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Abstract. Nominal logic is a variant of first-order logic with special facilities for
reasoning about names and binding based on the underlying concepts of swapping
and freshness. It serves as the basis of logic programming and term rewriting tech-
niques that provide similar advantages to, but remain simpler than, higher-order
logic programming or term rewriting systems. Previous work on nominal rewrit-
ing and logic programming has relied on nominal unification, that is, unification
up to equality in nominal logic. However, because of nominal logic’s equivari-
ance property, these applications require a stronger form of unification, which we
call equivariant unification. Unfortunately, equivariant unification and matching
areNP-hard decision problems. This paper presents an algorithm for equivari-
ant unification that produces a complete set of finitely many solutions, as well as
NP decision procedure and a version that enumerates solutions one at a time. In
addition, we present a polynomial time algorithm forswapping-freeequivariant
matching, that is, for matching problems in which the swapping operation does
not appear.

1 Introduction

Gabbay and Pitts [6] introduced a novel approach to formalizing and reasoning about
abstract syntax involving bound names, based on the fundamental ideas of name-swap-
ping and freshness. We call this approachnominal abstract syntax(NAS). Initially, this
approach was based on FM-set theory, a variant of standard ZF-set theory originally de-
veloped to prove the independence of the Axiom of Choice. However, Pitts [7] showed
that this radical step can be avoided by incorporating the ideas of nominal abstract syn-
tax into a logic (callednominal logic) whose intended semantics is based on FM set
theory but rests on standard mathematical foundations.

The key elements of nominal logic are: a collection of infinitely many term sym-
bols a, b, . . . ∈ Name called names; a binary relation# called freshnessthat can
hold between a name and a value; aswapping function(a b)·t that exchanges the val-
ues of namesa and b in t; and anabstraction function〈a〉x that takes a name and
value. Abstractions are considered equal up toα-equivalence; for example〈a〉f(a, c) ≈
〈b〉f(b, c).

Nominal logic has been used as a basis for logic programming [1, 3] and term
rewriting systems [4]. So far, these techniques have relied upon the (efficiently im-
plementable)nominal unificationalgorithm of Urban, Pitts, and Gabbay [11] as a fun-
damental tool, just as first-order unification is used in ordinary logic programming and
term rewriting. However, as shown by Cheney [3, 2], nominal unification is not the right
tool for this job: proof search and term rewriting using nominal unification is incom-
plete.



First-order unification is complete for first-order resolution and rewriting because
ground atomic formulas are logically equivalent if and only if they are equal as terms.
But due to nominal logic’sequivarianceproperty, this is not the case for nominal logic.
The equivariance property states that validity is preserved by applying name-swappings
uniformly: that is,p(t̄) ⇐⇒ p((a b)·t̄). As a result, atomic formulas (such asp(a) and
p(b)) may be equivalent without being equal nominal terms. Similarly, if a collection
of rewriting rulest → u is used to define a relation→ in nominal logic, thent → u is
equivalent to(a b)·t → (a b)·u.

Consider the following logic program clauses and rewriting rules:

spec(mono(T ), [], T ). spec(all(〈a〉T ), [a|V s], U) :− spec(T, V s, U).
subst(var(a), T, a) → T subst(var(b), T, a) → var(b)

subst(app(E1, E2), T, a) → app(subst(E1, T, a), subst(E2, T, a))
b # T ` subst(lam(〈b〉E), T, a) → lam(〈b〉subst(E, T, a))

The spec predicate is taken from anαProlog [1] program that performs ML type in-
ference. It relates a polymorphic type to a list of bound variables and a monomorphic
type, and can be used in the forward direction to instantiate the bound variables of a
polymorphic type to fresh names, or backwards to quantify the free type variables of
an inferred type. Thesubst rewriting rules perform capture-avoiding substitution on
λ-terms encoded using nominal abstract syntax. (Note that nominal rewriting rules can
have freshness “guards”, e.g.a # X ` l → r applies only whena # X.)

Nominal unification and matching do not (and should not) take equivariance into
account. As a result, logic programs or rewriting systems may not work as desired
when nominal unification is used for backchaining or nominal matching is used for
term rewriting, respectively. The goalspec(all(〈a〉mono(tvar(a))), [b], U) has solu-
tion [U = tvar(b)] in nominal logic, but this solution cannot be found using nominal
unification. As another example, in nominal logic the first rewriting rule forsubst im-
plies thatsubst(var(b), var(a), b) rewrites tovar(a), but there is no substitution forT
makingsubst(var(a), T, a) ≈ subst(var(b), var(a), b).

Therefore, it is necessary to unify or match modulo a stronger equational theory
that takes equivariance into account. We call these problemsequivariant matchingand
equivariant unification, respectively. Equivariant unification is of both practical and the-
oretical interest. On the theoretical side, Cheney [2] showed that equivariant unification
is NP-hard. On the practical side, there are some interesting programs (such asspec)
that only appear to be expressible using equivariant unification. In addition, equivariant
matching seems desirable in nominal rewriting systems for clarity and simplicity. For
example, in the nominal rewriting approach advocated by Fernandez et al. [4], thesubst
rewrite rules above will not work properly. Instead, the following rewrite system was
used for capture-avoiding substitution:

subst′(〈a〉var(a), T ) → T a # B ` subst′(〈a〉var(B), T ) → var(B)
subst′(〈a〉app(E1, E2), T ) → app(subst′(〈a〉E1, T ), subst′(〈a〉E2, T ))

b # T ` subst′(〈a〉lam(〈b〉E), T ) → lam(〈b〉subst′(〈a〉E, T ))

In this paper we make two significant contributions:



– We present aNP algorithm for equivariant unification that produces at most finitely
many different solutions. This is the first (terminating) algorithm to be developed
for general equivariant unification.1 Besides taking equivariance into account, our
algorithm solves a more general form of nominal unification problems than those
considered by [11]. This algorithm can be used to run arbitrary nominal logic pro-
grams and rewriting systems and may also be useful in analyzing such systems.

– We present a polynomial-time algorithm forswapping-freeequivariant matching
problems, that is, problems in which the swapping function symbol is not present.
This is significant because typical nominal rewriting systems that require equivari-
ance (includingsubst) are swapping-free. This algorithm can be used as the basis
of efficient nominal term rewriting for a larger class of programs than considered
by Fernandez, Gabbay, and Mackie [4].

The remainder of this paper is structured as follows. In the next section, we review
nominal equational logic. In Section 3, we introducepermutation graphs, an impor-
tant tool for solving basic equivariant unification and matching problems that is used
in the rest of the paper. In Section 4, we present the equivariant unification algorithm
and sketch proofs of its important properties. Likewise, in Section 5 we present the
swapping-free equivariant matching algorithm and prove its properties. Section 6 dis-
cusses additional related work and future directions, and Section 7 concludes.

2 Background

We first consider the setTerm of ground nominal terms, given by the grammar

t ::= 〈〉 | 〈t, u〉 | f(t) | a | 〈a〉t

The first three cases denote units, pairing, and function symbols; we represent constant
symbolsc as functions applied to unitf(〈〉) and representn-ary function applications
f(t1, . . . , tn) using iterated pairingf(〈t1, 〈t2, · · ·〉〉). Namesa, a′ are drawn from a
countably infinite setName, and abstractions〈a〉t represent terms with bound names.

LetPerm be the set of (finite) permutations of names. We writeπ·t for theactionof
π ∈ Perm on t, or the result of applyingπ to rename the names oft. The permutation
action function and equality≈: Term × Term and freshness#: Name × Term
relations are defined in Figure 1. Equality is syntactic equality except for abstractions,
which are considered equal modulo renaming of the bound names to a fresh name. The
freshness theory spells out when a name is fresh for (not free in) a term. In particular,
a # 〈a〉t holds unconditionally, whilea # 〈b〉t holds fora 6= b if a # t.

Our definitions freshness and equality are superficially different from those used by
Urban et al., but they are equivalent for ground terms. Urban et al. unified nominal terms
modulo an equational theory axiomatizing equality and freshness judgments∇ ` A in
the presence of some assumptions∇ of the forma # X, for namesa and variables

1 Cheney [2] only established that the equivariant matching and unification problemsfor terms
involving only names, variables, and swappingsareNP-complete, but did not present al-
gorithms or upper bounds for problems involving general nominal terms.



π·a = π(a) π·〈〉 = 〈〉 π·〈t, u〉 = 〈π·t, π·u〉 π·f(t) = f(π·t) π·〈b〉t = 〈π·b〉π·t
(a 6= b)

a # b a # 〈〉
a # t

a # f(t)

a # t a # u

a # 〈t, u〉 a # 〈a〉t
(a 6= b) a # t

a # 〈b〉t a ≈ a 〈〉 ≈ 〈〉
t1 ≈ u1 t2 ≈ u2

〈t1, t2〉 ≈ 〈u1, u2〉
t ≈ u

f(t) ≈ f(u)
t ≈ u

〈a〉t ≈ 〈a〉u
(a 6= b) a # u t ≈ (a b)·u

〈a〉t ≈ 〈b〉u

Fig. 1.Swapping, equality, and freshness for ground terms

X. We instead axiomatize equality for ground terms only. Note that both freshness and
equality areequivariant, that is,t ≈ u ⊃ π·t ≈ π·u anda # t ⊃ π·a # π·t for any
a, t, u, π.

We now generalize to non-ground nominal terms so thatname-variablesA,B, . . . ∈
NV ar andterm-variablesX, Y, . . . ∈ V ar are permitted. In addition, we add explicit
syntax forpermutation termsΠ applied to nominal terms, including swappings, com-
position, inversion, and permutation variablesQ, R, . . . ∈ PV ar. Consider terms of
the form:

v, w ::= a | A Π,Π ′ ::= Q | id | (a b) | Π ◦Π ′ | Π−1

a, b ::= Π·v t, u ::= Π·X | a | 〈〉 | 〈t, u〉 | f(t) | 〈a〉t

We writeFN(t), FV (t), FNV (t) andFPV (t) for the sets of names, term variables,
name variables, and permutation variables oft. This grammar forbids permutation terms
except immediately around names or variables. We defineΠ·t for arbitrary termst as
follows:

Π·〈〉 = 〈〉 Π·〈t, u〉 = 〈Π·t,Π·u〉 Π·f(t) = f(Π·t)
Π·〈a〉t = 〈Π·a〉Π·t Π·(Π ′·t) = (Π ◦Π ′)·t

Urban et al. considered a more restrictive language of nominal terms in which per-
mutation variables were not present, and requireda andb to be ground names in terms
of the formsa # t, (a b)·t, and 〈a〉t. These restrictions were crucial for obtaining
an efficient, deterministic unification algorithm. To avoid confusion, we refer to such
terms asgrounded terms, and to Urban et al.’s algorithm asgrounded nominal unifica-
tion. There are several important differences between our nominal terms and grounded
terms. For our nominal terms, permutations applied to names cannot always be sim-
plified: for example,Q·a cannot be simplified without knowing something aboutQ.
Another difference is that name variables are permitted in any place where a name
would be permitted. Nominal unification isNP-complete for arbitrary terms [3, Ch. 7],
but tractable for grounded terms [11]. General equivariant unification and matching are
NP-complete even for grounded terms (see [2] and Section 4). However, equivariant
matching is tractable for grounded, swapping-free terms (see Section 5).

We refer to atomic formulast ≈ u, a # u asconstraintsC, conjunctions and∃-
quantifications of constraints asproblemsS, and disjunctions of problems asextended

problemsM =
{

S1;
· · ·
Sn

}
. An arbitrary problem involving terms that may have permu-

tation variables is called anequivariant unificationproblem. A problem involving no



θ(〈〉) = 〈〉 θ(〈t, u〉) = 〈θ(t), θ(u)〉 θ(f(t)) = f(θ(t))

θ(Π·v) = θ(Π)·θ(v) θ(a) = a θ(〈a〉t) = 〈θ(a)〉θ(t)

θ(id) = id θ(Π ◦Π ′) = θ(Π) ◦ θ(Π ′) θ(Π−1) = θ(Π)−1 θ((a b)) = (θ(a) θ(b))

Fig. 2.Valuations

permutation variables is called anominal unificationproblem. A problem in which all
equations involving permutation variables are of the formQ·t ≈ u, whereu is ground,
is called anequivariant matchingproblem. Problems aregrounded, name–name, or
swapping-freeif all terms are grounded, if only names, swappings, and name variables
are present, or if the swapping operation is not present, respectively.

A valuationis a functionθ mapping term variables to ground terms, name variables
to ground names, and permutation variables to ground permutations. Valuations are
extended to terms as shown in Figure 2. We say thatθ � t ≈ u if θ(t) ≈ θ(u);
similarly, θ � a # t if θ(a) # θ(t). If S is a set of constraints, then we writeθ � S if
θ � A for eachA ∈ S, andθ � ∃X.S if θ[X := t] � S for somet.

We writeSolv(S) for {θ | θ � S} andSolv(M) for
⋃

S∈M Solv(S). A problemS
is apre-solutiontoM if Solv(S) ⊆ Solv(M), and asolutionif in additionSolv(S) 6=
∅. A solutionS toM is more generalthan another solutionT if Solv(T ) ⊆ Solv(S),
andmost generalif no strictly more general solution exists. A setM′ of (pre-)solutions
toM is acompletefor M if Solv(M) = Solv(M′) andminimal if eachS ∈ M′ is a
most general solution.

Example 1.A complete minimal set of solutions to the problem(A B)·C ≈ C is
{{C ≈ A,A ≈ B}, {A # C,C # B}}. A complete minimal solution set to the
problemQ·a # 〈b〉C is {{Q·a ≈ b}, {Q·a # b, Q·a # C}}. The equivariant match-
ing problemQ·(A, (a b)·A,B, (a b)·B) ≈ (a, b, c, d) has no solutions. The problem
f(〈a〉A, b) ≈ f(〈c〉d, d) has a unique most general solutionA ≈ b.

3 Permutation Graphs

In this section we consider an important data structure for representing information
about permutations, names, and freshness, called apermutation graph(or p-graph).

Definition 1. A p-graphG = (N,V, PV, E≈, E#, EQ, . . .) is a structure such that
N ⊆ Name, V ⊆ V ar and PV ⊆ PV ar are finite,E≈ and E# are undirected
graphs onW = N ∪ V , andEQ is a directed graph onW for eachQ ∈ PV .

Note that the verticesv of a p-graph may be either namesa, b, . . . or name variables
A,B, . . .. There are three kinds of edges: undirected equality edges (written using a
double linev == w), undirected freshness edges (written as a broken linev −++− w),

and directed permutation edges (writtenv
Q−→ w). We consider the edgev == w

equivalent to the formulav ≈ w, v −++− w equivalent tov # w, andv
Q−→ w
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Fig. 3. (a) Example p-graphs. (b) Simplified versions. (c) Solved forms

equivalent toQ·v ≈ w. We writeSG for the problem corresponding to the edges ofG
andGS for the p-graph corresponding the problemS.

For example, two small p-graphs are shown in Figure 3(a). Freshness and permuta-
tion edges are sometimes superimposed in these diagrams. These graphs correspond to
the problems

{Q·a ≈ A,Q·A ≈ b, R·a ≈ B,R·B ≈ C,R·A ≈ C,A # B}
{Q·E ≈ A,Q·A ≈ B,A # B,Q·B ≈ a, Q·A ≈ C,Q·C ≈ E,C ≈ D,Q·D ≈ a}

Testing the satisfiability of such problems is not straightforward, because there are hid-
den consequences. For example, the first set of constraints impliesR·A ≈ R·B, so
A ≈ B sinceR is invertible. Similarly, in the second problem, sinceA # B, we know
Q·A # Q·B, soC ≈ Q·B # Q·A ≈ a. As a result of such observations, additional
edges can be added to the graph to obtain a “simpler” graph with fewer hidden conse-
quences. Our example graphs can be simplified in this way as shown in Figure 3(b).

In addition, when there is a variable equality edge involving a variable, such as
A ≈ v ∈ G, the graph can be simplified by collapsingA andv. This process is ex-
actly analogous to substituting forA in the corresponding problemSG. The results
of collapsing the simplified example graphs are shown in Figure 3(c). The resulting
graphs are fully simplified, and testing satisfiability is trivial because there are no re-
maining hidden consequences. The first graph is clearly unsatisfiable since there is
a freshness edge corresponding to a formulaA # A. On the other hand, the sec-
ond graph is satisfiable because there are no such edges. One satisfying valuation is
Q = (a c)(a b), E = a, A = b, B = D = C = c.
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In the rest of this section, we present and prove correct an algorithm for testing
satisfiability for p-graphs based on this intuitive approach. We consider several rules
for simplifying graphs, shown in Figure 4. Each diagram consists of a solid part and
an edge formed with dotted lines. Such a diagram indicates that ifG has a subgraph of
the form described by the solid part, then the dotted edge should be added. These rules
correspond to the following transformations on sets of formulas:

(≈p
ref ) S →p S, v ≈ v (Ep

→) S[v E v′, Q·v ≈ w,Q·v′ ≈ w′] →p S, w E w′

(#p
irr) S →p S, a # b (Ep

←) S[w E w′, Q·v ≈ w,Q·v′ ≈ w′] →p S, v E v′

where in the(≈p
ref ) and(#p

irr) rules,v or a 6= b must be inS, respectively; in the
(Ep
→) and(Ep

←) rules,E ∈ {≈,#}; andS[S1] →p S, S2 means “IfS contains the
formulasS1, then addS2 to S,” .

Once the simplification rules above have been applied we can “collapse” equality
edges involving variables, as outlined in the informal example. We say that a variable
in G is solved if it appears in just one equality edge inG, otherwise it is unsolved; if
A ≈ v ∈ G andA is unsolved then we can solveA in G by replacingA with v in
all the other edges ofG. This transformation on the graph corresponds to a variable
elimination step on its corresponding constraint set:

(≈p
var) S, A ≈ v →p S[A := v], A ≈ v (if A ∈ FV (S), A 6= v)

We defineG[A := v] as the result of removingA from G and replacingA with v in all
edges ofG; a collapsing step onA ≈ v transformsG to G[A := v], A ≈ v. We write
G →p G′ if G can be transformed toG′ via a simplification or collapsing step.

When considering satisfiability, solved variables can be ignored. Thecollapsing
c(G) of a graphG is the graph formed by eliminating all solved vertices. Ifc(G) = G,
we say thatG is fully collapsed.

Lemma 1. If A ≈ v ∈ G thenSolv(G[A := v], A ≈ v) = Solv(G). Moreover,c(G)
is satisfiable if and only ifG is.

Proof. If θ � G, thenθ � A ≈ v, henceθ � A[A := v] for eachA ∈ G besidesA ≈ v.
Conversely, ifθ � G[A := v], A ≈ v, thenθ � A ≈ v and soθ � A for eachA ∈ G.
The second part follows by induction on the number of solved variables inG.

We say that a p-graph is innormal formif none of the simplification or collapsing
rules apply. A normalized graph issolvedif in addition, E≈ andE# are disjoint. We
consider the possible forms of fully collapsed solved forms.



Proposition 1. In a fully collapsed solved form,E≈ = IdW , and eachEQ is a partial
injective function onW .

Proof. Clearly IdW ⊆ E≈ since otherwise(≈p
ref ) would apply. Supposev ≈ w ∈

G. If v is a variableA, thenw must also beA because otherwisev andw could be
collapsed. The case in whichw is a variable is symmetric. Ifv andw are names, then
sinceG is normalized we must havea # b ∈ G anda ≈ b 6∈ G for any distinct names
a 6= b, so it must be the case thatv = a = w.

For the second part, letQ ∈ PV be given and consider(v, w), (v, w′) ∈ EQ. Since
G is normalized, we must havev ≈ v ∈ G andw ≈ w′ ∈ G. By the first part,w = w′.
HenceEQ is a function. Moreover, by a similar argument if(v, w), (v′, w) ∈ EQ then
v = v′, soEQ is injective.

Proposition 2. A normalized p-graph is satisfiable if and only if it is solved.

Proof. For the forward direction, we prove the contrapositive. IfG is normalized but
not solved, then there exists(v, w) ∈ E# ∩ E≈. No valuation satisfies bothv ≈ w and
v # w, soG is unsatisfiable.

For the reverse direction, it suffices to consider only normalized, fully collapsed
graphs. By Proposition 1,G must satisfyE≈ = IdW , andEQ must be an injective
function onW for eachQ.

Recall thatW = V ∪N , whereN is the set of names andV = {A1, . . . , Ak} the
set of variables ofG. Let b1, . . . , bk bek names fresh for each other and not appearing
in N . Defineθ(Ai) = bi for Ai ∈ V . Note thatθ is a bijection betweenV andB =
{b1, . . . , bk}. It extends to a bijectionθ : W → B ∪ N . If v ≈ w ∈ G thenv = w
so clearlyθ(v) ≈ θ(w). On the other hand, ifv # w ∈ G, we must havev 6= w, so
θ(v) # θ(w) sinceθ is bijective. This shows that any valuation based onθ satisfies the
edgesE≈ andE# of G.

Since eachEQ is injective it can be completed to a bijectionπQ : W → W . Define
θ(Q) = θ ◦ πQ ◦ θ−1 for eachQ. Suppose(v, w) ∈ EQ. By construction,πQ(v) = w,
so

θ(Q·v) = θ(Q)(θ(v)) = θ(πQ(θ−1(θ(v)))) = θ(πQ(v)) = θ(w)

as desired. This completes the proof that the valuationθ satisfiesG.

Theorem 1 (Soundness).If G →p G′ thenSolv(G′) = Solv(G).

Proof. SupposeG →p G′. For a simplification step,G′ = G ∪ A whereA is either

v ≈ w, v # w, or v
Q−→ w. Trivially, Solv(G′) ⊆ Solv(G) sinceG ⊆ G′. To show

thatSolv(G) ⊆ Solv(G′), we need only verify thatG � A in each case.
For the(≈p

ref ) rule,A = v ≈ v, andG � v ≈ w. For the(#p
irr) rule,A = a # b

for namesa 6= b, and clearlyG � a # b. For the(Ep
→) rule, we haveA = x′ E y′ and

v
Q−→ v′, w

Q−→ w′, v E w ∈ G for E ∈ {≈,#}. Thenθ(v) E θ(w), θ(Q)(θ(w)) =
θ(w′) andθ(Q)(θ(v)) = θ(v′), so

θ(v′) = θ(Q)(θ(v)) E θ(Q)θ(w) ≈ θ(w′)

The cases for the(Ep
←) rules are symmetric, since permutations are invertible and≈

and# are equivariant. The case for a(≈p
var) step is shown in Lemma 1.



Theorem 2 (Termination). There are no infinite sequences of simplification steps.
Moreover, p-graph normalization can be performed in polynomial time.

Proof. Each reduction step either adds an edge or solves a vertex inG, so the maximum
number of steps is bounded above by(2+ |PV |) · |W |2|V |. Each reduction step can be
identified and performed in polynomial time, and normalized and solved graphs can be
recognized in polynomial time.

Corollary 1 (Completeness).The relation→p reduces any p-graphG to a normal
formG′ which is solved if and only ifG is satisfiable; moreover,Solv(G) = Solv(G′).

4 Equivariant Unification

In the previous section, we considered a very limited case of equivariant unification,
namely solving systems of formulas of the formv ≈ w, v # w, andQ·v ≈ w. We
showed that this problem can be solved in polynomial time using permutation graphs.
In this section, we give an algorithm for reducing equivariant unification for arbitrary
nominal terms to the problem of testing the satisfiability of a finite (but possibly ex-
ponential) number of permutation graphs. This algorithm can be easily be modified
to obtain a nondeterministic polynomial time procedure for testing the satisfiability of
such a problem, or as a procedure for enumerating the solutions one at a time.

We break the process into two phases. In the first phase, we simplify all problems
involving subterms of the form〈〉, 〈t, u〉, 〈a〉t, f(t). After the first phase, the remaining
satisfiable subproblems are of the forma # b, a ≈ b, wherea, b are formed using only
names, variables, and permutations. In the second phase, we convert these subproblems
into p-graphs by eliminating permutations. Once each p-graph is constructed, we can
test its satisfiability as shown in the previous section.

4.1 First phase

The first phase of the algorithm (defined as a relation→1) is presented as a collection
of multiset rewriting rules in Figure 5. Each rule is of the formS →1 M, and indicates
that an extended problemM′;S should be rewritten to the problemM′;M.

A problemS is in solved formif it consists only of constraints of the forma # b,
a ≈ b, or X ≈ t whereX does not appear int or elsewhere inS; an extended problem
is solved if all its problems are solved. “Stuck” subproblemsS that are unsolved and
can take no transition can always be removed from an extended problem.

Example 2.The problemQ·(〈a〉〈A,B〉) ≈ 〈b〉〈b, c〉 reduces to a solved form as fol-
lows:

〈Q·a〉〈Q·A, Q·B〉 ≈ 〈b〉〈b, c〉 →1


Q·a ≈ b, 〈Q·A, Q·B〉 ≈ 〈b, c〉;

Q·a # 〈b, c〉, 〈Q·A, Q·B〉 ≈ 〈(Q·a b)·b, (Q·a b)·c〉

ff
→∗1


Q·a ≈ b, Q·A ≈ b, Q·B ≈ c;

Q·a # b, Q·a # c, Q·A ≈ (Q·a b)·b, Q·B ≈ (Q·a b)·c

ff



(≈1) S, 〈〉 ≈ 〈〉 →1 S
(≈×) S, 〈t1, t2〉 ≈ 〈u1, u2〉 →1 S, t1 ≈ u1, t2 ≈ u2

(≈f ) S, f(t) ≈ f(u) →1 S, t ≈ u

(≈abs) S, 〈a〉t ≈ 〈b〉u →1


S, a ≈ b, t ≈ u;

S, a # u, t ≈ (a b)·u

ff
(≈var) S, Π·X ≈ t →1 S[X := Π−1·t], X ≈ Π−1·t

(whereX 6∈ FV (t), X ∈ FV (S))
(#1) S, a # 〈〉 →1 S
(#×) S, a # 〈u1, u2〉 →1 S, a # u1, a # u2

(#f ) S, a # f(u) →1 S, a # u

(#abs) S, a # 〈b〉u →1


S, a ≈ b;
S, a # u

ff

Fig. 5.Equivariant unification: phase one

Some constraints in a solved form may be of the formΠ·X ≈ Π ′·X whereX
is not a name-variable so cannot be substituted with names. These constraints are al-
ways satisfiable so can be set aside. This leavesname–nameconstraintsa # b, a ≈ b
involving only permutations, names, and name variables.

Theorem 3 (Soundness).If M→1 M′ thenSolv(M) = Solv(M′).

Proof. The cases for(≈1), (≈×), (≈f ), and(≈var) are straightforward. For(≈abs), it
suffices to show thatSolv(〈a〉t ≈ 〈b〉u) = Solv(a ≈ b, t ≈ u) ∪ Solv(a # u, t ≈
(a b)·u). Clearly, if θ � a ≈ b, t ≈ u, or θ � a # u, t ≈ (a b)·u, thenθ � 〈a〉t ≈ 〈b〉u
using the rules in Figure 1. Ifθ � 〈a〉t ≈ 〈b〉u, then there are two cases. Ifθ(a) = θ(b),
then θ � a ≈ b, t ≈ u, so θ � M ] {a ≈ b, t ≈ u}. Otherwise, we must have
θ � a # u, t ≈ (a b)·u, soθ � M] {a # u, t ≈ (a b)·u}.

The cases involving freshness are straightforward, with the reasoning for(#abs)
similar to that for(≈abs).

Theorem 4 (Termination). The relation→1 terminates.

Proof. We define a measure on terms as follows:µ(〈〉) ≈ 1, µ(〈t, u〉) = µ(t)+µ(u)+1,
µ(f(t)) = µ(f) + 1, µ(〈a〉t) = µ(t) + 1, µ(Π·X) = µ(Π·a) = 0. Let µ(t E u) =
µ(t)+µ(u) andµ(S) =

∑
A∈S µ(A). Letµ′(S) be the number of unsolved variables in

S. Defineν(S) = (µ′(S), µ(S)) andν(M) = {ν(S) | S ∈ M}. It is straightforward
to verify that if P →1 P ′ thenν(M) > ν(M′) in the multiset order generated by the
lexicographic order onN× N.

Lemma 2. If M is satisfiable and→1-normalized, thenM is in solved form.

Proof. We prove that ifM is unsolved and satisfiable, it is not normalized. Suppose
M is satisfiable but not solved. Then there must be some constraint inM which is not
of the forma # b, a ≈ b, or X ≈ t whereX is solved inM. If the constraint is of
the formΠ·X ≈ t whereX is a term variable andt starts with a term symbol, then we
must haveθ(Π·X) ≈ θ(t), which can only be the case ifX does not appear int, so
(≈var) applies. Otherwise, the constraint must be of the formt ≈ u or a # u, where



(id) S[id·v] →2 S[v]
(inv) S[Π−1·v] →2 ∃X.S[X], Π·X ≈ v
(comp) S[Π ◦Π ′·v] →2 ∃X.S[Π·X], Π ′·v ≈ X)

(swap) S[(a a′)·v] →2

8<:
S[a], a′ ≈ v;
S[a′], a ≈ v;

∃X.S[X], v ≈ X, a # X, a′ # X

9=;
(#Q) S, Q·v # w →2 ∃X.S, Q·v ≈ X, X # w

Fig. 6.Equivariant unification: phase two.

t, u start with term symbols. For the case ofa # u, a step can be taken no matter which
term symbol is at the head ofu. For t ≈ u, sinceθ � t ≈ u, the head symbols oft and
u must match, so that we can take a step. In any case,M→M′ for someM′.

Corollary 2 (Completeness).The relation→1 reduces any finite equivariant unifica-
tion problem to a finite complete set of pre-solutions.

4.2 Second phase

In the second phase, we reduce name–name constraints to p-graphs whose satisfiabil-
ity can be checked easily. As a preprocessing step, we assume that all constraints of
the formΠ1·v ≈ Π2·w or Π1·v # Π2·w are normalized to(Π−1

2 ◦ Π1)·v ≈ w or
(Π−1

2 ◦ Π1)·v # w respectively. This is without loss of generality because# and≈
are preserved by applying permutations to both sides. The rules for the second phase
of equivariant unification shown in Figure 6 reduce the results of the first phase to a
form suitable for satisfiability checking via p-graphs. In several rules, we introduce
fresh existentially-quantified variables; these are required not to already appear in the
problem.

Example 3.We continue Example 2. The first subproblem,Q·a ≈ b, Q·A ≈ b, Q·B ≈
c, is already in solved form (and is satisfiable providedA ≈ a). The second problem
reduces as follows:

Q·A ≈ (Q·a b)·b, Q·B ≈ (Q·a b)·c, Q·a # b, Q·a # c

→2 (Q·a b) ◦Q·A ≈ b, (Q·a b) ◦Q·B ≈ c, S

→2 (Q·a b)·C1 ≈ b, Q·A ≈ C1, (Q·a b)·C2 ≈ c, Q·B ≈ C2, S

→2

 Q·a ≈ C1, b ≈ b;
(∗) Q·a ≈ b, a ≈ C1;
(∗) Q·a # C1, b # C1, C1 ≈ b

⊗

 (∗) Q·a ≈ C2, b ≈ c;
(∗) a ≈ C2, Q·a ≈ c;

Q·a # C2, b # C2, C2 ≈ c

⊗ {S′}

whereS = Q·a # b, Q·a # c andS′ = Q·A ≈ C1, Q·B ≈ C2, S, andM⊗M′

denotes{T ∧ T ′ | T ∈ M, T ′ ∈ M′}. There are a total of nine cases; however, the
starred subproblems are unsatisfiable, so there is only one solution.

Theorem 5 (Soundness).If M→2 M′ thenSolv(M) = Solv(M′).



Proof. There are several cases, one for each rule replacingM, S with M,M′ for
S →2 M′. The cases for(id), (inv), (comp), and(#Q) are straightforward. For the
(swap) rule, it suffices to show thatSolv(S[(a b)·v]) = T = Solv(S[b], a ≈ v) ∪
Solv(S[a], b ≈ v) ∪ Solv(∃X.S[X], v ≈ X, a # X, b # X). If θ ∈ Solv(S[(a b)·v]),
then there are three cases. Ifθ � a ≈ v, thenθ � (a b)·v ≈ b soθ ∈ Solv(S[b], a ≈ v).
The case forθ � b ≈ v is symmetric. Ifθ � a # v, b # v, thenθ � (a b)·v ≈ v so
θ[X := θ(v)] � X ≈ v, a # X, b # X, S[X], andθ ∈ Solv(∃X.S[X], v ≈ X, a #
X, b # X). So in any caseθ ∈ T . The reverse direction,T ⊆ Solv(S[(a b)·v]), is
straightforward.

Theorem 6 (Termination). The relation→2 terminates.

Proof. We employ a measureµ that measures the complexity of the permutation terms
remaining inM. We defineµ(v) ≈ 0, µ(Π·v) = µ(Π), µ((a b)) = 1 + µ(a) + µ(b),
µ(Π ◦ Π ′) = µ(Π) + µ(Π ′), µ(Π−1) = µ(Π) + 1, andµ(id) = 1. In addition,
µ(a # v) = µ(a ≈ v) = µ(a), µ(S) =

∑
A∈S µ(A), andµ(M) = {µ(S) | S ∈ M}.

If M→2 M′, thenµ(M) is decreasing in the multiset ordering generated by>N.

Lemma 3. If M is→2-normalized problem, then it is in solved form.

Proof. SinceM is normalized, it cannot contain any constraints of the formΠ·v E w
whereE ∈ {#,≈} andΠ is not a variable, since otherwise one of the rules(id),
(comp), (inv), (swap) can be applied. Similarly,M cannot contain a constraint of the
form Q·v # w, since otherwise(#Q) applies. Because only constraints of the form
v ≈ w, v # w, andQ·v ≈ w remain,M is in solved form.

Corollary 3 (Completeness).The relation→2 reduces any finite name–name problem
to a finite complete set of pre-solutions.

Example 4.Consider the query?− spec(all(〈a〉tvar(a)), [b], U). Equivariant unifica-
tion against a suitably renamed/permuted head clauseP ·spec(all(〈a′〉T ′), a′ :: L′, U ′)
yields a single unifierP ·a′ ≈ b, T ′ := tvar(P−1 ◦ (a P ·a′)·a), L′ := [], U := P ·U ′.
The resulting subgoalspec(tvar(P−1◦(a P ·a′)·a), [], U ′) produces the unique solution
U ′ := tvar(P−1 ◦ (a P ·a′)·a). This gives the overall solutionU := tvar(P ◦ P−1 ◦
(a P ·a′)·a), which can be simplified toU := tvar(b) sinceP ·a′ ≈ b.

5 Swapping-Free Equivariant Matching

In equivariant unification, only the abstraction and swapping operations cause branch-
ing. This implies (perhaps surprisingly) that equivariant unification is tractable for prob-
lems involving names, term symbols, and freshness but not abstraction and swapping.
If we restrict attention to equivariant matching of grounded terms, however, we can get
a stronger result: swapping-free grounded terms can be matched efficiently. We con-
sider grounded problems of the formt ≤ u, whereu is ground; a solution is a ground
substitutionθ and ground permutationπ such thatθ(t) ≈ π·u.

When one side of an equation is ground, the structure of the bound names on that
side must be mirrored exactly on the other side. For example, consider the problem



(≤1) S, l.t ≤ l′.〈〉 →m S, t ≈ 〈〉
(≤f ) S, l.t ≤ l′.f(u) →m ∃X.S, l.X ≤ l′.u, t ≈ f(X)
(≤×) S, l.t ≤ l′.〈u1, u2〉 →m ∃X1, X2.S, l.X1 ≤ l′.u1, l.X2 ≤ l′.u2, t ≈ 〈X1, X2〉
(≤abs) S, l.t ≤ l′.〈a〉u →m ∃X.S, lb.X ≤ l′a.u, t ≈ 〈b〉X (b 6∈ FN(S))
(≤≈) S, la.v ≤ l′b.b →m S, v ≈ a
(≤#) S, la.v ≤ l′b.c →m S, l.v ≤ l′.c, a # v (b 6= c)

Fig. 7.Swapping-free equivariant matching

〈a〉〈b〉X ≤ 〈c〉〈d〉e, whereX is a name-variable ande is a ground name. Ife = d, then
we must haveX = b; if e = c, then we must haveX = a; and if e is some name other
thanc, d then we must havea, b # X andQ·X = e.

Also, in a problem of the form〈a1〉· · ·〈an〉X ≤ 〈b1〉· · ·〈bn〉t, if t starts with unit,
pairing, or a function symbolf , thenX must also start with unit, pairing, orf , so we
can proceed bysimulatingthe head symbol oft by making an appropriate substitution
of X ≈ 〈〉, X ≈ 〈X1, X2〉, or X ≈ f(X ′), whereX1, X2, X

′ are new variables.
More generally, if the problem is of the form〈a1〉· · ·〈an〉t ≤ 〈b1〉· · ·〈bn〉u, then we
can proceed by unifyingt with 〈〉, 〈X1, X2〉, or f(X ′), as appropriate.

Based on this intuition, we propose the following algorithm for matching swapping-
free grounded terms with ground nominal terms. We writel, l′ for lists of namesa1 · · · an

and consider problems of the forml.t ≤ l′.u whereu is ground. This problem is equiv-
alent to the problem〈a1〉· · ·〈an〉t ≤ 〈b1〉· · ·〈bn〉u.

The rules in Figure 7 define a relation→m that reduces equivariant matching prob-
lems to the formS≤ ∪ SNP , whereS≤ is a collection of inequalities of the form[].v ≤
[].a, andSNP is a collection of equality and freshness constraints among grounded
terms. The satisfiability ofSNP can be tested using grounded nominal unification; if
successful, this results in a unifier〈∇, σ〉, where∇ is a set of freshness constraints and
σ is a substitution. Now letQ be a permutation variable, letSQ = ∇ ∪ {Q·σ(v) ≈ a |
[].v ≤ [].a ∈ S≤}, and test the satisfiability of thep-graphGSQ

.
We now state the important properties of→m. The proofs are complicated without

being particularly enlightening so are omitted.

Theorem 7 (Soundness).If S →m S′, thenSolv(S) = Solv(S′).

Theorem 8 (Termination). The relation→m is terminating, and normal forms can be
computed in polynomial time.

Lemma 4. If S is a normalized swapping-free equivariant matching problem, thenS
is in solved form.

Theorem 9 (Completeness).The relation→m reduces any equivariant matching prob-
lemS to a pre-solutionS′ such thatSolv(S) = Solv(S′).

Example 5.Recall the problemsubst(var(a), T, a) ≤ subst(var(b), var(a), b) men-
tioned in the Introduction. The above algorithm reduces to the solved forma ≤ b, T :=
var(B), B ≤ a. Sincesubst(var(a), T, a) rewrites toT = var(B) andB ≤ a, we
rewritesubst(var(b), var(a), b) to var(a).



6 Related and Future Work

Many researchers (see for example [9]) have studied the problem ofE-unification, or
unification with respect to a general equational theoryE. However, nominal logic poses
some unique challenges to standardE-unification techniques based on confluent rewrite
systems. One reason is that it appears that the equivariance principlep(x̄) ≈ p((a b)·x̄)
cannot be directed so as to obtain a confluent rewrite system for nominal terms.

There also may be an interesting connection between equivariant unification and
unification modulo equational laws having to do with name-restriction in theπ-calculus,
such asνa.p ≡ p (wherea /∈ FN(p)) andνa.νb.p ≡ νb.νa.p. More generally, it may
be interesting to studyE-unification for equational theories specified in nominal logic.

Cheney [2], Fernandez, Gabbay and Mackie [4], and Urban and Cheney [10] have
developed increasingly general tests for identifying rewriting systems or logic programs
for which nominal unification is adequate. These results demonstrate that nominal uni-
fication can often be used instead of equivariant unification to execute programs effi-
ciently. Such special cases should be recognized and exploited whenever possible.

FreshML [8] is a ML-like functional programming language based on nominal ab-
stract syntax. In FreshML, programs can perform pattern matching against terms in-
volving abstraction and name-variables but not constant names, swappings; also, such
pattern matching is not modulo equivariance. However, as usual in ML, variables may
appear at most once in patterns, so the matching problems involved in FreshML can
be solved efficiently and without backtracking: for example, to matchu against an ab-
straction〈A〉t, it suffices to generate a fresh namec and matchu against〈c〉t. It would
be interesting to see whether constant names could be incorporated into FreshML-style
functional programming.

In logic programming, nondeterminism is often a bigger performance problem than
exponential worst-case complexity, so it would be worthwhile to find ways of avoiding
duplicate answers, delaying nondeterministic search, and detecting failure early. One
possibility is to look for and factor out symmetries in subproblems as soon as they
appear. Another step in this direction is to replace the(≈abs) and(#abs) rules with

(≈abs) S, 〈a〉t ≈ 〈b〉u →1 S, Nc.(a c)·t ≈ (b c)·u
(#abs) S, a # 〈b〉u →1 S, Nc.a # (b c)·u

wherec 6∈ FN(a, b, t, u) and Nis nominal logic’s “new” or “fresh name” quantifier.
This is correct because in nominal logic,〈a〉t ≈ 〈b〉u ⇐⇒ Nc.(a c)·t ≈ (b c)·u
anda # 〈b〉u ⇐⇒ Nc.a # (b c)·u. This approach concentrates the nondeterminism
in name–name constraints, which suggest that a practical approach may be to delay
attempts to solve such constraints as long as possible.

We expressed equivariant unification in terms of permutation terms and variables.
In contrast, in nominal logic, only the swapping operator is present; general permuta-
tions are not. It is not clear how solutions involving permutation variables produced by
our algorithm relate to nominal logic. Thus, it would be an advantage if permutation
variables could be eliminated from the results of logic programming queries. This issue
needs to be investigated.

We have developed a prototype implementation of equivariant unification using
Constraint Handling Rules [5], which are available in many Prolog implementations.



This helped identify some subtle issues and is a first step towards incorporating nomi-
nal abstract syntax into standard logic programming languages.

7 Conclusions

Equivariant unification and matching are computationally hard problems requiring sub-
tle algorithmic techniques. Solutions to these problems are necessary for complete
implementations of nominal rewriting and logic programming. This paper makes two
contributions building upon an important technical device calledpermutation graphs.
We present an equivariant unification algorithm, the first terminating algorithm for this
problem. This algorithm can be viewed as a nondeterministic polynomial time algo-
rithm for reducing equivariant unification problems to finite complete sets of solutions.
It is evident from the structure of the algorithm that the only sources of nondeterminism
in equivariant unification are swappings and abstractions. Based on this observation, we
developed an algorithm for efficient matching of swapping-free grounded terms. This
algorithm can be used to run interesting nominal rewrite systems that do not work prop-
erly using nominal unification alone. However, there are several potential efficiency
problems which will need to be addressed for equivariant unification to be practical.
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