the
(swap) rule, it suffices to show thatolv(S[(a b)-v]) = T = Solv(S[b],a =~ v) U
Solv(S[al, b~ v) U Solv(IX.S[X],v = X,a # X, b # X). If 0 € Solv(S[(a b)-v]),
then there are three casesd i a ~ v, thend E (a b)-v = bs08 € Solv(S[b],a ~ v).
The case fof) F b = v is symmetric. Ifd F a # v,b # v, thenf E (a b)-v ~ v SO
0[X :=0(v)]| F X ~v,a # X,b # X,S[X], andf € Solv(IX.S[X],v ~ X,a #
X,b # X). Soin any casé € T. The reverse directior]’ C Solv(S[(a b)-v]), is
straightforward.

Theorem 6 (Termination). The relation—, terminates.

Proof. We employ a measunethat measures the complexity of the permutation terms
remaining inM. We defineu(v) ~ 0, u(I1-v) = p(Il), p((a b)) = 1+ p(a) + u(b),
(Il o IT") = p(IT) + p(I'), p(II—Y) = p(I) + 1, andu(id) = 1. In addition,
pla # v) = pla = v) = pla), p(S) = 3 4es #(A), andu(M) = {u(S) | S € M}.

If M —5 M’, thenu(M) is decreasing in the multiset ordering generated-hy

Lemma 3. If M is —5-normalized problem, then it is in solved form.

Proof. Since M is normalized, it cannot contain any constraints of the féfm £ w
where E € {#,~} andII is not a variable, since otherwise one of the rulgs,
(comp), (inv), (swap) can be applied. SimilarlyM cannot contain a constraint of the
form Q-v # w, since otherwis€#¢) applies. Because only constraints of the form
v & w, v # w,and@Q-v ~ w remain, M is in solved form.

Corollary 3 (Completeness)The relation—s reduces any finite name—name problem
to a finite complete set of pre-solutions.

Example 4.Consider the quer§- spec(all({a)tvar(a)), [b], U). Equivariant unifica-
tion against a suitably renamed/permuted head cl&usgec(all({(a")T"),a’ :: L', U’)
yields a single unifief?-a’ ~ b, T’ := tvar(P~! o (a P-a’)-a), L' := [|,U := P-U".
The resulting subgoapec(tvar(P~to(a P-a’)-a), [], U’) produces the unique solution
U’ := tvar(P~! o (a P-a’)-a). This gives the overall solutiofl := tvar(Po P~!o

(a P-a’)-a), which can be simplified t&/ := tvar(b) sinceP-a’ ~ b.

5 Swapping-Free Equivariant Matching

In equivariant unification, only the abstraction and swapping operations cause branch-
ing. This implies (perhaps surprisingly) that equivariant unification is tractable for prob-
lems involving names, term symbols, and freshness but not abstraction and swapping.
If we restrict attention to equivariant matching of grounded terms, however, we can get
a stronger result: swapping-free grounded terms can be matched efficiently. We con-
sider grounded problems of the form< «, whereu is ground; a solution is a ground
substitution¥ and ground permutation such tha¥(t) ~ 7-u.

When one side of an equation is ground, the structure of the bound names on that
side must be mirrored exactly on the other side. For example, consider the problem

(1) S Lt <U() —m Syt = ()

(<y) S, 1t <U.f(u) —m IX.S,1L.X <U'u,t = f(X)

(Sx) St < l'.(ul,u2> —m dX1, X2.5,0.X7 < l'.u1,l.X2 < l/.UQ,t ~ <X1,X2>
(Saps) S, Lt <U.(ayu —, 3X.S,1b.X <l'au,t~ ()X (b¢ FN(S))

(<~) S,la.v <Il'bb—,, Sv~a

(<) S,ilaw <Il'b.c = S,lv<l.c;a#tv (b#c¢)

Fig. 7. Swapping-free equivariant matching

(a)(b)X < (c)(d)e, whereX is a name-variable andis a ground name. ¥ = d, then
we must haveX = b; if e = ¢, then we must hav& = a; and ife is some name other
thanc, d then we must have, b # X and@Q-X = e.

Also, in a problem of the fornda;)- - -(a,,) X < (b1)---(b,)t, if ¢ starts with unit,
pairing, or a function symbof, then X must also start with unit, pairing, gf, so we
can proceed bgimulatingthe head symbol of by making an appropriate substitution
of X = (), X ~ (X1,X5), or X = f(X'), whereX;, X5, X’ are new variables.
More generally, if the problem is of the forfa;)- - -(a,)t < (by)---(b,)u, then we
can proceed by unifyingwith (), (X, X2), or f(X’), as appropriate.

Based on this intuition, we propose the following algorithm for matching swapping-
free grounded terms with ground nominal terms. We writefor lists of names; - - - a,,
and consider problems of the forim < I’.u whereu is ground. This problem is equiv-
alent to the problenfay)- - (a,)t < (b1)---(by)u.

The rules in Figure 7 define a relatien,,, that reduces equivariant matching prob-
lems to the formS< U S p, whereS< is a collection of inequalities of the forfhv <
[l.a, and Sy p is a collection of equality and freshness constraints among grounded
terms. The satisfiability obp can be tested using grounded nominal unification; if
successful, this results in a unifiév, o), whereV is a set of freshness constraints and
o is a substitution. Now lef) be a permutation variable, 18 = VU {Q-0(v) = a |
[J.v < [.a € S<}, and test the satisfiability of thegraphGs,, .

We now state the important properties-of,,. The proofs are complicated without
being particularly enlightening so are omitted.

Theorem 7 (Soundness)f S —,, S, thenSolv(S) = Solv(S").

Theorem 8 (Termination). The relation—,,, is terminating, and normal forms can be
computed in polynomial time.

Lemma 4. If S is a normalized swapping-free equivariant matching problem, thien
is in solved form.

Theorem 9 (Completeness)he relation—,, reduces any equivariant matching prob-
lem.S to a pre-solutionS’ such thatSolv(S) = Solv(S’).

Example 5.Recall the problensubst(var(a), T, a) < subst(var(b),var(a),b) men-
tioned in the Introduction. The above algorithm reduces to the solveddetnb, 7" :=
var(B), B < a. Sincesubst(var(a),T,a) rewrites toT = var(B) andB < a, we
rewrite subst(var(b), var(a), b) to var(a).

6 Related and Future Work

Many researchers (see for example [9]) have studied the probldrrurfification, or
unification with respect to a general equational thedryHowever, nominal logic poses
some unique challenges to standardinification techniques based on confluent rewrite
systems. One reason is that it appears that the equivariance prip@iple p((a b)-z)
cannot be directed so as to obtain a confluent rewrite system for nominal terms.

There also may be an interesting connection between equivariant unification and
unification modulo equational laws having to do with name-restriction irrtbalculus,
such as/a.p = p (wherea ¢ FN(p)) andva.vb.p = vb.va.p. More generally, it may
be interesting to studg-unification for equational theories specified in nominal logic.

Cheney [2], Fernandez, Gabbay and Mackie [4], and Urban and Cheney [10] have
developed increasingly general tests for identifying rewriting systems or logic programs
for which nominal unification is adequate. These results demonstrate that nominal uni-
fication can often be used instead of equivariant unification to execute programs effi-
ciently. Such special cases should be recognized and exploited whenever possible.

FreshML [8] is a ML-like functional programming language based on nominal ab-
stract syntax. In FreshML, programs can perform pattern matching against terms in-
volving abstraction and name-variables but not constant names, swappings; also, such
pattern matching is not modulo equivariance. However, as usual in ML, variables may
appear at most once in patterns, so the matching problems involved in FreshML can
be solved efficiently and without backtracking: for example, to matelgainst an ab-
straction{A)¢, it suffices to generate a fresh namand match. against(c)¢. It would
be interesting to see whether constant names could be incorporated into FreshML-style
functional programming.

In logic programming, nondeterminism is often a bigger performance problem than
exponential worst-case complexity, so it would be worthwhile to find ways of avoiding
duplicate answers, delaying nondeterministic search, and detecting failure early. One
possibility is to look for and factor out symmetries in subproblems as soon as they
appear. Another step in this direction is to replace(thg,s) and(#.ss) rules with

(Rabs) S, (a)t = (byu —1 S,Nc.(ac)t =~ (bc)u
(#abs) S,a # u —1 5, Vc.a # (b C)'U

wherec ¢ FN(a,b,t,u) andW is nominal logic’s “new” or “fresh name” quantifier.
This is correct because in hominal logig)t =~ (b)u <= Wc.(a c)t = (bc)u
anda # (b)u <= Wc.a # (b c)-u. This approach concentrates the nondeterminism
in name—name constraints, which suggest that a practical approach may be to delay
attempts to solve such constraints as long as possible.

We expressed equivariant unification in terms of permutation terms and variables.
In contrast, in nominal logic, only the swapping operator is present; general permuta-
tions are not. It is not clear how solutions involving permutation variables produced by
our algorithm relate to nominal logic. Thus, it would be an advantage if permutation
variables could be eliminated from the results of logic programming queries. This issue
needs to be investigated.

We have developed a prototype implementation of equivariant unification using
Constraint Handling Rules [5], which are available in many Prolog implementations.

This helped identify some subtle issues and is a first step towards incorporating nomi-
nal abstract syntax into standard logic programming languages.

7 Conclusions

Equivariant unification and matching are computationally hard problems requiring sub-
tle algorithmic techniques. Solutions to these problems are necessary for complete
implementations of nominal rewriting and logic programming. This paper makes two
contributions building upon an important technical device caflednutation graphs
We present an equivariant unification algorithm, the first terminating algorithm for this
problem. This algorithm can be viewed as a nondeterministic polynomial time algo-
rithm for reducing equivariant unification problems to finite complete sets of solutions.
Itis evident from the structure of the algorithm that the only sources of nondeterminism
in equivariant unification are swappings and abstractions. Based on this observation, we
developed an algorithm for efficient matching of swapping-free grounded terms. This
algorithm can be used to run interesting nominal rewrite systems that do not work prop-
erly using nominal unification alone. However, there are several potential efficiency
problems which will need to be addressed for equivariant unification to be practical.
Acknowledgments:This work was supported by EPSRC grant R37476. The author
wishes to thank the anonymous reviewers for their comments.

References

1. J. Cheney and C. Urban. Alpha-Prolog: A logic programming language with names, binding
and alpha-equivalence. Rroc. 20th Int. Conf. on Logic Programming (ICLP 200Aumber
3132 in LNCS, pages 269-283, 2004.

2. James Cheney. The complexity of equivariant unificationProceedings of the 31st In-
ternational Colloquium on Automata, Languages and Programming (ICALP 2064)me
3142 ofLNCS pages 332—-344. Springer-Verlag, 2004.

3. James R. CheneMominal Logic ProgrammingPhD thesis, Cornell University, Ithaca, NY,
August 2004.

4. Maribel Ferandez, Murdoch Gabbay, and lan Mackie. Nominal rewriting systems. In
Proceedings of the 6th Conference on Principles and Practice of Declarative Programming
(PPDP 2004)2004. To appear.

5. Thom Filthwirth. Theory and practice of constraint handling ruldsurnal of Logic Pro-
gramming 37(1-3):95-138, October 1998.

6. M. J. Gabbay and A. M. Pitts. A new approach to abstract syntax with variable binding.
Formal Aspects of Computing3:341-363, 2002.

7. A. M. Pitts. Nominal logic, a first order theory of names and bindimgformation and
Computation183:165-193, 2003.

8. M. R. Shinwell, A. M. Pitts, and M. J. Gabbay. FreshML: Programmming with binders made
simple. InProc. 8th ACM SIGPLAN Int. Conf. on Functional Programming (ICFP 2003)
pages 263-274, Uppsala, Sweden, 2003. ACM Press.

9. Wayne SnyderA Proof Theory for General Unificatigwolume 11 ofProgress in Computer
Science and Applied LogiBirkhauser, 1991.

10. C. Urban and J. Cheney. Avoiding equivariance in alpha-Prolog. To appear, 2004.
11. C. Urban, A. M. Pitts, and M. J. Gabbay. Nominal unificatidimeoretical Computer Sci-
ence 323(1-3):473-497, 2004.

